CN106315965A - 一种4,6-二硝基-1,2,3-三氯苯水解反应中废水的处理方法 - Google Patents

一种4,6-二硝基-1,2,3-三氯苯水解反应中废水的处理方法 Download PDF

Info

Publication number
CN106315965A
CN106315965A CN201510347012.6A CN201510347012A CN106315965A CN 106315965 A CN106315965 A CN 106315965A CN 201510347012 A CN201510347012 A CN 201510347012A CN 106315965 A CN106315965 A CN 106315965A
Authority
CN
China
Prior art keywords
cod
water
waste water
dinitro
water outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510347012.6A
Other languages
English (en)
Inventor
张蓉蓉
熊孝华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Research Institute of Sinopec Nanjing Chemical Industry Co Ltd
Original Assignee
China Petroleum and Chemical Corp
Research Institute of Nanjing Chemical Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Research Institute of Nanjing Chemical Industry Group Co Ltd filed Critical China Petroleum and Chemical Corp
Priority to CN201510347012.6A priority Critical patent/CN106315965A/zh
Publication of CN106315965A publication Critical patent/CN106315965A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及由4,6-二硝基-1,2,3-三氯苯合成2-氯-4,6-二硝基-1,3-间苯二酚过程中废水的处理方法,采用铁碳微电解和二氧化氯活性炭催化氧化两步法处理水解废水,原水的COD为22000mg/L,经铁碳微电解处理后可降解约50%的COD,经两步处理后废水的COD在1000mg/L左右。对氧化出水的可生化性分析BOD/COD=0.303,表明氧化出水适宜生化处理。本发明采用常温处理的方式,安全且操作简便,不产生固体废物等二次污染,操作时间短,处理效果稳定。

Description

一种4,6-二硝基-1,2,3-三氯苯水解反应中废水的处理方法
技术领域
本发明涉及一种有机化工废水的处理方法,进一步地说,是涉及由4,6-二硝基-1,2,3-三氯苯合成2-氯-4,6-二硝基-1,3-间苯二酚过程中废水的处理方法。
背景技术
顺聚对苯撑苯并二噁唑纤维(PBO)为全芳液晶杂环聚合物,可以成膜和纺纤,材料具有极其优异的力学性能、耐热性、阻燃性等综合性能,可用于航空航天以及其它一些领域中。PBO纤维有“超高性能纤维”和“纤维之王”的美誉。
4,6-二氨基间苯二酚(DAR)是生产高性能纤维聚亚苯基苯并二噁唑(PBO)的重要单体。获得高纯度、高产率的单体4,6-二氨基间苯二酚盐酸盐是合成高分子量PBO聚合物的关键之一,三氯苯路线是Lysenko于1988年提出的PBO单体合成路线, 经过硝化、水解、还原阶段,工艺简单、成本低、相对其它路线产率高。
合成2-氯-4,6-二硝基-1,3-间苯二酚是合成DAR的第二步,该废水是经水解,酸化,抽滤,蒸馏回收甲醇后的废水。
该洗水pH为6左右呈弱酸性,因含部分的硝基酚类有机物COD值较高。原废水的COD在22000mg/L左右。洗水中的组成比较单一,含有极少量的反应物和产物。由于没有达到排放标准,须对其进行处理后进入生化处理单元。
鉴于国内外目前都没有专门针对含有2-氯-4,6-二硝基-1,3-间苯二酚废水的处理技术,因此只能参考近似含有硝基酚官能团、卤素的芳香族有机废水的处理技术。
目前国内外处理这一类含有硝基酚官能团的芳香族物质的废水主要的方法有:催化湿式氧化、电解法、液膜萃取法、生化处理法和化学氧化处理法等。催化湿式氧化需要催化剂在高温高压的条件下对目标物彻底氧化,成本较高;电解法需要加入双氧水等辅助氧化,且有二次污染物产生;液膜萃取针对目标物质的浓度较高且可以回收利用的废水,但因其成本高操作复杂不是常规的方法;生化处理法需要驯化专门酚类物质的微生物,耗时长、成活率低、处理不稳定;化学氧化法如果单一采用则达不到预期的效果。根据前面的分析,需要开发新的处理方法来实现这一类废水的有效处理。
发明内容
本发明提出一种由4,6-二硝基-1,2,3-三氯苯水解合成2-氯-4,6-二硝基-1,3-间苯二酚过程中废水的处理方法,该方法采用铁碳微电解和二氧化氯活性炭催化氧化两步法处理水解废水,原水的COD为22000mg/L,经铁碳微电解处理后可降解约50%的COD,经两步处理后废水的COD在1000mg/L左右。对氧化出水的可生化性分析BOD/COD=0.303,表明氧化出水适宜生化处理。
将该废水加至带搅拌的反应器中,加入定量的铁粉和活性炭粉末。之后维持反应一段时间,测出水的COD。出水再经配水和二氧化氯溶液混合后进入装有催化剂的氧化柱内,在催化剂的作用下和空气接触氧化,氧化出水经生化处理后排放。
一般地,本发明方法的具体过程如下:
将100ml废水pH调至2~3(原废水的pH为5-6),加至带搅拌的反应器中;氧化剂为铁粉和活性炭粉末,按质量比为1:1—3:1连续加入一定的铁粉和活性炭粉末,一般分别为铁粉质量0.5~2.5g,活性炭粉末为0.25g~1.25g;加完后维持搅拌8小时,每隔1小时取样分析废水COD降解的情况,确定停留时间。出水再经配水(稀释)到COD3000mg/L和二氧化氯溶液以一定体积比混合后进入装有颗粒活性炭催化剂的氧化柱内,在氧化柱内和空气接触氧化,氧化出水经生化处理后排放。
在以上所述的2-氯-4,6-二硝基-1,3-间苯二酚水解废水处理方法的步骤中,将微电解的停留时间定在4-5小时,是经过多次的试验验证的,反应时间过长,不仅没有达到最佳的处理效果还导致处理费用增加。
所述二氧化氯溶液与废水的体积比为1:3—1:6。
所述再次氧化出水经可生化性分析,B/C>0.3。
与现有技术相比,本发明有以下优点:
1)相对于湿式催化氧化法,需要加温、加压且成本高,而本工艺采用常温处理的方式,安全且操作简便。
2)相对于液膜萃取方法适合含较高浓度有机物且可回收利用的废水,本废水含有机物浓度较低,不建议回收。
3)相对于电解处理方法,本发明不产生固体废物等二次污染。
4)相对于生化处理法,本发明操作时间短,处理效果稳定。
具体实施方式
实施例 1
向带搅拌的反应器中加入100ml洗水,原水的COD为22000mg/L,连续加入铁粉2g活性炭粉末1g,反应8小时,每隔1小时取样分析,在反应4小时的时候,COD的去除率达到了54.93%;将出水配成COD在3000mg/L左右,进入活性炭柱进行二氧化氯催化氧化,二氧化氯溶液与废水的体积比为1:6,经催化氧化处理后COD值为830mg/L再次氧化出水经可生化性分析,B/C>0.3。
实施例 2
操作条件同实施例1,但确定反应时间为4小时,连续加入铁粉1.0g活性炭粉末1.0g,在反应5小时后,COD的去除率达到了50.24%;将出水配成COD在3000mg/L左右,进入活性炭柱进行二氧化氯催化氧化,二氧化氯溶液与废水的体积比为1:4,经催化氧化处理后COD值为850mg/L,再次氧化出水经可生化性分析,B/C>0.3。
实施例3
操作条件同实施例2,但继续提高铁粉的加入量,连续加入铁粉1.5g活性炭粉末0.5g,在反应5小时后,COD的去除率达到了46.48%;将出水配成COD在3000mg/L左右,进入活性炭柱进行二氧化氯催化氧化,二氧化氯溶液与废水的体积比为1:5,经催化氧化处理后COD值为905mg/L,再次氧化出水经可生化性分析,B/C>0.3。
实施例 4
操作条件同实施例3,但继续提高铁粉和活性炭粉末的加入量,连续加入铁粉2.5g活性炭粉末1.25g,在反应5小时后,COD的去除率达到了54%。将出水配成COD在3000mg/L左右,进入活性炭柱进行二氧化氯催化氧化,二氧化氯溶液与废水的体积比为1:3,经催化氧化处理后COD值为895mg/L,再次氧化出水经可生化性分析,B/C>0.3。
实施例5
操作条件同实施例4,但改变铁粉和活性炭粉末的加入量,连续加入铁粉1.0g活性炭粉末0.5g,在反应5小时后,COD的去除率达到了52.12%。将出水配成COD在3000mg/L左右,进入活性炭柱进行二氧化氯催化氧化,二氧化氯溶液与废水的体积比为1:3,经催化氧化处理后COD值为922mg/L,再次氧化出水经可生化性分析,B/C>0.3。

Claims (9)

1.一种4,6-二硝基-1,2,3-三氯苯水解反应中废水的处理方法,其特征是将该废水加至带搅拌的反应器中,加入铁粉和活性炭粉末,之后维持反应时间,测出水的COD,出水再经配水和二氧化氯溶液混合后进入装有颗粒活性炭催化剂的氧化柱内,在氧化柱内和空气接触氧化,氧化出水经生化处理后排放。
2.根据权利要求1所述方法,其特征在于洗水的pH值为5-6。
3.根据权利要求1所述方法,其特征在于所用的铁粉和活性炭粉末质量比为1:1—3:1。
4.根据权利要求3所述方法,其特征在于100ml废水加入的铁粉质量为0.5~2.5g,活性炭粉末为0.25g~1.25g。
5.根据权利要求1所述方法,其特征在于维持反应8小时,每1小时取样后分析COD,确定反应停留时间。
6.根据权利要求1所述方法,其特征在于反应停留时间4-5小时。
7.根据权利要求1所述方法,其特征在于氧化出水配成COD3000mg/L进入活性炭催化剂氧化柱。
8.根据权利要求1所述方法,其特征在于二氧化氯溶液与废水的体积比为1:3—1:6。
9.根据权利要求1所述方法,其特征在于再次氧化出水经可生化性分析,B/C>0.3。
CN201510347012.6A 2015-06-23 2015-06-23 一种4,6-二硝基-1,2,3-三氯苯水解反应中废水的处理方法 Pending CN106315965A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510347012.6A CN106315965A (zh) 2015-06-23 2015-06-23 一种4,6-二硝基-1,2,3-三氯苯水解反应中废水的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510347012.6A CN106315965A (zh) 2015-06-23 2015-06-23 一种4,6-二硝基-1,2,3-三氯苯水解反应中废水的处理方法

Publications (1)

Publication Number Publication Date
CN106315965A true CN106315965A (zh) 2017-01-11

Family

ID=57727655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510347012.6A Pending CN106315965A (zh) 2015-06-23 2015-06-23 一种4,6-二硝基-1,2,3-三氯苯水解反应中废水的处理方法

Country Status (1)

Country Link
CN (1) CN106315965A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559933A (zh) * 2004-02-26 2005-01-05 江苏省环境科学研究院 硝基苯、2,4-二硝基酚、对硝基氯苯的废水处理方法
CN103803755A (zh) * 2012-11-08 2014-05-21 中国石油化工股份有限公司 一种含硝基酚废水的处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559933A (zh) * 2004-02-26 2005-01-05 江苏省环境科学研究院 硝基苯、2,4-二硝基酚、对硝基氯苯的废水处理方法
CN103803755A (zh) * 2012-11-08 2014-05-21 中国石油化工股份有限公司 一种含硝基酚废水的处理方法

Similar Documents

Publication Publication Date Title
Li et al. Deciphering and suppressing over‐oxidized nitrogen in nickel‐catalyzed urea electrolysis
Tentscher et al. Ozonation of para-substituted phenolic compounds yields p-benzoquinones, other cyclic α, β-unsaturated ketones, and substituted catechols
Tamimi et al. Methomyl degradation in aqueous solutions by Fenton's reagent and the photo-Fenton system
Zazo et al. Chemical pathway and kinetics of phenol oxidation by Fenton's reagent
US4012321A (en) Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light
Wang et al. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes
Lou et al. Alachlor dechlorination prior to an electro-Fenton process: Influence on the biodegradability of the treated solution
Oliviero et al. Wet air oxidation of aqueous solutions of maleic acid over Ru/CeO2 catalysts
Burbano et al. Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent
Kulkarni et al. Destruction of phenol from wastewater by oxidation with sulfite-oxygen
CN105645555B (zh) 处理来自制备异佛尔酮、异佛尔酮腈和异佛尔酮二胺的污染废水的方法
Javier Rivas et al. Contaminants abatement by ozone in secondary effluents. Evaluation of second‐order rate constants
Diagne et al. Depollution of indigo dye by anodic oxidation and electro-Fenton using B-doped diamond anode
Zhang et al. Treatment of ammonia‑nitrogen wastewater by the ultrasonic strengthened break point chlorination method
Ghosh et al. Comparison of a new immobilized Fe3+ catalyst with homogeneous Fe3+–H2O2 system for degradation of 2, 4‐dinitrophenol
CN102701502A (zh) 一种光助催化深度处理芳香硝基化合物废水的方法
Forouzesh et al. Thermocatalytic persulfate activation for metronidazole removal in the continuous operation
Villota et al. Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro) peroxo complexes
CN110026193A (zh) 一种负载铜催化剂制备及活化亚硫酸盐降解污染物的方法
Xiao et al. Effect of manganese ion on the mineralization of 2, 4-dichlorophenol by ozone
Cui et al. Humic acid removal by gas–liquid interface discharge plasma: Performance, mechanism and comparison to ozonation
Maleki et al. Ultrasonic degradation of phenol and determination of the oxidation by-products toxicity
Di Luca et al. Mineralization of polystyrene nanoplastics in water by photo-Fenton oxidation
Abrile et al. Degradation and mineralization of the emerging pharmaceutical pollutant sildenafil by ozone and UV radiation using response surface methodology
CZ202156A3 (cs) Způsob zpracování odpadních vod

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170111