CN1063001C - 可寻址呼叫接收机及操作可寻址呼叫接收机的方法 - Google Patents

可寻址呼叫接收机及操作可寻址呼叫接收机的方法 Download PDF

Info

Publication number
CN1063001C
CN1063001C CN95195469A CN95195469A CN1063001C CN 1063001 C CN1063001 C CN 1063001C CN 95195469 A CN95195469 A CN 95195469A CN 95195469 A CN95195469 A CN 95195469A CN 1063001 C CN1063001 C CN 1063001C
Authority
CN
China
Prior art keywords
receiver
frame
information
wave beam
described receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN95195469A
Other languages
English (en)
Other versions
CN1159864A (zh
Inventor
凯瑟·安德鲁·欧尔兹
格利高里·巴顿·瓦特
克里斯托弗·奈尔·库比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CDC intellectual property company
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CN1159864A publication Critical patent/CN1159864A/zh
Application granted granted Critical
Publication of CN1063001C publication Critical patent/CN1063001C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
    • G08B3/1008Personal calling arrangements or devices, i.e. paging systems
    • G08B3/1016Personal calling arrangements or devices, i.e. paging systems using wireless transmission
    • G08B3/1091Group calling
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B5/00Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
    • G08B5/22Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission
    • G08B5/222Personal calling arrangements or devices, i.e. paging systems
    • G08B5/223Personal calling arrangements or devices, i.e. paging systems using wireless transmission
    • G08B5/224Paging receivers with visible signalling details
    • G08B5/229Paging receivers with visible signalling details with other provisions not elsewhere provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18567Arrangements for providing additional services to the basic mobile satellite telephony service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/022One-way selective calling networks, e.g. wide area paging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

基于卫星的全球蜂窝消息系统(5)经多波束(30)向寻呼机发射寻呼消息。消息单元(2)监视多波束,记录各波束的访问信息,并最终确定监视消息的最佳波束。通过进入睡眠模式而节约电池资源的消息单元在醒来时快速同步其消息。

Description

可寻址呼叫接收机及操作可寻址呼叫接收机的方法
本发明一般涉及卫星蜂窝通信系统,特别涉及与基于卫星的多波束全球蜂窝消息系统一起使用的消息单元。
单工数据通信系统,也称作单向或被动(passive)系统,用于寻呼。一般地说,一个或多个发射机广播数据通信。该通信包括识别特定寻呼机的数据。一群寻呼机连续接收广播通信。当寻呼机群中的一个寻呼机识别出一个指向它的通信时,它就提醒用户注意输入的通信并通常显示该通信所承载的数字或字母数字消息。由于这种系统的单工特性,当寻呼机未接收到指向它的通信时,系统并不知道。另一方面,这些单工系统具有许多理想的特征。由于在寻呼机中没有发射机和信号发射能力,于是得到一个小型、低功率、轻型、易携带和便宜的单元。
常规的寻呼系统中存在工作范围受限的问题。寻呼系统仅在其寻呼机位于该系统发射机的覆盖范围内时工作。当用户走出该范围时,他们的寻呼机就不能接收到呼叫。
一个相关的问题是受限的寻呼容量。当为了更好地满足用户的需要而扩大覆盖范围时,寻呼机的数量也同样增加。随着寻呼机数量的增加,数据通信的数目也增加。这样,随着覆盖范围的扩大,达到一个递减返回点。数据通信的数目如此之大,使得在呼叫的传递中遇到不可接受的延时。当然,采用在多信道上接收数据通信的寻呼机能增加系统容量。但是,这又导致寻呼机和寻呼服务的费用提高到不可接受的水平上。
常规寻呼系统的另一个问题与象多径衰落干扰、信号反射等等这样的信号质量有关。通常,用户在从事其日常活动时带着寻呼机。这些日常活动使用户置身于汽车中、房屋中、大型地面建筑附近以及防碍电磁信号穿透的其它地方。因此,寻呼机接收通信的能力相应地不同。为了使寻呼机在覆盖范围内的所有环境中接收通信的能力达最大,一般将寻呼系统设计成采用一种低速率FSK调制方式,其中发射机功率被推至一个达到可接受的链路余量(link margin)的电平上。此外,在同播(simulcast)寻呼系统中,发射机的数目可成倍增加,并在地理上分布在整个覆盖范围中。增加发射机和为在整个覆盖范围中达到可接受的链路余量而调整功率电平一般是一个缓慢的、反复试验的过程。
卫星在寻呼中的使用是为了解决常规寻呼机系统的受限范围问题。但是,卫星的使用出现了其自身的问题。例如,卫星一般只能使用低功率发射。目前,同步卫星用于向地面中继器广播,然后地面中继器向附近的寻呼机发射高功率信号。有建议提出在同播寻呼系统中将卫星与地面发射机结合起来。但是,这需要一颗同步轨道上的卫星,在那里卫星位于地球上空极远的距离上,卫星的发射信号在地球表面非常弱,且在地球表面上的覆盖范围特别大。
于是,需要有一种改进的消息单元用于基于卫星的全球蜂窝消息系统。
在基于卫星的多波束全球蜂窝消息系统中,也存在对能确定监视消息的最佳帧的消息单元的基本需求。
在基于卫星的多波束全球蜂窝消息系统中,还存在对能迅速与其消息块同步的消息单元的基本需求。
在基于卫星的多波束全球蜂窝消息系统中,也存在对包括能实现显著节约其电池资源的机制的消息单元的基本需求。
本发明用所附权利要求指明。但是,通过参照以下结合附图的详细描述,本发明的其它特性将变得更为明显,并可更好地理解本发明,其中:
图1示出了一个根据本发明的卫星蜂窝通信系统的概貌图。
图2示出了一个根据本发明的一个方面由相邻卫星将通信波束投影在地球表面上形成的蜂窝模型(pattern)图。
图3示出了一个根据本发明一个实施例而构造的寻呼机的框图。
图4示出了一个中心交换局或“网关”的框图。
图5示出了一个本发明通信系统的卫星的框图。
图6示出了一个本发明通信系统的寻呼定时层次(hierarchy)原理图。
图7示出了基本的TDMA帧。
图8示出了一个用于本发明通信系统的下行通信的整体频率规划的原理图,包括寻呼频率分配。
图9示出了在本发明通信系统的探测组(Acquisition Group)内出现的寻呼脉冲串(burst)的结构。
图10示出了在本发明通信系统的后续组内出现的寻呼脉冲串(burst)的结构。
图11示出了本发明通信系统的信息块头消息的结构。
图12示出了本发明通信系统的寻呼数据段的结构。
图13示出了本发明通信系统的消息传递命令的结构。
图14示出了本发明通信系统的寻呼上下文(ontext)和信息流。
图15-19构成一个根据本发明对可寻址呼叫接收机进行操作的方法的组合流程图。
图1示出了根据本发明的一个卫星蜂窝通信系统的概貌图。根据一个优选实施例,几个卫星(也称作空间站或SV)1放置于围绕地球4的一个相对较低的轨道上。例如,如果卫星1放置于地球4上方约765km的轨道上,则上空的卫星1相对地球4表面上的一点以约25,000km/hr的速度行进。这使得卫星1能在约9分钟的最长时间内处在地球4表面的一点的视线中。由于卫星1的轨道相对较低,来自任一卫星的视距电磁传输在任何时刻覆盖地球4的一个相对较小的范围。例如,当卫星1占用地球上空约765km的轨道时,这种传输覆盖直径约4075km的范围。此外,没有东西阻碍卫星1使用定向天线而将这个范围划分成更小的小区。如图1所示,卫星1最好放置在这样一些轨道上以使卫星1的整个构象提供对整个地球4的连续覆盖。
此外,系统5还包括一个或多个中心交换局(也称作“网关”)6。交换局6在地球4的表面上并通过RF通信链路8与附近的一些卫星1进行数据通信。卫星1也通过数据通信链路3相互进行数据通信。因此,通过卫星1的构象,交换局6可控制去往地球4上任何大小的区域的通信。交换局6连接到公用交换电信网(未示出)上,通过它可接收到将呼叫安排给系统5的用户的请求。各中心局6接收将呼叫安排给确信位于地球4的与该交换局6相关的区域中的用户的请求。但是,本领域技术人员知道,任意数目的交换局6可与任意数目的地球区域4一起使用。各交换局6大致如本文所述进行工作。
系统5还包括许多(约数百万的)呼叫接收机2。呼叫接收机2可构造成常规的寻呼机或可包含在其它便携设备中。虽然以下为简单起见而将呼叫接收机2作为寻呼机2,但本领域技术人员知道系统5中的寻呼机2不必是仅包含传统寻呼功能的单元。寻呼机2被构造用于从上空的卫星1接收通信并执行下述其它功能。
在寻呼机2处经通信链路7接收到来自卫星1的通信。在本发明的优选实施例中,链路7利用大体上适应视距通信的RF频率,而且链路7是单工链路。换句话说,通信仅从卫星1向寻呼机2单向传送。单工通信使寻呼机2能做成小型、便宜的单元且耗电量最小。对于链路3或8没有单工通信的限制。
图2示出了一个根据本发明的一个方面由相邻卫星将通信波束投影在地球表面上形成的蜂窝模型图。
卫星1和29(它与卫星1相同)采用频谱复用技术。这些技术包括投影射束宽度的蜂窝划分。卫星1和29分别产生波束组投影30和31。波束组投影30和31是与卫星1和29上的天线相关的双向增益区域(小区)。这些天线可以是独立的定向天线或是一个容许相关波束投影的相控阵天线。
根据天线的增益特性,小区10-28可呈现出多种形状。在图2中,为说明起见,小区10-28示为六边形。当卫星1和29沿方向9绕轨道运行时,小区10-28沿轨道方向9行进。
卫星1和29以高至25,000km/hr的速度相对地球运行时,小区10-28也以接近该速度的速度在地球上行进。在这个速度上,地球表面上的任何给定点在单个小区内停留不超过约一分钟。
再参照图1,卫星1经使用许多频道的链路7与寻呼机单元2通信。这样,卫星1和寻呼机2最好采用频分多址联接(FDMA)方式,以便同时建立许多独立的通信链路。这些许多频道的整个频谱在各小区内是可用的。例如,图2所述的7小区频率复用模型是使用防止相邻小区间干扰的时分多址联接(TDMA)技术而实现的。
换句话说,整个频谱在各小区内可用时,给相邻小区分配不同时隙,在时隙中可使用该频谱。在优选实施例中,帧被定义成包含至少7个对应于7小区复用模型的不同时隙。图2中,标以“10”的小区分配了一个时隙,标以“11”的小区分配了另一个时隙,依此类推。那样,在同一时刻使用同一频谱的小区在地理位置上就相互分离开来。
虽然图2说明了一种7小区、7时隙的配置,但本领域技术人员懂得也可使用更大或更小的复用模型。本领域技术人员知道在卫星1建立这样一种TDMA通信方式。此外,当卫星1以高至25000km/hr的速度移动时,寻呼机单元2和卫星1之间的多普勒频移和时隙同步参数不断地变化。
在本发明的优选实施例中,卫星1构造成移动中继器。换句话说,卫星1只是接收来自一个源的数据通信消息并将这些消息传给一个目的地。并不要求所有通信链路3、8和7在频率和/或定时协议参数上相同。
这样,卫星1在传送消息之前,也可将从一个通信链路接收到的消息重新打包成与另一链路一致的格式。此外,卫星1还可包括有助于解决与链路3、8和7的工作有关的多普勒和定时漂移参数。卫星1可便利地将这样一些参数传送给与之通信的实体,如寻呼机2、中心交换局6和其它的卫星1,以帮助维持与链路3、8和7的同步。
图3示出了一个根据本发明一个实施例而构造的寻呼机2的框图。寻呼机2包括一个天线33,通过它建立通信链路7。天线33馈给接收机34,它包括射频(RF)、混频和将卫星1广播的RF信号转换到基带上所需的中频(IF)级(未示出)。接收机34耦接到一个模数(A/D)转换器35上,它将基带信号数字化,而A/D转换器30耦接到一个从数字化基带信号中抽取数字数据的数字解调器37上。
在优选实施例中,解调器37恢复出包含在来自链路7的传输内的双相绝对移相键控(BPSK)编码数据。解调器37还提供一个反馈信号用于控制振荡器36。振荡器36提供一个接收机34用以将RF信号转换到基带上的振荡信号。
解调器37将其数字数据输出馈给处理器39。处理器39包括不因操作寻呼机2而改变的永久存储的数据。这种永久数据包括命令寻呼机2执行各种过程的计算机程序,这在下面讨论。这种永久数据还包括用于寻呼机2的工作的永久变量,如下所述。存储器40还包括暂时数据,它因操作寻呼机2而改变。是处理器39在存储器40中所存储的程序的控制下控制寻呼机的工作。
处理器39耦接到各种外围设备上,如显示器42、告警器44、用户输入接口46和定时器48。处理器39控制显示器42将数据可视地呈现给寻呼机2的用户。处理器39控制告警器44可听的和/或可视地表示接收到传给寻呼机2的呼叫。处理器39最好通过接口46通过操作按键或按钮(未示出)来接收用户输入。处理器39利用定时器48来将其工作与系统定时同步,并在一个实施例中,始终跟踪每天的时间。本领域技术人员懂得定时器48的功能另外也可在处理器39内实现。
寻呼机2由电池50供电。电池50通过一个电源开关52耦接至终端54和电源控制部分56。电源控制部分56根据从处理器39接收到的命令将电源切换到终端58上。终端54至少给定时器48供电。终端58给寻呼机2的其余部件供电。当开关52断开时,寻呼机2断电,而当开关52合上时及当电源送到所有终端58时,寻呼机2完全通电并可工作。寻呼机2也可工作在一个通电但为低电源睡眠模式上。当电源未送到一个或多个终端58上时,寻呼机2工作在其睡眠模式上,但开关52合上以通过终端54将电源至少送到定时器48上。
本领域技术人员懂得在睡眠工作模式上没有东西阻止处理器39断电。但是,在这种情况下,最好由定时器48来控制向处理器39的供电,而不是如图3所示由处理器39控制其自身的电源。此外,本领域技术人员懂得,为防止破坏暂时数据,在睡眠模式期间可向存储器40的至少一部分持续供电。
图4示出了一个中心交换局或网关6的框图。网关6包括处理器60,它可通过单个处理器或一套处理器来实现。处理器60通过调制/解调部分61耦接至天线62。天线62用于建立通信链路8。部分61将处理器60所产生的数字数据转换成与链路8一致的调制的RF通信,或将处理器60所使用的数字数据从与链路8一致的调制的RF通信转换过来。
网关6还包括存储永久和暂时数据的存储器63。这种永久和暂时数据包括计算机程序、不因网关6的工作而改变的数据和因网关6的工作而改变的数据。定时器64还耦接至处理器60。定时器64使得交换局6保持当前系统定时并动作,以便传输根据实时要求从网关6发射出去,这在下面进行讨论。处理器60通过公用交换电话网(PSTN)接口65耦接至PSTN66。可通过PSTN 66和接口65接收到将呼叫发给寻呼机2的请求。此外,可通过卫星1(见图1)的网络和链路8接收到将呼叫发给寻呼机2的请求。
图5示出了本发明通信系统的卫星的框图。最好是系统5内的所有卫星1(见图1)基本上由图5的框图来进行描述。卫星1包括交叉耦合收发机70和交叉耦合天线71。收发机70和天线71支持到附近的其它卫星1的交叉耦合3(图1)。网关线路收发机72和网关线路天线73支持与网关6通信的网关线路8(图1)。
此外,用户单元收发机74和用户单元线路天线75支持寻呼机用户单元2(图1)。最好是各卫星1可同时支持多至成千或以上的用户单元2的线路(图1)。当然,本领域技术人员懂得天线71、73和75可作为单个多向天线实现,也可作为离散天线组来实现。希望用户单元天线75是能同时接入许多小区10-28(图2)的相控阵天线。在优选实施例中,多至48个独立的点波束同时接入相等数目的小区。
控制器76耦接至各收发机70、72和74以及存储器77和定时器78。控制器76可使用一个或多个处理器来实现。控制器76使用定时器78来保持当前日期和时间。存储器77存储用作给控制器76的指令的数据和由控制器76执行时使卫星1实施下述过程的数据。此外,存储器77包括由卫星1的工作来控制的变量、表和数据库。
用户单元收发机74最好是能在控制器76所指向的特定可选的时隙中在所有可选的不同频率上进行发射和接收的多信道FDMA/TDMA收发机。用户单元收发机74具有足够数目的信道来提供预期数目的发射和接收频率用于通信。控制器76可提供频率配置和时隙分配、产生振铃告警消息和包含于其中的信息。用户单元收发机74最好提供在任何频道组上的发射和接收,以便各用户单元收发机74可在需要时通过具有处理所有频率和时隙分配的能力而利用所有频道组的整个频谱容量。
用户单元收发机以高于一般业务、双工载波的功率发射寻呼载波。这个附加功率在一般业务信道上提供改进的链路余量(margin)。这个附加的链路余量增强了寻呼载波穿透象车辆和建筑物这样一些障碍的能力。这也使得灵敏度较小并因此更便宜的寻呼机单元接收机能用于该系统。
寻呼系统概述
本发明的寻呼系统能在世界的任何地方传递寻呼消息。单个消息可随用户所愿而送往从小到一个局部地方到大到整个行星范围内的地理区域。
在定时和频率层次中给各寻呼机分配一个操作间隔。系统寻呼基础结构保证在目的地寻呼机工作时将寻呼(page)传递出去。
L波段子系统
L波段是无线频谱用于卫星与用户单元的链路7的那部分。L波段子系统提供两种基本类型的用户信道。双工信道支持双向通信业务,而单工信道支持单向消息业务。双工业务包括便携和移动电话业务、各种各样的承载数据业务、双工消息业务、到移动交换单元(MXU)的业务和到多线路单元(MLU)的业务。单工业务支持用于寻呼消息的的直接消息业务。
除承载业务信道外,L波段子系统还提供支持系统开销功能的信道。这些功能包括探测和接入控制、用户振铃告警、用户地理位置定位和天线点波束与卫星之间的用户发射机切换。
寻呼时间和频率控制
系统对寻呼用户的接入受在寻呼单元中实际能获得的电池寿命的限制。如果寻呼要商业可用,那么就要求寻呼机能在便宜、易提供的电池上工作相当的一段时期。这对寻呼机的工作提出了严格的限制。本系统使用一种分层次的时间和频率策略来减少寻呼机的内部工作同时维持足够的寻呼可用性。
寻呼通信结构主要采用带有限频分复用(FDM)的时分复用(TDM)。这些时间和频率资源被组织成一种确定哪些时间和频率资源在任一时刻可用的工作层次。
当时间和频率层次被构造或重新编排时,在该时间和频率层次中给各寻呼机分配一个位置。该位置确定寻呼机何时工作和它监测哪个频率入口(frequency access)。网络寻呼基础结构负责跟踪单独的寻呼机分配并保证在正确的频率入口上在适当时刻传递寻呼。
每个90ms的L波段帧(参照图7而描述)包括一个单工信道时隙。在正常(时基线)工作期间,卫星在这个时隙期间在多至两个频率入口上发射寻呼脉冲串。如果牺牲一些双工信道容量,就可发射在两个附加频率入口上的两个附加脉冲串。各个不同的单工脉冲串在一个不同的主任务(mission)天线波束中发射,这样单工脉冲串就覆盖了不同的地理范围。四个频率入口频率是从为在特许给全球工作的单工频道中的寻呼而保留的频率入口中选择出来的。为避免干扰,在任意时刻使用的频率入口和波束在所有该系统的卫星中是一致的。
各寻呼脉冲串被时分复用到一个系统控制信息段和四个寻呼数据段中。在优选实施例中,各数据段可包含一个20个字符的数字(BCD)消息或一个10个字符的字母数字(ASCII)消息。单寻呼字母数字消息最大可占据四个寻呼数据段。对一般的技术人员来说,显然寻呼数据段可以是可变长度的,以在寻呼系统中提供附加的灵活性。
如以下将要更详细地说明的那样,用于寻呼的频率入口被分配给一个永久优选权并由系统控制段根据寻呼业务量要求而激活。频率入口按优选权顺序激活,即第一寻呼频率入口总是激活的。如果需要更大的寻呼容量,就激活第二频率入口。接着是激活第三和第四频率入口。
寻呼定时层次
图6示出了一个本发明通信系统的寻呼定时层次(hierarchy)原理图。
超帧
寻呼帧结构使用四级定时层次。该层次的最高级是一个194.4秒(2160帧)的超帧80。超帧80包括9个各为21.6秒(240帧)的寻呼块82。各块82包括5个4.32秒(48帧)的组84。最后,各组84包括48个90ms的L波段帧86。单工消息时隙88占用90ms L波段帧86的20.48ms。一般的技术人员懂得上述定时层次仅仅是说明性的,根据特定的系统要求,许多其它的变动也是可能的。
在一个块82期间,各寻呼机是激活的。消息可以在其激活的块内的任何组的任何帧期间发射给一个激活的寻呼机。消息仅在任意激活的频率入口上发射给用户单一收发机天线75(图5)的一个波束。各块82的第一个组是那个块的探测组(Acquisition Group)83。探测组83包括一个特定的块头消息114(图9),表明将在随后的块组中的哪个帧中将消息发射给探测组83所覆盖的范围。这使得寻呼机在它们未处于将在它们分配的块期间接收寻呼业务量的范围内时能返回到睡眠模式。其余的四个组是不包括消息探测组头并提供大部分块82的消息容量的消息组。
信道复用
L波段通信子系统是一个混合时分多址联接/频分多址联接(TDMA/FDMA)的结构。各L波段信道包括一个时隙和一个频率入口。
双工信道通过公共频带、时分双工(TDD)提供,这样给每个双工业务用户提供了一个上行信道和一个下行信道。电路交换用于双工信道的分配,以使每个用户单独使用所分配的信道,直到该用户终止其业务或直到他转向另一信道。
TDMA/FDMA结构提供单工和双工信道之间频率和时间的正交性。时间正交性保证了空间站(space vehicle)既不与许多双工业务信道同时发射更高功率的单工信号,也不在接收上行信道时发射任何信道。频率正交性减少了在一个卫星的单工时隙与另一卫星的上行时隙相干扰而产生的互调产物。与不限制发射和接收时间与频率的系统相比,这种时间/频率结构要求较小的卫星峰值发射功率以及不那么严格的互调、天线旁瓣和滤波要求。
图7示出了基本的TDMA帧。这对应于图6的帧86。
单工信道在双工信道下行时隙91和双工信道上行时隙90之间的保护时隙88期间是激活的。在本实施例中,该频带提供两个至四个寻呼信道和振铃告警信道。
TDMA帧
TDMA信道的基本单位是时隙。时隙被组织成90ms的帧86。L波段子系统TDMA帧86在图7中进行说明。帧86包括一个振铃和寻呼时隙88,后随四个上行时隙90和四个下行时隙91。如图7中的窄条所示,时隙由各种保护时间隔开。
一个2400bps的业务信道使用各帧86的一个上行和一个下行时隙。一个4800bps业务信道使用各帧86的两个邻接的上行和两个邻接的下行时隙。两个邻接的上行时隙必需在同一频率入口中,且两个邻接的下行时隙必需在同一频率入口中。与一个特定信道相关的上行和下行时隙不必位于同一频率入口中。
90ms的L波段帧86在25ksps信道脉冲串调制速率上提供每帧2250个符号。除探测信道和使用差分编码BPSK调制的同步信道的上行部分外,信道都使用差分编码四相移相键控(QPSK)调制,信道比特率为50kbps。
在本实施例中,时隙和保护时间以20μs信道比特间隔为单位来定义,这样帧时钟和比特时钟就相互关联起来了。四个上行90和四个下行91时隙形成了用于提供双工信道的TDD结构。振铃和寻呼时隙88支持单工信道。
TDMA帧86包括保护时间,以实现硬件建立并为上行信道提供容差。
由单工时隙提供的下行和上行时隙间的间隔及其相关的保护时间避免了卫星与卫星间的干扰和电话与电话间的干扰。因此,时隙88期间使用的任何频率都不可用于双工业务信道,并且它必需足够远地从能用实际滤波器滤除的双工业务信道频率上分隔开来。
寻呼频率层次
图8示出了一个用于本发明通信系统下行通信的整体频率规划的原理图,包括寻呼频率分配。
在图8中,术语“寻呼”指一个寻呼信道;术语“振铃”指一个振铃信道;术语“GRD”指一个保护信道。
应指出的是,信道数和在频带中各种信道分配的顺序只是说明性的,并且许多变动是可能的。
FDMA频率规划
在本发明的FDMA结构中频率的基本单位是占用一个预定带宽的频率入口。每个信道使用一个频率入口。用于双工信道的频率入口被组织成各包含8个频率入口的副带。
一个12频率入口频带保留给单工(振铃告警和寻呼)信道。这些频率入口仅用于下行信号,它们是仅有的可在单工时隙期间发射的L波段频率。卫星接收机设计成滤除这些信号,这样,该频带内从卫星向卫星传播的能量将不干扰双工信道的工作。
此外,用户单元收发机天线75(图5)用足够的发射机线性进行设计,以使振铃和寻呼载波在双工信道频带中不产生有害的干扰。因此,单工时隙通过将双工频带中的下行传输从同一频带中的上行传输隔离开而允许TDD工作,同时在单工频带中提供有用的系统工作。
寻呼信道由空间站以明显比业务信道高的功率电平发射,振铃告警信号以适当比业务信道高的电平发射。
在本发明的本实施例中,仅三个单工频率入口101,102,105可用于承载业务量。其余的频率入口是保护频带。一个激活的频率入口分配给振铃告警信道105,而其它两个(101,102)则用作寻呼载波。
但是,仅通过激活附加的频率入口(如103,104)来承载寻呼业务量可提供附加的寻呼容量。当然,根据用户单元收发机天线的特性,增加寻呼容量可能降低双工容量。
频率入口
寻呼子系统可使用多至四个频率入口。第一寻呼频率入口在各块的探测组83期间总是激活的。在寻呼业务量不能由第一频率入口单独传送的地区,在系统控制下在消息组中激活其它寻呼频率入口。频率按层次顺序激活。各块的探测组83包括一个表明哪个寻呼频率入口在那个块期间激活的消息(即块头消息114)。
给各寻呼机分配一个频率入口表,该表表明在一个特定时刻随着哪个入口被激活而监视哪个入口。这种分配可在例如制造寻呼机时而制定。它也可在第一寻呼信道上被重新编排。一个频率分配表的例子示于表1。注意,只有表1的第一表项对所有寻呼机是相同的。
最高激活    监视的入口
频率入口
第一        第一
第二        第一
第三        第三
第四        第三
表1寻呼机频率入口分配表示例
寻呼脉冲串结构
图9示出了在本发明通信系统的探测组83内出现的寻呼脉冲串的结构。
探测组83(图6)内出现的寻呼脉冲串100在振铃/寻呼时隙88(图7)期间发射并可位于例如寻呼信道101或102(图8)上。
如图9所示,寻呼脉冲串100包括一个消息头段110,一个独特段111,一个帧头112,一个块头消息114和M寻呼数据段115。在优选实施例中,M=2。
图10示出了在本发明通信系统的后续组内出现的寻呼脉冲串135的结构。
不在探测组83内出现的寻呼脉冲串135包括与寻呼脉冲串100相同的段,但它具有一个扩展的消息有用负荷段,因为它不具有一个块头消息114。消息有用负荷段可包括N个寻呼数据段。在优选实施例中,N=4。但是,寻呼数据段当然可以是可变长度的,并且M和N因此也将可变。
除消息头和独特字外,脉冲串段包括前向纠错比特以及数据比特。寻呼脉冲串消息头包括2.56ms的未调制频率入口。独特字是十六进制的“789”。
寻呼帧头内容
包含在每个寻呼脉冲串中的帧头段112包括一个块ID、一个组ID、一个帧ID和一个频率入口ID。该段可包括一个用于纠错编码的附加比特分配。
块头内容
图11示出了本发明通信系统的信息块头消息114的结构。
各块82中第一个48帧的组是探测组83。该探测组内的各帧可以在一个不同的激活频率入口上发射,但是应了解,为降低系统的复杂性,在探测组期间只有第一寻呼频率入口可以使用。
在优选实施例中,探测组83将头两个数据段用作块头消息114。其余两个数据段可用于数字寻呼消息。
如图11所示,块头消息114包括一个第二频率入口状态段121、一个第三频率入口状态段122、一个第四频率入口状态段123、一个第一频率访问段124、一个第二频率访问段125、一个第三频率访问段126和一个第四频率访问段127。
第二、第三和第四频率入口状态段表明相应频率入口的当前和未来(即在下一超帧内)的工作状态,以下在表2中更详细地表示出来。
比特  功能
00    未激活
01    未激活,将在下一超帧变为激活
10    激活,将在下一超帧变为未激活
11    激活
  表2
频率入口状态码
第一、第二、第三和第四频率访问段表明各激活的频率入口的发射顺序。这些段可各包含一个比特用于一组中的各帧,在优选实施例中即为48。如果一个频率入口将在该块的消息组中的一帧或多帧期间访问从中接收到块头消息114的那个波束,则对应于那些帧的比特置为1。与其中这个波束在该块的消息组期间不被访问的帧相对应的比特置为0。因此,在优选实施例中,访问顺序对于各消息组是相同的,四个48比特组足以定义在一个块期间所有可能的对一个波束的访问。
块头消息114也可包括一个用于纠错编码的附加比特分配。
当然,如果使用的频率入口比全部四个频率入口少,则一些频率访问段可用于承载寻呼消息。
寻呼数据段
图12示出了本发明通信系统的寻呼数据段115的结构。每个寻呼脉冲串包含最多到N个寻呼数据段115(图10)。
寻呼数据段115包括寻呼机地址段131、一个消息类型段132、一个消息序列号段133和一个消息段135。
消息段135可例如包含一个使用BCD编码的20个字符的数字消息或一个使用ASCII编码的10个字符的字母数字消息。寻呼数据段也可包括一个用于纠错编码的附加比特分配。
本领域技术人员懂得可以以多种不同方式构造寻呼数据段115。例如,可扩展消息类型段132,用以指出许多不同寻呼类型中的一种,如存储消息或非存储消息。存储消息可告诉用户给家打电话、给办公室打电话等等,或者可以传送用户定义的唯一的消息。存储消息的使用节约了安排频繁使用的寻呼所需的系统5的资源。寻呼数据段可以是可变长度的,以提供各种类型的消息。
所有的寻呼信息段可包含一个用于纠错编码的附加比特分配。
寻呼传递工作
以下将描述系统5有关寻呼消息传递的工作。
信道安排和信道使用限制
系统5控制所有空间站1的信道安排。系统在执行这种安排工作中,有许多信道使用限制要考虑。
寻呼是在各90ms帧的开始在单个信道时隙88期间完成的。在优选实施例中,一个寻呼脉冲串可发射到各激活的寻呼频率入口上的一个用户单元收发机天线(图5,75)波束中。仅有一个脉冲串发射到一个给定帧中的任意特定波束上,且在一个用户单元收发机天线上可同时激活两个以下的寻呼频率入口。
在一个给定帧中使用的波束和频率的选择也受限制,以避免干扰其它寻呼信道和振铃告警信道。通过空间隔离来避免这种干扰。也就是,同时的寻呼脉冲串在具有足够的模型隔离的天线波束中发射,以保证他们不相互干扰。
在控制这种干扰时一个重要的考虑是空间站之间的多普勒频移差(differential Doppler)。外波束中的多普勒频移可高至±37.5kHz,这样,第一和第二或第三和第四频率入口就可能由于多普勒频移而相互干扰。要求系统规划寻呼频率分配,以便在出现这些多普勒频移时将这些信号隔离开。
消息传递安排
寻呼消息的传递与要向它传递消息的寻呼机2的睡眠/觉醒周期一致。在每个194.4秒的超帧80期间的一个240帧(21.6秒)的块82的间隔期间,激活寻呼机2用于接收消息。此外,如上所述,给每个寻呼机2分配一个频率入口分配表(如表1),该表确定对于系统5可能使用的激活寻呼频率入口的任意组合,该寻呼机使用哪个频率入口。
为提高传递的可靠性,寻呼消息发射两次。对这些传递进行安排,以保证从空间站位置以大的角度偏置(angular offset)发射进入一个给定范围的寻呼。这种角分集提高了各种几何结构(如建筑、高山等)的遮蔽和阻碍在两次传递尝试之间不相关的概率。最好通过从两个不同轨道平面中的空间站进行发射来实现角分集,但是,偶尔也有必要使用同一轨道平面中的位置但伴以大的角偏置。
消息传递命令
图13示出了本发明通信系统的消息传递命令的结构。
空间站使用图13所示的消息传递命令(MDO)格式从网关6接收寻呼传递命令。这些命令包括一个消息传递命令头140和一个消息传递命令有效负载141。
消息命令头140包括一个传递帧142、一个传递波束143和一个频率入口144。消息传递命令有效负载141包括一个头145和最多到N个消息146-149。在优选实施例中,N=4。
每个传递命令包括一个消息数据帧以及符合寻呼信道正确格式的适当头信息。消息有效负载包括用于L波段物理信道的所有编码。
空间站接收一个MDO并读出该MDO头段140以确定传递参数。然后,它将适当帧之前的MDO有效负载段141缓存。这时,空间站加入消息头(图9,110)和独特字(图9,111)并发射该寻呼脉冲串。
图14示出了本发明通信系统5的寻呼上下文和信息流。对于以下的讨论,图14包括一个空间站构象(constellation)150、一个网络资源管理器151、一个消息终止控制器152、一个寻呼用户家用网关(homegateway)153、一个寻呼用户数据库154和PSTN(公用交换电信网)66。
网络资源管理器151位于一个专用的系统控制部分(SCS)(未示出)中,其功能包括跟踪、遥测和控制该构象的空间站。消息终止控制器(MTC)152和寻呼用户数据库154位于网关6中。
为保证消息在适当时刻传递,系统5维护寻呼用户数据库154,它包括用于各寻呼机的激活块82和频率入口分配表(如表1)。消息终止控制器152使用该信息来将寻呼消息序列组织到要发送给各SV的传递命令中。遮藏传递命令包括一个寻呼数据帧以及传递帧、传递波束和频率入口(图13)。
消息传递安排考虑可用的SV资源和其它信道限制以及寻呼机的工作。该信息由网络资源管理器151在系统控制部分(SCS)产生。SCS使用寻呼要求预测(projection)、其它业务要求预测、有关工作状态和各SV的能量状态的信息以及干扰规划规则来确定哪些波束可在各帧的哪些频率入口上发送。
这些资源分配作为一组在安排寻呼传递时不能违背的约束而发送给MTC。MTC通过向SCS报告寻呼要求历史来帮助预测未来的寻呼业务量。这个消息流在图14中进行说明。
SV接收寻呼消息传递命令并根据预定的传递帧、传递波束和频率入口将它们安排在一个寻呼数据缓冲器中。在预定的帧中,数据从缓冲器中读出,被调制到所指明的频率入口上并发射到特定的传递波束中。MTC保证在任意帧期间对各激活的频率入口或传递波束安排不超过一个寻呼脉冲串。
发射消息传递命令,使得它们在安排它们在其中发射的那个组之前的组84期间到达。因此,SV包括足够大的缓冲器来存储两组(10kB)寻呼数据以及安排信息。
寻呼信道工作
现在描述系统5的寻呼信道的工作。
各块82的前48帧包括一个探测组83,在该探测组期间,一个脉冲串通过每个激活的频率入口发射给一个SV上的每个激活的天线波束(即48个波束)。在各帧86期间通过各激活的频率入口访问不同的波束。
每个激活的寻呼频率入口在这些帧期间发送一个探测组83。在探测组83期间发射的脉冲串包括一个块头消息(图9,114)以及两个数字寻呼数据段115。这保证了被安排在该块期间工作的每个寻呼机都有机会接收捕获数据。
在一个探测组期间,每个频率入口访问一个波束一次,且仅有一次。这样,如果在一个SV上少于48个波束被激活,那么一些帧就没有传输或不在每个频率入口上发射。这种策略允许系统在所有SV上具有同时的探测组。
在优选实施例中,在探测组期间仅使用第一寻呼频率入口。这降低了系统的复杂性,但也可能降低寻呼容量。
在探测组之后,块中的其余寻呼段脉冲串各包含最多到N个数字或字母数字寻呼。除在捕获间隔期间外,寻呼脉冲串仅发射给覆盖有业务量要送往的范围的波束。每个脉冲串包括一个为该脉冲串提供块ID、组ID、帧ID和频率入口ID的帧头消息(图9,112)。在寻呼机询问系统时,帧头112帮助它。
在消息组期间,通过一个确定给该块的发射帧序列旋转(rotate)激活的频率入口。根据业务量要求来安排发射帧序列。
系统控制部分(SCS)(未示出)确定一个特定的SV所服务的哪个波束可用于接收一个超帧期间的寻呼业务量。在任何时刻一个波束中的寻呼容量是根据基于以前的寻呼历史的要求预测而分配的。在资源和干扰限制允许的情况下给覆盖预计要接收大量寻呼业务量的范围的波束安排尽可能多的访问。这些多发射序列是以牺牲向预期不接收太多业务量的范围的发射机会为代价而实现的。
在一个块期间向一个特定范围的访问将使用哪些帧和频率入口的指示包含在探测组83期间发往该波束的所有块头消息114中。
在消息组中描述的发射安排对于各激活的频率入口可以不同。例如,第一频率入口可用于在帧和波束1-48中发射;而第二频率入口仅可用于在波束10-20中的帧1-10中发射。
因此,在这些组中不同频率入口所使用的发射序列之间没有固定的关系。但是,任何特定频率入口所使用的序列在一个特定块的各消息组中重发。
在探测组83期间,另选的(即第二、第三和第四)频率入口跟随与第一信道序列有固定时间关系的发射序列。用这个定时对寻呼机进行预编程,这样它们就可向另选信道传移并同步正确的序列,而无需等待下一块头消息114。在其它时间,另选频率入口以类似于第一频率入口的方式访问满足业务量要求所必需的波束。
寻呼机的工作
频率选择
第一寻呼频率入口与单工时隙一起定义第一寻呼信道。在接通电源时和在从其睡眠期醒来时,所有寻呼机首先获得第一信道。块头消息114规定在该消息组中哪些其它寻呼频率入口是激活的。在探测组之后,预定的寻呼机组向其它激活的寻呼频率入口转移。
向另选信道转移的寻呼机继续监视该信道,直到块头消息中的频率入口状态段(图11,121-123)表明该信道将停止工作。该消息在一个频率入口将激活的最后一个超帧中发送。
此外,在另选信道上接收的寻呼机可通过块监视该信道,然后在下一块的探测组中返回第一频率。
由于衰落或其它的信道损伤,寻呼机偶尔也可能不能接收到表明信道将被终止的块头消息。在这种情况下,寻呼机继续监视信道,直到它在超过预定数目的连续超帧上不能获得探测组为止,这时它将切换到第一信道上。
定时和同步
寻呼机的电池寿命通常受实际电池约束的严格限制。寻呼机可使用小的睡眠/觉醒周期来延长其寿命。该周期需要扩展的长睡眠期,在此期间寻呼机不能从SV接收信号来保持与系统的同步。同步问题会由于实际可能会在寻呼机中使用的振荡器的有限的稳定性而加剧。使用便宜的振荡器会妨碍在睡眠期间维持除最基本的定时以外的所有定时。
近地轨道(low-earth)系统的高度动态与在较长的静态期间维持同步不相适应。卫星以约6.5km/s的对地速度移动。这样,传播延时和多普勒频率在一个非常短的时间内急剧改变。此外,SV硬件的共享考虑(consideration)和有限的可用频谱表明该系统使用与系统的双工信道所使用的调制类似的相位调制。
寻呼系统的定时层次和相关的寻呼机工作周期使得寻呼机能使用长达172.3秒的睡眠期,而仍能达到在它觉醒的块期间接收消息所必需的系统同步。
寻呼机在其睡眠期间仅需跟踪超帧定时。寻呼机在其各觉醒周期的开始重新获得与系统的同步。这是使用以下工作序列来实现的。
搜索模式
在接通电源时或在将其激活的块安排为开始之前的半秒钟,寻呼机退出其睡眠周期而进入搜索模式。半秒的保护时间允许寻呼机使用具有20ppm的长期稳定性的定时基准振荡器。
寻呼机处理所有它能接收的所有脉冲串并读出帧头数据。它根据接收的脉冲串的定时和头信息重新调制其内部定时。如果帧头数据表明该组既不是寻呼机的激活块的探测组,也不是紧随该激活块之后的块的第四消息组,那么,寻呼机根据帧ID、组ID和块ID与其激活的块的探测组之间的差别而重新设置其睡眠定时器(图3,48)。寻呼机定时器被设置成在紧随该寻呼机的激活块之后的块的第四消息组中激活寻呼机。然后寻呼机返回睡眠模式。
如果接收到的脉冲串是来自一个适当的块和组,那么寻呼机监视它能检测到的所有信号,直到它从其激活的块中接收到一个探测组脉冲串。当它接收到一个探测组短脉冲时,它就读出块头消息114。
如果块头消息表明该块是该寻呼机的激活块,则寻呼机继续处理它能获得的所有脉冲串。
在获得的各脉冲串上,寻呼机校验寻呼数据段中的寻呼机地址116。如果寻呼机在一个脉冲串中检测到其地址,则它选择该脉冲串中的安排表作为它监视的安排表,并且它读出并显示消息数据。它还中断捕获过程并进入跟踪模式(如下所述)。
如果寻呼机没有检测到其地址,那么它继续处理它能在48帧捕获间隔上获得的所有脉冲串。寻呼机将来自从不同波束接收的三个最高功率的脉冲串的块头消息的数据存储起来。在捕获间隔的结束,寻呼机通过对来自以最好的信噪比接收到的脉冲串的安排表进行组合而产生一个安排表用于监视。显然,可以对三个以上或三个以下波束的安排表进行组合。
跟踪模式
在探测组83的结束,寻呼机进入跟踪模式并在其余的四个组中保持该模式。在跟踪模式中,它监视它在探测组期间选择的安排表中的各帧。
在跟踪模式中,寻呼机仅在监视安排表中的帧的期间打开其接收机。未接收时,寻呼机进入低功耗静态模式。在一个繁忙的范围内,有可能一虽然一般不太可能一块中的所有240帧都包括在监视安排表中。
在整个捕获和跟踪模式期间,寻呼机根据接收的信号参数纠正其内部定时。
在跟踪完激活的块之后,寻呼机返回到睡眠模式。它保持睡眠模式,直到其内部定时表明在下一超帧中其激活块的探测组即将来临。
流程图描述
图15-19构成一个根据本发明操作可寻址呼叫接收机的方法的组合流程图。
该过程从方框160开始。
其次,参照方框161,寻呼接收机退出其睡眠周期或睡眠模式。
其次,在方框162中,接收机检查一个发射的帧头。
其次,在判断框163中,检验帧头是否包含该接收机的块ID。如果是,该方法进行到方框164,在这里接收机读出组ID,否则该方法经线路165进行到方框192。在方框192中,接收机使用来自该帧的帧头ID来判断它应在什么时候从其睡眠周期中醒来,然后进行到方框194,在这里接收机进入其睡眠周期。
该方法从方框164进行到判断框166,在这里检验该帧是否为探测组的组成部分。如果是,则该方法进行到方框167,否则它经线路165进行到方框192。
在方框167中,接收机监视探测组,然后,在方框168中,接收机监视该块中的各帧,以发现其地址。在判断框170中,如果接收机检测到其地址,则该方法进行到方框171,在那里接收机读出并显示其消息。在方框172中,接收机选择来自发射该消息的波束的安排表,作为它将要监视的安排表。
如果在判断框170中,接收机未发现其地址,则接收机监视由它检测到的一个波束发射的探测组信息(方框175)。
如果在判断框177中,接收机在探测组信息内检测到一个块头,则接收机读出并存储相应的波束访问信息(方框178)。否则,该方法经线路165进行到方框192。
进行到判断框181,如果整个探测组尚未发射,则接收机继续监视它发现的各附加波束(如果存在)发射的探测组信息(方框175),直到将整个探测组发射出去。
然后,在方框184中,接收机选择N个至少具有一种最佳特性(如信号强度)的波束(在优选实施例中为3个波束)并从包含于所选波束的块头中的访问安排表中形成其监视安排表。
参照方框186,接收机使用存储的监视安排表信息,在该块的其余组期间醒来,以仅仅监视包含于安排表中的帧。
参照方框188,接收机进入睡眠模式,直到其块的探测组正好要发射出去。然后,它醒过来并与就在它自己的探测组之前出现的那个组的发射信息同步。
最后,该方法在方框196结束。
结论
总之,本发明提供了一种改进的消息单元用于基于卫星的全球蜂窝消息系统。该消息单元能确定最佳的波束来对其消息进行监视。此外,它能非常迅速地同步到其消息块上。而且,它还包括一种达到明显地节省其电池资源的机制。
对于本领域技术人员来说,显然所揭示的发明可以用许多种方法进行修改,并且可以表现出许多不同于上述特别提出的优选形式的实施例。
因此,欲以所附权利要求来涵盖不超出本发明实质和范围的所有对本发明的修改。

Claims (22)

1、一种由可寻址的呼叫接收机执行的方法,所述接收机具有一个睡眠周期和一个觉醒周期,所述接收机受发射信息的支配,在发射信息中,许多消息被组合成一个帧、许多帧被组合成一个组、而许多组被组合成一个块,各所述帧具有一个包括帧、组和块识别符的帧头,预定帧各包括一个块头,所述预定帧构成一个探测组,且所述接收机对标志分配了所述接收机的那个块的识别符值进行存储,
所述方法包括以下步骤:
(a)所述接收机退出所述睡眠周期并检验所述发射帧头中的某一个;
(b)如果所述帧头的所述块识别符与所述识别符值匹配,则转到步骤(c)处理,否则转到步骤(d)处理;
(c)从所述组标识符判断所述帧是否为探测组的组成部分;
  (ⅰ)如果是,所述接收机监视所述探测组并进行到步骤(e);
  (ⅱ)如果不是,所述接收机进行到步骤(d);
(d)利用所述帧头标识符判断它应在什么时候从所述睡眠周期醒来;
(e)所述接收机进入所述睡眠周期。
2、权利要求1所述的方法,其中所述接收机存储一个唯一的接收机地址,其中所述帧中的某一个包括所述唯一的接收机地址,并且还包括以下步骤:
(f)如果满足步骤(c)(ⅰ),则所述接收机监视所述探测组的每一帧以发现其地址。
3、权利要求2所述的方法,其中所述一个帧还包括一个消息,并且还包括以下步骤:
(g)如果在步骤(f)中,所述接收机检测到其地址,则所述接收机读出所述消息,否则所述接收机继续监视所述块以发现其地址。
4、权利要求3所述的方法,其中所述信息由几个不同的波束发射,且其中所述块头包括有关一个特定波束是否将用于向所述接收机发射信息,并且如果是,那么在什么时候使用所述特定波束将信息发射出去的波束访问信息,并且还包括以下步骤:
(h)如果所述接收机检测到其地址并读出所述消息,所述接收机选择发射所述消息的波束作为它要监视的波束;和
(i)所述接收机存储与所述块头相应的所述波束访问信息。
5、权利要求4所述的方法,还包括以下步骤:
(i)利用所述存储的波束访问信息,所述接收机在其块的其余组期间觉醒过来,以仅监视在其中所监视的波束被访问的所述帧。
6、权利要求1所述的方法,其中所述信息由N个不同波束发射,N是一个正整数,且其中所述块头包括有关一个特定波束是否将用于向所述接收机发射信息,并且如果是,那么在什么时候使用所述特定波束将信息发射出去的波束访问信息,并且还包括以下步骤:
(f)所述接收机监视第一波束发射的所述探测组信息;
(g)如果所述接收机在所述探测组信息内检测到一个块头,则所述接收机读出并存储所述波束访问信息;和
(h)重复步骤(f)和(g),直到所有所述探测组被发射出去。
7、权利要求6所述的方法,还包括以下步骤:
i)所述接收机选择具有至少一个最优特性的N个波束作为它将监视的N个波束。
8、权利要求7所述的方法,其中所述至少一个最优特性是信号强度。
9、权利要求7所述的方法,其中所述至少一个最优特性是信号传播特性。
10、权利要求7所述的方法,还包括下列步骤:
(j)用所述存储的波束访问信息,所述接收机在其块的其余组期间觉醒过来,以仅监视在其中所监视的波束被访问的所述帧。
11、权利要求10所述的方法,还包括下列步骤:
(k)所述接收机直到正好其块的探测组被发送前处于睡眠,然后觉醒过来并正好在所述探测组的前一组中与发射信息同步。
12、一种可寻址的呼叫接收机,所述接收机受发射信息的支配,在发射信息中,许多消息被组合成一个帧、许多帧被组合成一个组、而许多组被组合成一个块,各所述帧具有一个包括帧、组和块识别符的帧头,预定帧各包括一个块头,所述预定帧构成一个探测组,所述接收机包括:
一个对标志分配了所述接收机的那个块的识别符值进行存储的存储器;
一个电池;
一个耦接到电池的电源控制部分;
一个耦接到所述电源控制部分上的接收机电路,所述接收机电路具有一个睡眠周期和一个觉醒周期;
一个定时器;
一个耦接到所述定时器以及所述接收机电路上的处理器;
所述处理器使所述接收机进入所述觉醒周期并检验一个所述发射的帧头,且如果所述帧头的所述块识别符与所述识别符值匹配,则所述处理器使所述接收机从所述组标识符中判断所述帧是否为探测组的组成部分,并且如果是,则所述接收机监视所述探测组,但如果所述帧头不包含所述值或者所述帧不是探测组的组成部分,则所述接收机使用所述帧头标识符来判断它应在什么时候从所述睡眠周期醒来,然后进入所述睡眠周期。
13、权利要求12所述的接收机,其中所述存储器还存储一个唯一的接收机地址,其中所述帧的一个包括所述唯一的接收机地址,并且其中如果所述帧是探测组的组成部分,则所述接收机监视所述块以发现其地址。
14、权利要求13所述的接收机,其中所述一个帧还包括一个消息,且其中所述处理器还包括一个装置,用于控制使:如果所述接收机检测到其地址,则所述接收机读出所述消息,否则所述接收机继续监视所述块以发现其地址。
15、权利要求14所述的接收机,其中所述处理器还包括一个装置,用于控制使:所述信息由几个不同波束发射,且其中所述块头包括有关一个特定波束是否将用于向所述接收机发射信息,并且如果是,那么在什么时候使用所述特定波束将信息发射出去的波束访问信息,且其中如果所述接收机检测到其地址并读出所述信息,所述接收机选择发射所述消息的波束作为它要监视的波束,并且所述接收机存储与所述块头相应的所述波束访问信息。
16、权利要求15所述的接收机,其中所述处理器还包括一个装置,用于控制使:利用所述存储的波束访问信息,所述接收机在其块的其余组期间觉醒过来,以仅监视在其中所监视的波束被访问的所述帧。
17、权利要求12所述的接收机,其中所述处理器还包括一个装置,用于控制使:所述信息由N个不同波束发射,N是一个正整数,且其中所述块头包括有关一个特定波束是否将用于向所述接收机发射信息,并且如果是,那么在什么时候使用所述特定波束将信息发射出去的波束访问信息,并且其中所述接收机监视第一波束发射的所述探测组信息,且如果所述接收机在所述探测组信息内检测到一个块头,则所述接收机读出并存储所述波束访问信息;且所述接收机重复该过程直到所有所述探测组被发射出去。
18、权利要求17所述的接收机,其中所述处理器还包括一个装置,用于控制使:所述接收机选择具有至少一个最优特性的N个波束作为它将监视的N个波束。
19、权利要求18所述的接收机,其中所述处理器还包括一个装置,用于控制使:所述至少一个最优特性是信号强度。
20、权利要求18所述的接收机,其中所述处理器还包括一个装置,用于控制使:所述至少一个最优特性是信号传播特性。
21、权利要求18所述的接收机,其中所述处理器还包括一个装置,用于控制使:用所述存储的波束访问信息,所述接收机在其块的其余组期间觉醒过来,以仅监视在其中所监视的波束被访问的所述帧。
22、权利要求21所述的接收机,其中所述处理器还包括一个装置,用于控制使:所述接收机直到正好其块的探测组被发送前处于睡眠,然后觉醒过来并正好在所述探测组的前一组中与发射信息同步。
CN95195469A 1994-10-03 1995-10-02 可寻址呼叫接收机及操作可寻址呼叫接收机的方法 Expired - Lifetime CN1063001C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/317,084 1994-10-03
US08/317,084 US5596315A (en) 1994-10-03 1994-10-03 Message unit for use with multi-beam satellite-based messaging system and method of operation thereof

Publications (2)

Publication Number Publication Date
CN1159864A CN1159864A (zh) 1997-09-17
CN1063001C true CN1063001C (zh) 2001-03-07

Family

ID=23232042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95195469A Expired - Lifetime CN1063001C (zh) 1994-10-03 1995-10-02 可寻址呼叫接收机及操作可寻址呼叫接收机的方法

Country Status (9)

Country Link
US (1) US5596315A (zh)
EP (1) EP0786144B1 (zh)
JP (1) JP3853359B2 (zh)
CN (1) CN1063001C (zh)
AU (1) AU688147B2 (zh)
BR (1) BR9509221A (zh)
CA (1) CA2201382A1 (zh)
DE (1) DE69534103T2 (zh)
WO (1) WO1996010834A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734429B2 (ja) * 1995-10-26 1998-03-30 日本電気株式会社 無線選択呼出受信機
JPH09215319A (ja) 1996-02-01 1997-08-15 Toyota Autom Loom Works Ltd Dc/dcコンバータ
US6052591A (en) * 1996-08-19 2000-04-18 Ericsson Inc. Broadcasting messages to mobile stations within a geographic area
US5844521A (en) * 1996-12-02 1998-12-01 Trw Inc. Geolocation method and apparatus for satellite based telecommunications system
US5912552A (en) 1997-02-12 1999-06-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC to DC converter with high efficiency for light loads
US5960325A (en) * 1997-04-30 1999-09-28 Motorola, Inc. Method and apparatus for conserving energy in a radio communication system
JPH10313572A (ja) 1997-05-09 1998-11-24 Toyota Autom Loom Works Ltd スイッチングレギュレータ制御方式
US6072786A (en) * 1997-06-12 2000-06-06 Ericsson Inc. Method for acquisition of spotbeam beacon frequency within a satellite communications system
US6337971B1 (en) * 1997-10-14 2002-01-08 Gerald L. Abts System for controlling and monitoring agricultural field equipment and method
US6052561A (en) * 1998-02-23 2000-04-18 Rudowicz; Michael James Location method for a elective call receiver operating in a satellite communication system
FR2776460A1 (fr) * 1998-03-20 1999-09-24 Philips Electronics Nv Procede et dispositif d'economie d'energie, et equipement electronique embarque
US6098100A (en) * 1998-06-08 2000-08-01 Silicon Integrated Systems Corp. Method and apparatus for detecting a wake packet issued by a network device to a sleeping node
US6246336B1 (en) * 1998-06-24 2001-06-12 Motorola, Inc. Radio communication system for communicating scheduled messages and method therefor
US6163679A (en) * 1998-09-08 2000-12-19 Motorola, Inc. Method and apparatus for system acquisition for a subscriber unit
US6438375B1 (en) 1999-03-04 2002-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Coordinating different types of messages sent to mobile radios in a mobile communications system
US6525700B1 (en) 1999-05-04 2003-02-25 Robert Smith Multi-segment alphanumeric display
EP1081979A1 (en) 1999-08-31 2001-03-07 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Subscriber station, network control means and method for carrying out inter-frequency measurements in a mobile communication system
US6600917B1 (en) 1999-10-04 2003-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Telecommunications network broadcasting of service capabilities
US6456855B1 (en) * 2000-08-29 2002-09-24 Motorola, Inc. Method and apparatus for establishing a group call session in a communication system
US6823191B2 (en) * 2001-01-08 2004-11-23 Lucent Technologies Inc. Apparatus and method for use in paging mode in wireless communications systems
US7181218B2 (en) * 2001-04-10 2007-02-20 Telefonaktiebolaget Lm Ericsson (Publ) Commanding handover between differing radio access technologies
US7447232B2 (en) * 2003-09-30 2008-11-04 Intel Corporation Data burst transmission methods in WLAN devices and systems
TWI294084B (en) * 2005-05-27 2008-03-01 Via Tech Inc Data acquisition method, computer system and machine readable storage media using the same
US7869390B2 (en) 2006-01-03 2011-01-11 Samsung Electronics Co., Ltd. Method and system for power save multi-poll (PSMP) communication in wireless systems
KR101066288B1 (ko) * 2006-02-17 2011-09-20 삼성전자주식회사 이동통신 시스템에서 할당된 슬롯의 효율적인 처리를 통한단말의 대기시간 증가 방법 및 장치
US7710939B2 (en) * 2007-02-06 2010-05-04 Samsung Electronics Co., Ltd. Method and system for power saving in wireless local area communication networks
US8498607B2 (en) 2008-06-12 2013-07-30 Qualcomm Incorporated Methods and systems for power savings using a message indication header
CN104579451B (zh) * 2013-10-25 2018-09-14 北京米波通信技术有限公司 一种铱星通信信号接收装置
DE102016213764B4 (de) * 2016-07-27 2018-02-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Übertragen eines binären Datensignals über einen optischen Feeder-Link zu oder von einem Satelliten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845491A (en) * 1987-05-15 1989-07-04 Newspager Corporation Of America Pager based information system
US4860003A (en) * 1988-05-27 1989-08-22 Motorola, Inc. Communication system having a packet structure field
US5257019A (en) * 1989-11-03 1993-10-26 Motorola, Inc. Satellite selective call signalling system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178476A (en) * 1978-05-26 1979-12-11 Frost Edward G Automatic nationwide paging system
US4713808A (en) * 1985-11-27 1987-12-15 A T & E Corporation Watch pager system and communication protocol
US5161248A (en) * 1989-10-02 1992-11-03 Motorola, Inc. Method of predicting cell-to-cell hand-offs for a satellite cellular communications system
US5008952A (en) * 1989-11-03 1991-04-16 Motorola, Inc. Global satellite communication system with geographic protocol conversion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845491A (en) * 1987-05-15 1989-07-04 Newspager Corporation Of America Pager based information system
US4860003A (en) * 1988-05-27 1989-08-22 Motorola, Inc. Communication system having a packet structure field
US5257019A (en) * 1989-11-03 1993-10-26 Motorola, Inc. Satellite selective call signalling system

Also Published As

Publication number Publication date
DE69534103D1 (de) 2005-04-28
EP0786144A4 (en) 1999-02-24
BR9509221A (pt) 1998-07-21
CN1159864A (zh) 1997-09-17
JP3853359B2 (ja) 2006-12-06
US5596315A (en) 1997-01-21
EP0786144A1 (en) 1997-07-30
CA2201382A1 (en) 1996-04-11
DE69534103T2 (de) 2005-08-11
AU3762695A (en) 1996-04-26
AU688147B2 (en) 1998-03-05
JPH10507047A (ja) 1998-07-07
WO1996010834A1 (en) 1996-04-11
EP0786144B1 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
CN1063001C (zh) 可寻址呼叫接收机及操作可寻址呼叫接收机的方法
CN1123990C (zh) 通信系统中频率偏移的确定方法和装置
CN102291723B (zh) 使用信标信号的无线通信方法和装置
CN1135732C (zh) 用于带有环路延迟的预测参数控制的方法和装置
US5517690A (en) Adaptive cellular paging system with selectively activated cells
CN1297161C (zh) 在前向链路上调度数据传输的方法和通信系统
JP3118256B2 (ja) 地理的プロトコル変換を備えた世界的衛星通信システム
EP0501706B1 (en) Object location system
CN1282154A (zh) 低地球轨道分布网关通信系统
CN1653733B (zh) 一种用于在无线发射/接收单元中使用的方法
CN1178409C (zh) 播叫设备与方法
CN1104820C (zh) 用于有效多频消息传送的拥塞控制系统与方法
CN1175335A (zh) 多跳分组无线网
CN1273726A (zh) 应用低地球轨道卫星和卫星直接无线电广播系统提供全球便携式因特网接入的系统
US5974032A (en) Method and apparatus for adjusting data rate in a synchronous communication system
US5905443A (en) Paging system employing delivery schedule combining and method of operation thereof
CN1145118A (zh) 空中交通监视与通信系统
CN1207839A (zh) 无线数据包分布式通信系统
JP2001508958A (ja) 高マージンの通知方法および装置
US5721534A (en) Paging system with adaptive monitoring schedule and method of operation thereof
CN1140068C (zh) 对通信系统中定时和频率进行预校正的装置和方法
CN1096764C (zh) 高速无线通信系统
CN1157003C (zh) 用于深度播叫的方法
CN1063603C (zh) 无线电寻呼系统
EP0979561B1 (en) Method and apparatus for conserving energy in a selective call receiver

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: TUOSUO ER TECHNOLOGY GROUP CO., LTD.

Free format text: FORMER OWNER: MOTOROLA INC.

Effective date: 20100830

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: ILLINOIS, UNITED STATES TO: DELAWARE, UNITED STATES

TR01 Transfer of patent right

Effective date of registration: 20100830

Address after: Delaware

Patentee after: Tuosuoer technology Refco Group Ltd

Address before: Illinois USA

Patentee before: Motorola Inc.

ASS Succession or assignment of patent right

Owner name: CDC INTELLECTUAL PROPERTY CO., LTD.

Free format text: FORMER OWNER: TOSOL TECHNOLOGY GROUP CO., LTD.

Effective date: 20110216

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: STATE OF DELAWARE, THE USA TO: PARIS, FRANCE

TR01 Transfer of patent right

Effective date of registration: 20110216

Address after: France

Patentee after: CDC intellectual property company

Address before: Delaware

Patentee before: Tuosuoer technology Refco Group Ltd

CX01 Expiry of patent term

Granted publication date: 20010307

EXPY Termination of patent right or utility model