CN106290898B - 一种金‑上转换纳米粒子三聚体的制备方法及其应用 - Google Patents

一种金‑上转换纳米粒子三聚体的制备方法及其应用 Download PDF

Info

Publication number
CN106290898B
CN106290898B CN201610613233.8A CN201610613233A CN106290898B CN 106290898 B CN106290898 B CN 106290898B CN 201610613233 A CN201610613233 A CN 201610613233A CN 106290898 B CN106290898 B CN 106290898B
Authority
CN
China
Prior art keywords
conversion nanoparticles
afp
mucin
gold
tripolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610613233.8A
Other languages
English (en)
Other versions
CN106290898A (zh
Inventor
徐丽广
瞿爱华
胥传来
匡华
刘丽强
吴晓玲
宋珊珊
胡拥明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201610613233.8A priority Critical patent/CN106290898B/zh
Publication of CN106290898A publication Critical patent/CN106290898A/zh
Application granted granted Critical
Publication of CN106290898B publication Critical patent/CN106290898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microbiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Composite Materials (AREA)
  • Biophysics (AREA)
  • Materials Engineering (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种金‑上转换纳米粒子三聚体的制备方法及其应用,属于分析化学技术领域。本发明主要包括20nm粒径的金纳米粒子的合成、金纳米粒子上Mucin‑1适配体的修饰、上转换纳米粒子上AFP适配体的修饰、金纳米粒子上AFP和Mucin‑1适配体部分互补序列的修饰、金‑上转换纳米粒子三聚体的组装、荧光和拉曼检测;在外加AFP后,荧光会增强;而在外加Mucin‑1后,拉曼信号会减弱,从而建立荧光信号与AFP浓度、拉曼信号与Mucin‑1浓度的标准曲线。本发明提供了一种用金‑上转换纳米粒子三聚体对癌症标志物的多重超灵敏检测方法,与传统检测方法相比成本低,灵敏度高,方便快捷,具有很好的实际应用前景。

Description

一种金-上转换纳米粒子三聚体的制备方法及其应用
技术领域
本发明涉及一种金-上转换纳米粒子三聚体的制备方法及其应用,属于分析化学技术领域。
背景技术
甲胎蛋白(α-fetoprotein,AFP),是一种致癌糖蛋白,是诊断原发性肝癌的特异性肿瘤标志物,具有确立诊断、早期诊断、鉴别诊断的作用。大量的临床发现,70%-95% 的原发性肝癌患者的AFP 升高。粘蛋白-1(Mucin-1)发生在许多腺癌,包括胰腺癌、肺癌、乳腺癌、卵巢癌、结肠癌和其它组织。粘蛋白也过度表达在肺疾病,如哮喘、支气管炎、慢性阻塞性肺病或囊性纤维化。Mucin-1正诊断标记为恶性肿瘤和其他疾病过程中,通常会过度或错误表达。
传统检测癌症标志物的方法有:酶联免疫法、电化学和基于仪器的液质联用、高效液相色谱等。酶联免疫法检测肿瘤标志物时,因蛋白质容易热变性,所以很难检测蛋白类肿瘤标志物,另外酶联免疫法的灵敏度较低,而且耗力耗时;电化学对样品的基质要求较高,很难实施;而用仪器检测时成本很高,并且对操作人员的操作技能有很高的要求。
所以,本发明提出了一种新型的、简便的、灵敏的检测方法,把纳米材料作为一种新型探针,进行AFP和Mucin-1的超灵敏检测。
通过 DNA 杂交将20nm粒径的金纳米粒子和20nm粒径的上转换纳米粒子组装成三聚体结构。目标物AFP和其适配体部分互补序列修饰的上转换纳米粒子竞争结合,荧光信号增强;而目标物Mucin-1和其适配体部分互补序列修饰的金纳米粒子竞争结合,拉曼信号减弱。将荧光信号与目标物AFP的浓度建立标准曲线,拉曼信号与目标物Mucin-1的浓度建立标准曲线,以此来定量检测癌症标志物甲胎蛋白及粘蛋白-1。
发明内容
本发明的目的是提供一种金-上转换纳米粒子三聚体的制备方法及其应用,其提供的新型的、简便的、灵敏的检测方法,把纳米材料作为一种新型探针,进行AFP和Mucin-1的超灵敏检测。
本发明的技术方案,一种金-上转换纳米粒子三聚体的制备方法,具体包括金纳米粒子的合成,上转换纳米粒子的提供,金-上转换纳米粒子三聚体的组装及结构表征,荧光、拉曼信号测试,用金-上转换纳米粒子三聚体检测AFP和Mucin-1。具体步骤如下:
(1)金纳米粒子的合成:进行20nm 粒径金纳米粒子的合成;48.75mL超纯水在搅拌下加入1.25mL 4g/L的氯金酸,使其沸腾,沸腾状态保持2-3min,加入1.2mL 10mg/mL的柠檬酸钠水溶液,观察颜色变化,待颜色不变后冷却至室温,放入冰箱中待用:
(2)上转换纳米粒子的提供:由北京万德高科技发展有限公司购买;
(3)金-上转换纳米粒子三聚体的组装:取两管50mL步骤(1)制备的已浓缩好的10nM 20nm粒径金纳米粒子,分别与巯基修饰的Mucin-1的适配体及互补序列进行偶联,金纳米粒子︰巯基修饰的Mucin-1的适配体/互补序列的摩尔比为1︰3;再将50mL上转换纳米粒子与巯基修饰的AFP的适配体偶联,其中上转换纳米粒子︰巯基修饰的AFP摩尔比为1︰5;三管试剂均在室温下过夜反应,13000r/min 离心15min,弃上清,然后用50mL的TBE缓冲液分散沉淀,分别得到Au-Mucin-1适配体、Au-互补序列及UCNP- AFP适配体,待用;
将50mL Au-Mucin-1适配体、50mL Au-互补序列和50mL UCNP- AFP适配体杂交反应12h,得到组装产物金-上转换纳米粒子三聚体Au-Au-UCNP;离心15min,弃上清,后用100mL的超纯水分散,进行TEM、荧光和拉曼表征。
Mucin-1适配体:5’-GCAGTTGATC CTTTGGATAC CCTGG-SH-3’;
互补序列:5’-GATCAACTGC ACAGCACCAC AGACC-SH-3’;
AFP适配体:5’-SH-GGCAGGAAGA CAAACAGGAC CGGGTTGTGT GGGGTTTTAAGAGCGTCGCC TGTGTGTGGT CTGTGGTGCT GT-3’。
金-上转换纳米粒子三聚体的应用,用于癌症标志物的多重超灵敏检测,具体采用金-上转换纳米粒子三聚体检测甲胎蛋白AFP和粘蛋白-1Mucin-1。
(4)AFP的检测:取100mL的金-上转换纳米粒子三聚体Au-Au-UCNP,加入1mL不同浓度的甲胎蛋白(AFP),使其终浓度在0-100aM(具体为 0、1、2、5、10、20、50、100 aM),反应10min,进行荧光测试,绘制标准曲线。
(5) Mucin-1的检测:取100mL的金-上转换纳米粒子三聚体Au-Au-UCNP,加入1mL不同浓度的粘蛋白-1(Mucin-1),使其终浓度在0-10fM(具体为 0、0.01、0.05、0.1、0.5、1、5、10 fM),反应 10min,进行拉曼测试,绘制标准曲线。
(6)样品测试:从无锡市第二人民医院获取三名病人的血清样品,稀释后取1mL,加入100mL Au-Au-UCNP组装体,进行荧光和拉曼测试,根据标准曲线得出样品所含AFP及Mucin-1的浓度,并与标准浓度进行比较。
本发明的有益效果:本发明基于荧光和拉曼作为检测信号,可以分别检测两种癌症标志物甲胎蛋白AFP及粘蛋白-1Mucin-1。与传统的检测手段相比,具有灵敏度高、检测限低、方便、快捷的优点,有非常好的应用前景。
附图说明
图1金-上转换纳米粒子三聚体Au-Au-UCNP组装结构的 TEM 图。
图 2 不同浓度AFP下金-上转换纳米粒子三聚体的荧光信号。
图 3 基于金-上转换纳米粒子三聚体组装结构进行AFP检测标准曲线。
图 4 不同浓度Mucin-1下金-上转换纳米粒子三聚体的拉曼信号。
图 5 基于金-上转换纳米粒子三聚体组装结构进行Mucin-1检测标准曲线。
具体实施方式
以下实施例中的上转换纳米粒子购自北京万德高科技发展有限公司。
实施例 1 基于金-上转换纳米粒子三聚体的癌症标志物的多重超灵敏检测方法。
(1)金纳米粒子的合成:将48.75mL超纯水在搅拌下加入1.25mL 4g/L的氯金酸,使其沸腾,沸腾状态保持2-3min,加入1.2mL 10mg/mL的柠檬酸钠水溶液,观察颜色变化,待颜色不变后冷却至室温,放入冰箱中待用。
(2)上转换纳米粒子的提供:由北京万德高科技发展有限公司购买。
(3)金-上转换纳米粒子三聚体的组装:取两管50mL已浓缩好的20nm粒径金纳米粒子,分别与巯基修饰的Mucin-1的适配体及互补序列进行偶联,偶联摩尔比为1︰3;再将50mL上转换纳米粒子与巯基修饰的AFP的适配体偶联,偶联摩尔比为1︰5,三管在室温下过夜反应,13000r/min 离心15min,弃上清,然后用50 mL的TBE缓冲液分散沉淀,待用;将50 mLAu-Mucin-1适配体、50 mL Au-互补序列、50 mL UCNP- AFP适配体杂交反应12h,组装产物为金-上转换纳米粒子三聚体Au-Au-UCNP,离心15min,弃上清,后用100mL的超纯水分散,进行TEM、荧光和拉曼表征。
(4)AFP的检测:取100mL的金-上转换纳米粒子三聚体,加入1 mL 不同浓度的AFP溶液,使其终浓度范围分别为 0、1、2、5、10、20、50、100 aM,反应 10min,进行荧光测试。最低检测限达0.059aM。
(4) Mucin-1的检测:取100mL的金-上转换纳米粒子三聚体,加入1 mL不同浓度的Mucin-1溶液,使其终浓度范围分别为0、0.01、0.05、0.1、0.5、1、5、10 fM,反应 10min,进行拉曼测试。最低检测限达4.1aM。

Claims (5)

1.一种金-上转换纳米粒子三聚体的制备方法,其特征在于包括金纳米粒子的合成,上转换纳米粒子的提供,金-上转换纳米粒子三聚体的组装及结构表征,具体步骤如下:
(1)金纳米粒子的合成:进行20nm 粒径金纳米粒子的合成;48.75mL超纯水在搅拌下加入1.25mL 4g/L的氯金酸,使其沸腾,沸腾状态保持2-3min,加入1.2mL 10mg/mL的柠檬酸钠水溶液,观察颜色变化,待颜色不变后冷却至室温,放入冰箱中待用;
(2)上转换纳米粒子的提供:由北京万德高科技发展有限公司购买;
(3)金-上转换纳米粒子三聚体的组装:取两管50mL步骤(1)制备的已浓缩好的 10nM20nm粒径金纳米粒子,分别与巯基修饰的Mucin-1的适配体及互补序列进行偶联,金纳米粒子︰巯基修饰的Mucin-1的适配体的摩尔比为1︰3,金纳米粒子︰互补序列的摩尔比也为1︰3;再将50mL上转换纳米粒子与巯基修饰的AFP的适配体偶联,其中上转换纳米粒子︰巯基修饰的AFP摩尔比为1︰5;三管试剂均在室温下过夜反应,13000r/min 离心15min,弃上清,然后用50mL的TBE缓冲液分散沉淀,分别得到Au-Mucin-1适配体、Au-互补序列及UCNP- AFP适配体,待用;
将50mL Au-Mucin-1适配体、50mL Au-互补序列和50mL UCNP- AFP适配体杂交反应12h,得到组装产物金-上转换纳米粒子三聚体Au-Au-UCNP;离心15min,弃上清,后用100mL的超纯水分散,进行TEM、荧光和拉曼表征。
2.根据权利要求1所述金-上转换纳米粒子三聚体的制备方法,其特征在于:
Mucin-1适配体:5’-GCAGTTGATC CTTTGGATAC CCTGG-SH-3’;
互补序列:5’-GATCAACTGC ACAGCACCAC AGACC-SH-3’ ;
AFP适配体:5’-SH-GGCAGGAAGA CAAACAGGAC CGGGTTGTGT GGGGTTTTAA GAGCGTCGCCTGTGTGTGGT CTGTGGTGCT GT-3’。
3.用权利要求1方法制备的金-上转换纳米粒子三聚体的应用,其特征在于:用于癌症标志物的多重超灵敏检测,具体采用金-上转换纳米粒子三聚体检测甲胎蛋白AFP和粘蛋白-1Mucin-1。
4.根据权利要求3所述金-上转换纳米粒子三聚体的应用,其特征在于具体步骤如下:
(1)AFP的检测:取100mL的金-上转换纳米粒子三聚体Au-Au-UCNP,加入1mL不同浓度的甲胎蛋白AFP,使其终浓度在0-100aM,反应10min,进行荧光测试,绘制标准曲线;
(2)Mucin-1的检测:取100mL的金-上转换纳米粒子三聚体Au-Au-UCNP,加入1mL不同浓度的粘蛋白-1Mucin-1,使其终浓度在0-10fM,反应 10min,进行拉曼测试,绘制标准曲线;
(3)样品测试:取血清样品,稀释后取1mL,加入100mL Au-Au-UCNP组装体,进行荧光和拉曼测试,根据标准曲线得出样品所含AFP及Mucin-1的浓度,并与标准浓度进行比较。
5.根据权利要求4所述金-上转换纳米粒子三聚体的应用,其特征在于所述不同浓度的甲胎蛋白AFP具体为0、1、2、5、10、20、50、100aM;不同浓度的粘蛋白-1Mucin-1具体为0、0.01、0.05、0.1、0.5、1、5、10fM。
CN201610613233.8A 2016-07-29 2016-07-29 一种金‑上转换纳米粒子三聚体的制备方法及其应用 Active CN106290898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610613233.8A CN106290898B (zh) 2016-07-29 2016-07-29 一种金‑上转换纳米粒子三聚体的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610613233.8A CN106290898B (zh) 2016-07-29 2016-07-29 一种金‑上转换纳米粒子三聚体的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106290898A CN106290898A (zh) 2017-01-04
CN106290898B true CN106290898B (zh) 2017-11-28

Family

ID=57663240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610613233.8A Active CN106290898B (zh) 2016-07-29 2016-07-29 一种金‑上转换纳米粒子三聚体的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106290898B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097356B (zh) * 2018-09-07 2021-06-22 江南大学 一种基于金壳-上转换纳米颗粒手性五聚组装体的制备方法
CN109283333B (zh) * 2018-09-21 2021-11-12 江南大学 一种基于金壳-上转换手性二聚体对大肠杆菌耐药性定量分析的方法
CN111624186B (zh) * 2020-06-24 2021-03-16 江南大学 一种基于荧光和拉曼双信号增强的肠毒素光谱分析方法
CN111999504B (zh) * 2020-08-10 2021-09-28 江南大学 一种粘蛋白1及其唾液酸糖基的双重荧光成像方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221507A1 (en) * 2004-03-30 2005-10-06 Intel Corporation Method to detect molecular binding by surface-enhanced Raman spectroscopy
JP2009535060A (ja) * 2006-05-03 2009-10-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 単一ナノクレセントsersプローブを使用したプロテアーゼおよびプロテアーゼ活性の検出
KR101352342B1 (ko) * 2010-11-24 2014-02-17 서울대학교산학협력단 코어 물질과 쉘 물질 사이에 나노갭이 형성된 단일 나노입자 및 이의 제조방법
CN104263837B (zh) * 2014-10-13 2016-03-23 江南大学 基于三重信标修饰的金纳米粒子三聚体的表面增强拉曼散射效应检测水溶液中Hg2+和/或Ag+的方法
CN104931478B (zh) * 2015-06-11 2017-07-07 江南大学 基于银纳米粒子三聚体的表面增强拉曼散射效应超灵敏检测甲胎蛋白的方法

Also Published As

Publication number Publication date
CN106290898A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Gong et al. Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery
CN106290898B (zh) 一种金‑上转换纳米粒子三聚体的制备方法及其应用
Jazayeri et al. Enhanced detection sensitivity of prostate-specific antigen via PSA-conjugated gold nanoparticles based on localized surface plasmon resonance: GNP-coated anti-PSA/LSPR as a novel approach for the identification of prostate anomalies
CN107893101B (zh) 一种用于肿瘤疾病早期诊断的试剂盒、方法及应用
Zhao et al. Aptamer-based fluorescent sensors for the detection of cancer biomarkers
Bhatnagar et al. Graphene quantum dots FRET based sensor for early detection of heart attack in human
Lee et al. Colorimetric viral detection based on sialic acid stabilized goldnanoparticles
Song et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells
Yan et al. A versatile activatable fluorescence probing platform for cancer cells in vitro and in vivo based on self-assembled aptamer/carbon nanotube ensembles
Eissa et al. Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis
He et al. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors
Vandghanooni et al. Recent advances in aptamer-based nanosystems and microfluidics devices for the detection of ovarian cancer biomarkers
Liu et al. Rapid visualizing and pathological grading of bladder tumor tissues by simple nanodiagnostics
CN106290873A (zh) 一种基于具有拉曼和荧光双重信号的金‑上转换空间四面体结构的制备及应用
Huang et al. Aptamer decorated magnetic graphene oxide nanoparticles for effective capture of exosomes
CN109682972A (zh) 一种检测乳腺癌肿瘤循环细胞的sers试剂
US20160187342A1 (en) DNA Aptamer Specifically Binding to EN2 (Engrailed-2) and Use Thereof
Anzar et al. Systematic and validated techniques for the detection of ovarian cancer emphasizing the electro-analytical approach
Li et al. Rapid and specific detection nanoplatform of serum exosomes for prostate cancer diagnosis
Borghei et al. A novel dual-mode and label-free aptasensor based methodology for breast cancer tissue marker targeting
CN106404726A (zh) 一种基于双链dna保护的荧光探针及在制备检测恶性疟原虫乳酸脱氢酶药物中的应用
Negahdary et al. Recent advances in electrochemical nanomaterial-based aptasensors for the detection of cancer biomarkers
Li et al. Designing DNA cage-based immuno-fluorescence strategy for rapid diagnosis of clinical cervical cancer tissues
Najdian et al. Amino-modified-silica-coated gadolinium-copper nanoclusters, conjugated to AS1411 aptamer and radiolabeled with technetium-99 m as a novel multimodal imaging agent
Esmaeilzadeh et al. Recent advances on the electrochemical and optical biosensing strategies for monitoring microRNA-21: a review

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 214002 Liangxi Food Science and Technology Park, 7 Floors South Building, 898 Tongsha Road, Liangxi District, Wuxi City, Jiangsu Province

Patentee after: Jiangnan University

Address before: Food College of Jiangnan University No. 1800 214122 Jiangsu city of Wuxi province Wuxi City Binhu Lihu Avenue

Patentee before: Jiangnan University