CN106299549B - 一种电动汽车动力电池模组的保温方法和保温系统 - Google Patents
一种电动汽车动力电池模组的保温方法和保温系统 Download PDFInfo
- Publication number
- CN106299549B CN106299549B CN201610663072.3A CN201610663072A CN106299549B CN 106299549 B CN106299549 B CN 106299549B CN 201610663072 A CN201610663072 A CN 201610663072A CN 106299549 B CN106299549 B CN 106299549B
- Authority
- CN
- China
- Prior art keywords
- temperature
- power battery
- battery module
- heat preservation
- minimum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/617—Types of temperature control for achieving uniformity or desired distribution of temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/66—Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Automation & Control Theory (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
本发明实施方式公开了一种电动汽车动力电池模组的保温方法和保温系统。包括:利用模拟环境温度的恒温箱和提供保温热水的热管理设备对动力电池模组的保温水温进行标定,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温;检测当前环境温度,确定对应于当前环境温度的最低保温水温;调节用于为所述动力电池模组加热的加热元件的加热功率,以输出温度值等于所述对应于当前环境温度的最低保温水温的热水。本发明实施方式不但可以降低能耗,还可以应用于充电结束后的保温过程及非充电状态下的驻车保温过程。
Description
技术领域
本发明涉及汽车技术领域,更具体地,涉及一种电动汽车动力电池模组的保温方法和保温系统。
背景技术
能源短缺、石油危机和环境污染愈演愈烈,给人们的生活带来巨大影响,直接关系到国家经济和社会的可持续发展。世界各国都在积极开发新能源技术。电动汽车作为一种降低石油消耗、低污染、低噪声的新能源汽车,被认为是解决能源危机和环境恶化的重要途径。混合动力汽车同时兼顾纯电动汽车和传统内燃机汽车的优势,在满足汽车动力性要求和续驶里程要求的前提下,有效地提高了燃油经济性,降低了排放,被认为是当前节能和减排的有效路径之一。
由于动力电池组需要在特定的温度下工作,当前电动汽车的热管理系统在冬季普遍使用加热元件对电池系统进行加热。一般采用的方案是在电池需要充电时,先对电池模组进行加热,待电池模组温度上升至充电许可温度时开始充电。充电完成后,如果车辆仍然与电源连接,则继续对电池加热一段时间以作为保温,目的是保持电池内部温度,使驾驶员在使用车辆时,电池的温度正好在适宜工作温度,发挥电池的最大性能。
在现有技术中,加热元件的选型都是按照加热速度尽可能快的思路展开的。然而,对电池进行加热需要耗费较大的能耗,导致总充电效率降低。
而且,现有技术中对电池进行保温会消耗较大能量,因此目前电动汽车普遍只能在充电结束后保温,在没有连接充电枪的情况下不能执行保温功能。
发明内容
本发明的目的是提出一种电动汽车动力电池模组的保温方法和保温系统,从而降低能耗。
一种电动汽车动力电池模组的保温方法,包括:
利用模拟环境温度的恒温箱和提供保温热水的热管理设备对动力电池模组的保温水温进行标定,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温;
检测当前环境温度,确定对应于当前环境温度的最低保温水温;
调节用于为所述动力电池模组加热的加热元件的加热功率,以输出温度值等于所述对应于当前环境温度的最低保温水温的热水。
在一个实施方式中,所述动力电池模组处于非充电状态或充电结束后的保温状态。
在一个实施方式中,该方法还包括:
记录所述加热元件的加热时间;
当所述加热时间超过预先设定的时间值时,停止所述加热元件。
在一个实施方式中,该方法还包括:
检测所述动力电池模组的剩余电量值;
当所述剩余电量值小于预先设定的剩余电量值时,停止所述加热元件。
在一个实施方式中,所述利用模拟环境温度的恒温箱和提供保温热水的热管理设备对动力电池模组的保温水温进行标定,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温,包括:
将动力电池模组布置在模拟一特定环境温度的恒温箱中;
针对该特定环境温度执行标定,标定过程包括:热管理设备为动力电池模组提供具有一特定保温水温的保温热水,当动力电池模组内部温度达到预定最低温度时,记录该特定保温水温,改变特定保温水温以得到在该特定环境温度下动力电池模组内部温度达到预定最低温度的最小保温水温;
调节恒温箱以改变特定环境温度,重复执行所述标定过程,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温。
在一个实施方式中,当动力电池模组处于非充电状态时,动力电池模组为所述加热元件提供加热功率,或
当动力电池模组处于充电结束后的保温状态时,充电枪为所述加热元件提供加热功率。
一种电动汽车动力电池模组的保温系统,包括:
标定系统,包含模拟环境温度的恒温箱和提供保温热水的热管理设备,用于对动力电池模组的保温水温进行标定,获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温;
检测模块,用于检测当前环境温度,确定对应于当前环境温度的最低保温水温;
调节模块,用于调节用于为所述动力电池模组加热的加热元件的加热功率,以输出温度值等于所述对应于当前环境温度的最低保温水温的热水。
在一个实施方式中,动力电池模组布置在模拟一特定环境温度的恒温箱中;
针对该特定环境温度的标定过程包括:热管理设备为动力电池模组提供具有一特定保温水温的保温热水,当动力电池模组内部温度达到预定最低温度时,记录该特定保温水温;改变特定保温水温以得到在该特定环境温度下动力电池模组内部温度达到预定最低温度的最小保温水温;调节恒温箱以改变特定环境温度,执行所述标定过程,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温。
在一个实施方式中,所述动力电池模组处于非充电状态或充电结束后的保温状态。
在一个实施方式中,检测模块,还用于记录所述加热元件的加热时间,当所述加热时间超过预先设定的时间值时,停止所述加热元件;或,检测所述动力电池模组的剩余电量值,当所述剩余电量值小于预先设定的剩余电量值时,停止所述加热元件。
从上述技术方案可以看出,在本发明实施方式中,利用模拟环境温度的恒温箱和提供保温热水的热管理设备对动力电池模组的保温水温进行标定,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温;检测当前环境温度,确定对应于当前环境温度的最低保温水温;调节用于为动力电池模组加热的加热元件的加热功率,以输出温度值等于对应于当前环境温度的最低保温水温的热水。
可见,由于加热元件只需要加热保证动力电池模组达到预定最低温度的最小保温水温,本发明实施方式可以降低能耗。
而且,由于加热元件所耗费的加热功率较小,即使动力电池模组处于非充电状态(不与充电枪连接),也可以采用动力电池模组自身的电力实现保温效果,而不会造成动力电池模组电量损耗过快,因此本发明实施方式还可以应用于充电结束后的保温过程及非充电状态下的驻车保温过程。
附图说明
以下附图仅对本发明做示意性说明和解释,并不限定本发明的范围。
图1为根据本发明实施方式的电动汽车动力电池模组的保温方法流程图。
图2为根据本发明的电动汽车动力电池模组的最低保温水温标定系统图。
图3为根据本发明实施方式的电动汽车动力电池模组保温方法的示范性流程图。
图4为根据本发明实施方式的电动汽车动力电池模组的保温系统的结构图。
具体实施方式
为了对发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式,在各图中相同的标号表示相同的部分。
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本发明的方案进行阐述。实施方式中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据……”是指“至少根据……,但不限于仅根据……”。由于汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
本发明实施方式提供一种低能耗的电动汽车动力电池模组保温技术方案,除了可以用于充电结束后的保温外,还可以用于非充电状态下的驻车保温,而不致消耗过多的电池电量。
图1为根据本发明实施方式的电动汽车动力电池模组的保温方法流程图。
如图1所示,该方法包括:
步骤101:利用模拟环境温度的恒温箱和提供保温热水的热管理设备对动力电池模组的保温水温进行标定,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温。
在这里,预先设定动力电池模组内部温度的预定最低温度。比如,预定最低温度可以设置为理论上的电池最低温度(比如2摄氏度),还可以将预定最低温度设置为略微高于理论上的最低温度(比如5摄氏度)。
而且,可以利用台架试验对动力电池模组维持在预定最低温度所需的保温功率进行标定。
图2为根据本发明的电动汽车动力电池模组的最低保温水温标定系统图。
如图2所示,该系统包括热管理设备10和恒温箱20。需要被标定的动力电池模组30布置在恒温箱20中。热管理设备10通过进水管40和回水管50与动力电池模组30连接。
调节恒温箱20使其达到预期的环境温度。然后,启动热管理设备10,通过进水管40和回水管50为动力电池模组30提供特定温度的热水,并测量流量。当动力电池模组30的内部温度达到预定最低温度并稳定后,记录此特定温度及对应于特定温度的流量。然后,改变热管理设备10输出的热水温度(流量可以保持不变)),重复进行标定,从而得到该环境温度下热管理设备10的输出水温、输出流量与动力电池模组30的平衡温度(即预定最低温度))的对应关系。
接着,改变恒温箱的环境温度重复标定,可以得到不同环境温度下的热管理设备10输出水温、输出流量和动力电池模组30与动力电池模组30的平衡温度(即预定最低温度))的对应关系。其中,优选的,各个输出流量是一个相同的固定值。
从而,最终得到不同环境温度下,保持动力模组30内部温度维持在预定最低温度所需的最小的热管理设备输出水温值。至此,结束标定,并将动力电池模组安装回电动汽车中。
步骤102:检测当前环境温度,确定对应于当前环境温度的最低保温水温。
在这里,检测动力电池模组所处的当前环境温度,并基于步骤101中得到的对应关系,确定对应于当前环境温度的最低保温水温和流量。
步骤103:调节用于为动力电池模组加热的加热元件的加热功率,以输出温度值等于对应于当前环境温度的最低保温水温的热水。
在这里,调节用于为动力电池模组加热的加热元件的加热功率,以输出温度值等于对应于当前环境温度的最低保温水温的热水,而且热水的流量等同于标定过程中在该当前环境温度下热管理设备提供的热水流量,即在步骤102中确定的流量。
具体地,加热元件可以包含多种形式,比如燃油加热器、电阻丝等,也可以是任何可以发热的元件,比如电机、变压器、控制器等。只要具有加热功能,都应该属于本发明的范围。
在一个实施方式中,动力电池模组处于非充电状态时执行步骤102至103所述的保温过程。
当动力电池模组处于非充电状态时,动力电池模组为加热元件提供加热功率。可见,由于加热元件只需要加热保证动力电池模组达到预定最低温度的最小保温水温,因此加热元件所耗费的加热功率较小,即使动力电池模组处于非充电状态(不与充电枪连接),也可以采用动力电池模组自身的电力实现保温效果,而不会造成动力电池模组电量损耗过快。
在一个实施方式中,动力电池模组处于充电结束后的保温状态。此时,充电枪为加热元件提供加热功率。
在一个实施方式中,该方法还包括:记录加热元件的加热时间;当加热时间超过预先设定的时间值时,停止加热元件。
比如,可以预定加热元件的加热时间为八小时。当加热时间超过八小时,停止加热元件。
在一个实施方式中,该方法还包括:检测动力电池模组的剩余电量(State OfCharge,SOC)值;当剩余电量值小于预先设定的剩余电量值时,停止加热元件。
比如,可以预定加热元件的剩余电量值为40%。当动力电池模组的SOC低于40%时,停止加热元件。
在一个实施方式中,步骤101中利用模拟环境温度的恒温箱和提供保温热水的热管理设备对动力电池模组的保温水温进行标定,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温,包括:
将动力电池模组布置在模拟特定环境温度的恒温箱中;针对该特定环境温度执行标定,标定过程包括:热管理设备为动力电池模组提供具有一特定保温水温的保温热水,当动力电池模组内部温度达到预定最低温度时,记录该特定保温水温,改变特定保温水温以得到在该特定环境温度下动力电池模组内部温度达到预定最低温度的最小保温水温;调节恒温箱以改变特定环境温度,重复执行标定过程,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温。
图3为根据本发明实施方式的电动汽车动力电池模组保温方法的示范性流程图。
如图3所示,该方法包括:
步骤301:检测动力电池模组的电池温度。
步骤302:判断该电池温度是否低于预先设定的电池温度值A,如果是,则执行步骤303及其后续步骤,如果不是,则执行步骤310。其中,电池温度值A通常略微高于电池的理论最低温度(比如,2℃)。比如,可以将电池温度值A设置为5℃。
步骤303:判断该电池的SOC是否大于预先设定的SOC值B,如果是,则执行步骤304及其后续步骤,如果不是,则执行步骤310。比如,SOC值B可以为40%。
步骤304:检测当前动力电池模组的环境温度。
步骤305:基于在标定过程中所确定的不同环境温度下动力电池模组内部温度与保温水温之间的对应关系,通过查表确定出在当前动力电池模组的环境温度下保持动力电池模组内部温度达到电池温度值A所需的最低保温水温。
步骤306:向加热元件的执行机构输出查表所确定的该最低保温水温。
步骤307:加热元件的执行机构调节加热元件的加热功率。
步骤308:针对加热时间计时。
步骤309:判断加热时间是否大于预先设定的加热时间C,如果是,则执行步骤310,如果不是,则执行步骤301及其后续步骤。比如,加热时间C可以设置为8小时。
步骤310:结束本流程。
基于上述描述,本发明实施方式还提出了一种电动汽车动力电池模组的保温系统。
图4为根据本发明实施方式电动汽车动力电池模组的保温系统的结构图。
如图4所示,该保温系统包括:
标定系统41,包含模拟环境温度的恒温箱和提供保温热水的热管理设备,用于对动力电池模组的保温水温进行标定,获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温;
检测模块42,用于检测当前环境温度,确定对应于当前环境温度的最低保温水温;
调节模块43,用于调节用于为动力电池模组加热的加热元件的加热功率,以输出温度值等于所述对应于当前环境温度的最低保温水温的热水。
在一个实施方式中:
动力电池模组布置在模拟一特定环境温度的恒温箱中;
针对该特定环境温度的标定过程包括:热管理设备为动力电池模组提供具有一特定保温水温的保温热水,当动力电池模组内部温度达到预定最低温度时,记录该特定保温水温;改变特定保温水温以得到在该特定环境温度下动力电池模组内部温度达到预定最低温度的最小保温水温;调节恒温箱以改变特定环境温度,执行所述标定过程,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温。
在一个实施方式中:动力电池模组处于非充电状态或充电结束后的保温状态。
在一个实施方式中:检测模块42,还用于记录所述加热元件的加热时间,当所述加热时间超过预先设定的时间值时,停止所述加热元件;或,检测所述动力电池模组的剩余电量值,当所述剩余电量值小于预先设定的剩余电量值时,停止加热元件。
综上所述,在本发明实施方式中,利用模拟环境温度的恒温箱和提供保温热水的热管理设备对动力电池模组的保温水温进行标定,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温;检测当前环境温度,确定对应于当前环境温度的最低保温水温;调节用于为所述动力电池模组加热的加热元件的加热功率,以输出温度值等于所述对应于当前环境温度的最低保温水温的热水。
可见,由于加热元件只需要加热保证动力电池模组达到预定最低温度的最小保温水温,本发明实施方式可以降低能耗。
而且,由于加热元件所耗费的加热功率较小,即使动力电池模组处于非充电状态(不与充电枪连接),也可以采用动力电池模组自身的电力实现保温效果,而不会造成动力电池模组电量损耗过快,因此本发明实施方式还可以应用于充电结束后的保温过程及非充电状态下的驻车保温过程。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,而并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方案或变更,如特征的组合、分割或重复,均应包含在本发明的保护范围之内。
Claims (10)
1.一种电动汽车动力电池模组的保温方法,其特征在于,包括:
利用模拟环境温度的恒温箱和提供保温热水的热管理设备对动力电池模组的保温水温进行标定,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温;
检测当前环境温度,确定对应于当前环境温度的最低保温水温;
调节用于为所述动力电池模组加热的加热元件的加热功率,以输出温度值等于所述对应于当前环境温度的最低保温水温的热水。
2.根据权利要求1所述的电动汽车动力电池模组的保温方法,其特征在于,所述动力电池模组处于非充电状态或充电结束后的保温状态。
3.根据权利要求1所述的电动汽车动力电池模组的保温方法,其特征在于,该方法还包括:
记录所述加热元件的加热时间;
当所述加热时间超过预先设定的时间值时,停止所述加热元件。
4.根据权利要求1所述的电动汽车动力电池模组的保温方法,其特征在于,该方法还包括:
检测所述动力电池模组的剩余电量值;
当所述剩余电量值小于预先设定的剩余电量值时,停止所述加热元件。
5.根据权利要求1所述的电动汽车动力电池模组的保温方法,其特征在于,所述利用模拟环境温度的恒温箱和提供保温热水的热管理设备对动力电池模组的保温水温进行标定,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温,包括:
将动力电池模组布置在模拟一特定环境温度的恒温箱中;
针对该特定环境温度执行标定,标定过程包括:热管理设备为动力电池模组提供具有一特定保温水温的保温热水,当动力电池模组内部温度达到预定最低温度时,记录该特定保温水温,改变特定保温水温以得到在该特定环境温度下动力电池模组内部温度达到预定最低温度的最小保温水温;
调节恒温箱以改变特定环境温度,重复执行所述标定过程,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温。
6.根据权利要求2所述的电动汽车动力电池模组的保温方法,其特征在于,当动力电池模组处于非充电状态时,动力电池模组为所述加热元件提供加热功率,或
当动力电池模组处于充电结束后的保温状态时,充电枪为所述加热元件提供加热功率。
7.一种电动汽车动力电池模组的保温系统,其特征在于,包括:
标定系统,包含模拟环境温度的恒温箱和提供保温热水的热管理设备,用于对动力电池模组的保温水温进行标定,获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温;
检测模块,用于检测当前环境温度,确定对应于当前环境温度的最低保温水温;
调节模块,用于调节用于为所述动力电池模组加热的加热元件的加热功率,以输出温度值等于所述对应于当前环境温度的最低保温水温的热水。
8.根据权利要求7所述的电动汽车动力电池模组的保温系统,其特征在于,
动力电池模组布置在模拟一特定环境温度的恒温箱中;
针对该特定环境温度的标定过程包括:热管理设备为动力电池模组提供具有一特定保温水温的保温热水,当动力电池模组内部温度达到预定最低温度时,记录该特定保温水温;改变特定保温水温以得到在该特定环境温度下动力电池模组内部温度达到预定最低温度的最小保温水温;调节恒温箱以改变特定环境温度,执行所述标定过程,以获取不同环境温度下保持动力电池模组内部温度达到预定最低温度所需的最低保温水温。
9.根据权利要求7所述的电动汽车动力电池模组的保温系统,其特征在于,所述动力电池模组处于非充电状态或充电结束后的保温状态。
10.根据权利要求7所述的电动汽车动力电池模组的保温系统,其特征在于,
检测模块,还用于记录所述加热元件的加热时间,当所述加热时间超过预先设定的时间值时,停止所述加热元件;或,检测所述动力电池模组的剩余电量值,当所述剩余电量值小于预先设定的剩余电量值时,停止所述加热元件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610663072.3A CN106299549B (zh) | 2016-08-12 | 2016-08-12 | 一种电动汽车动力电池模组的保温方法和保温系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610663072.3A CN106299549B (zh) | 2016-08-12 | 2016-08-12 | 一种电动汽车动力电池模组的保温方法和保温系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106299549A CN106299549A (zh) | 2017-01-04 |
CN106299549B true CN106299549B (zh) | 2018-11-13 |
Family
ID=57669858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610663072.3A Active CN106299549B (zh) | 2016-08-12 | 2016-08-12 | 一种电动汽车动力电池模组的保温方法和保温系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106299549B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112002839A (zh) * | 2019-05-27 | 2020-11-27 | 广州雷利诺车业有限公司 | 电动摩托车及其控制方法 |
CN112693364B (zh) * | 2020-12-28 | 2022-05-24 | 宜宾凯翼汽车有限公司 | 一种动力电池预热及充电保温控制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104852103A (zh) * | 2014-02-19 | 2015-08-19 | 广州汽车集团股份有限公司 | 一种用于调节动力电池温度的装置、方法及汽车 |
CN105591175A (zh) * | 2016-01-19 | 2016-05-18 | 尹灵财 | 水暖式电动车蓄电池保温系统 |
-
2016
- 2016-08-12 CN CN201610663072.3A patent/CN106299549B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104852103A (zh) * | 2014-02-19 | 2015-08-19 | 广州汽车集团股份有限公司 | 一种用于调节动力电池温度的装置、方法及汽车 |
CN105591175A (zh) * | 2016-01-19 | 2016-05-18 | 尹灵财 | 水暖式电动车蓄电池保温系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106299549A (zh) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106129528B (zh) | 一种电动汽车动力电池模组的保温方法和保温装置 | |
CN108172930B (zh) | 电池包冷却控制方法、装置和电池包 | |
CN104166102B (zh) | 车用动力电池组的soc使用区间的判定方法 | |
CN204720509U (zh) | 一种燃料电池散热系统及使用该系统的车辆 | |
US9552678B2 (en) | Distance to empty energy compensation | |
CN104989548A (zh) | 采用固液相变储热器的发动机冷却液余热利用暖机系统及其方法 | |
CN206461036U (zh) | 燃料电池系统及燃料电池汽车 | |
CN106299549B (zh) | 一种电动汽车动力电池模组的保温方法和保温系统 | |
CN105470603A (zh) | 一种电动汽车电池包充电加热系统及控制方法 | |
CN204991904U (zh) | 电池热管理系统 | |
CN105742736A (zh) | 一种电动汽车动力电池的热管理试验装置及方法 | |
CN105609897B (zh) | 一种计算车载可充电储能系统的热管理参数的方法和装置 | |
Shi et al. | A multi-node thermal system model for lithium-ion battery packs | |
CN202872696U (zh) | 一种车载温差发电系统 | |
CN101689767B (zh) | 对能量存储装置进行充电的方法和装置 | |
CN107199898B (zh) | 一种电池加热式充电桩及其充电控制方法 | |
CN106415110A (zh) | 用于压力箱的监视装置以及压力箱 | |
CN110534828A (zh) | 电动汽车的动力电池主动保温方法、装置和电动汽车 | |
Hung et al. | Development of a thermal management system for energy sources of an electric vehicle | |
CN204694133U (zh) | 采用固液相变储热器的发动机冷却液余热利用暖机系统 | |
CN105591175A (zh) | 水暖式电动车蓄电池保温系统 | |
CN110481385A (zh) | 车载三元锂离子动力电池加热充电方法 | |
CN113745710B (zh) | 电动汽车电池包与充电桩联合冷却方法及系统 | |
CN108963368B (zh) | 一种电动汽车动力电池热管理管路的流量测试方法和装置 | |
CN105703025B (zh) | 一种车载可充电储能系统的电池模组放电方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Electromobile power battery module thermal-insulation method and thermal-insulation system Effective date of registration: 20190513 Granted publication date: 20181113 Pledgee: Suzhou Trust Co., Ltd. Pledgor: BEIJING CHANGCHENG HUAGUAN AUTOMOBILE TECHNOLOGY CO., LTD. Registration number: 2019990000418 |