CN106289776A - 一种柔性磁悬浮轴承转子刚度阻尼辨识方法 - Google Patents

一种柔性磁悬浮轴承转子刚度阻尼辨识方法 Download PDF

Info

Publication number
CN106289776A
CN106289776A CN201610619694.6A CN201610619694A CN106289776A CN 106289776 A CN106289776 A CN 106289776A CN 201610619694 A CN201610619694 A CN 201610619694A CN 106289776 A CN106289776 A CN 106289776A
Authority
CN
China
Prior art keywords
magnetic suspension
suspension bearing
rotor
equation
unbalance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610619694.6A
Other languages
English (en)
Other versions
CN106289776B (zh
Inventor
周瑾
徐园平
金超武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610619694.6A priority Critical patent/CN106289776B/zh
Publication of CN106289776A publication Critical patent/CN106289776A/zh
Application granted granted Critical
Publication of CN106289776B publication Critical patent/CN106289776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

本发明公开了一种柔性磁悬浮轴承转子刚度阻尼辨识方法,属于磁悬浮轴承动态特性辨识技术领域。首先需要获取两组独立的磁悬浮轴承转子系统旋转响应:分别为加入不平衡质量与不加任何不平衡质量的响应;然后利用一阶次傅里叶级数拟合,获得两组独立响应的幅值与相位数据;通过两组响应对应幅值与相位数据相减,剔除磁悬浮轴承转子系统旋转过程中存在的干扰力影响;然后将剔除干扰力影响的幅值相位数据,通过本发明提出的“矩阵逆变换”辨识算法,计算获得磁悬浮轴承刚度阻尼动态特性。本发明所述方法与现有技术相比,求解精度高,抗干扰性强。不仅适用于弯曲临界转速以下的刚性转子,且同时适用于弯曲临界转速以上的柔性转子。

Description

一种柔性磁悬浮轴承转子刚度阻尼辨识方法
技术领域
本发明公开了一种考虑干扰力影响的柔性磁悬浮轴承转子刚度阻尼辨识方法,属于磁悬浮轴承动态特性辨识技术领域。
背景技术
磁悬浮轴承具有无需润滑、无摩擦、可以高速高效运行等优点。其已广泛应用于汽轮机,离心机和航空发动机等旋转机械设备中。准确的获得磁悬浮轴承的刚度阻尼数值,是磁悬浮轴承转子动力学计算的基础,包括临界转速计算、不平衡响应分析、模态振型计算、稳定性分析等。因此,磁悬浮轴承的刚度阻尼辨识具有重要意义。
在本发明之前,磁悬浮轴承刚度阻尼的辨识理论和方法主要为发表在MechanicalSystems and Signal Processing期刊的基于刚性转子模型-响应面辨识方法(Jin Zhou,et.,A rotor unbalance response based approach to the identification n of theclosed-loop stiffness and damping coefficients of active magnetic bearings,Mechanical Systems and Signal Processing,66(2016)665-678.)。
上述方法只适用于无干扰力的理想条件下的刚性磁悬浮轴承转子模型,因此其存在两个缺点:(1)当转子自身残余不平衡量较大或者有电机干扰力等干扰存在时,磁悬浮轴承刚度阻尼辨识误差急剧增大;(2)当转子转速接近弯曲临界转速时,转子产生明显的弯曲变形,磁悬浮轴承刚度阻尼辨识误差急剧增大。
发明内容
本发明所要解决的技术问题是针对上述背景技术的不足,提供了一种考虑干扰力影响的柔性磁悬浮轴承转子刚度阻尼辨识方法,此方法可以考虑干扰力影响,且不仅适用于弯曲临界转速以下的刚性磁悬浮轴承转子,同时也适用于弯曲临界转速以上的柔性磁悬浮轴承转子刚度阻尼辨识,解决了现有的辨识方法存在的问题。
本发明提供的一种柔性磁悬浮轴承转子刚度阻尼辨识方法包括如下步骤:
步骤1:采用梁单元建立柔性转子数学模型;
步骤2:在磁悬浮轴承转子系统的转子部位加入已知质量的不平衡质量,将磁悬浮轴承转子进行旋转运行,通过位移传感器采集不同转速下的磁悬浮轴承位移处的不平衡振动响应,同时采集转速信号;
步骤3:在磁悬浮轴承转子系统的转子部位不加入任何不平衡质量,将磁悬浮轴承转子进行旋转运行,通过位移传感器采集不同转速下的磁悬浮轴承位移处的不平衡振动响应,同时采集转速信号;
步骤4:将所述步骤2采集的数据,通过零相位滤波与一阶次傅里叶级数拟合,获得加入已知质量情况下的不平衡响应幅值数值;将拟合的一阶次傅里叶级数相位与转速相位做差,获得加入已知质量情况下的不平衡响应相位数据;
步骤5:将所述步骤3采集的数据,通过零相位滤波与一阶次傅里叶级数拟合,获得不加入任何不平衡质量情况下的不平衡响应幅值数值;将拟合的一阶次傅里叶级数相位与转速相位做差,获得不加入任何不平衡质量情况下的不平衡响应相位数据;
步骤6:用所述步骤4中获得不平衡响应减去步骤5获得的不平衡响应数值,获得幅值与相位数据即剔除干扰力之后的不平衡响应数值;
步骤7:利用矩阵逆变换方法,将所述剔除干扰力的不平衡相应数值转换到磁悬浮轴承传感器节点处;利用所述磁悬浮轴承传感器节点处的不平衡激振力与步骤6得到的传感器节点处的不平衡响应数值,计算获得磁悬浮轴承的刚度与阻尼数值。
所述步骤7的具体为:
步骤7-1:建立加入不平衡质量的磁悬浮轴承动力学方程:
M R q ·· + ( C R + C B + ΩG R ) q · + ( K R + K B ) q = f u n b + f r e s - - - ( 1 )
上式(1)中MR为转子质量矩阵,CR为转子阻尼矩阵,KR为转子刚度矩阵,GR为转子陀螺矩阵,q为转子各个节点位移响应向量;CB,KB为磁悬浮轴承提供的支承阻尼数值,即所需要辨识参数;funb为加入不平衡质量的不平衡激振力;fres为干扰激振力;
步骤7-2:建立不加入任何不平衡质量的磁悬浮轴承动力学方程:
M R q ·· + ( C R + C B + ΩG R ) q · + ( K R + K B ) q = f r e s - - - ( 2 )
步骤7-3:步骤7-1等式(1)减去步骤7-2等式(2)并进行拉氏变换:
[(KR+KB-MRω2)+iω(CR+CB+ΩGR)]qm=Funb (3)
上式中,qm为节点位移响应向量之差;
步骤7-4:将步骤7-3的等式(3)变化为传递函数形式,即:
H=[(KR+KB-MRω2)+iω(CR+CB+ΩGR)] (4)
步骤7-5:将步骤7-4的等式(4)拆分为转子自身传递函数HR与磁悬浮轴承提供刚度阻尼的传递函数HB
HR=[(KR-MRω2)+iω(CR+ΩGR)] (5)
HB=KB+iωCB. (6)
步骤7-6:将步骤7-3的等式(3)用步骤7-5获得的等式(5)与(6)来表示:
Hqm=(HR+HB)qm=Funb. (7)
步骤7-7:将步骤7-6的等式(7)进行行列矩阵变换,此时需要将含有磁悬浮轴承两个传感器节点的平动位移向量,记为ZB1,ZB2变换到矩阵前两行;其余的节点位移向量记做ZO
H ‾ R Z B 1 Z B 2 Z O + H ‾ B Z B 1 Z B 2 Z O = 0 0 F ‾ u n b - - - ( 8 )
等式(8)中的为行列变换后的传递函数矩阵;
步骤7-8:将步骤7-7中的传递函数矩阵划分为3×3矩阵,表示为等式(9):
H ‾ R = H R 11 H R 12 H R 13 H R 21 H R 22 H R 23 H R 31 H R 32 H R 33 ; H ‾ B = H B 1 0 0 0 H B 2 0 0 0 0 - - - ( 9 )
此时HB1和HB2即为需要辨识的磁悬浮轴承位置处的传递函数矩阵,将其表示如下形式:
H B i = K x x i + iΩC x x i 0 0 K y y i + iΩC y y i , i = 1 , 2 - - - ( 10 )
步骤7-9:将步骤7-8的等式(9)带入步骤7-7的等式(8)中,获得等式(11):
H R 11 H R 12 H R 13 H R 21 H R 22 H R 23 H R 31 H R 32 H R 33 Z B 1 Z B 2 Z O + H B 1 0 0 0 H B 2 0 0 0 0 Z B 1 Z B 2 Z O = 0 0 F ‾ u n b . - - - ( 11 )
由等式(11)的最后一行,得到等式(12):
Z O = H R 33 - 1 { F ‾ u n b - H R 31 Z B 1 - H R 3 Z B 2 } - - - ( 12 )
由等式(11)的前两行,得到等式(13)与(14):
HR1ZB1+HR1ZB2+HR1Zo=-HB1ZB1; (13)
HR21ZB1+HR22ZB2+HR23ZO=-HB2ZB2 (14)
步骤7-10:定义转换到磁悬浮轴承节点的不平衡激振力为fB1和fB2
fB1=-(HR11ZB1+HR12ZB2+HR13ZO) (15)
fB2=-(HR21ZB1+HR22ZB2+HR23Zo) (16)
由于Zo在等式(12)中可以求出,所以等式(15)与等式(16)定义的转换到磁悬浮轴承节点的不平衡激振力fB1和fB2可以求出;
步骤7-11:由步骤7-10和步骤7-9获得的结果,通过矩阵求逆运算,获得考虑干扰力下的两个磁悬浮轴承的提供的刚度与阻尼数值,即:
H B 1 = K x x 1 + iΩC x x 0 0 K y y 1 + iΩC y y 1 = f B 1 Z B 1 - 1 - - - ( 17 )
H B 2 = K x x + iΩC x x 2 0 0 K y y 2 + iΩC y y = f B 2 Z B 2 - 1 . - - - ( 18 ) .
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1、此辨识方法可以剔除干扰力影响,具体包括转子自身残余不平衡力的影响、电机干扰力的影响等。
2、此辨识方法可以在磁悬浮轴承转子系统旋转时即正常运行的情况下进行辨识。
3、此辨识方法不仅适用于临界转速以下的刚性磁悬浮轴承转子,同时也适用于临界转速以上的柔性磁悬浮轴转子承刚度阻尼辨识,解决了现有的辨识方法存在的问题。
附图说明
图1为磁悬浮轴承转子坐标系图;
图2为磁悬浮轴承位置的转子自身的不平衡响应仿真数值;
图3为磁悬浮轴承位置处转子不平衡响应仿真数值;
图4为磁悬浮轴承相互垂直的x,y两个方向仿真刚度辨识的结果曲线图;
图5为磁悬浮轴承相互垂直的x,y两个方向仿真阻尼辨识的结果曲线图;
图6为转子不平衡质量加入位置说明图;
图7为磁悬浮轴承位置的转子自身的不平衡响应试验数值;
图8为磁悬浮轴承位置的转子自身的不平衡响应试验数值;
图9为试验的左右两磁悬浮轴承相互垂直的x,y两个方向上刚度与阻尼辨识数值。
具体实施方式
本发明提供一种柔性磁悬浮轴承转子刚度阻尼辨识方法,为使本发明的目的,技术方案及效果更加清楚,明确,以及参照附图并举实例对本发明进一步详细说明。应当理解,此处所描述的具体实施仅用以解释本发明,并不用于限定本发明。
本发明所涉及一种柔性磁悬浮轴承转子刚度阻尼辨识方法包括如下步骤:
步骤1:采用梁单元建立柔性转子数学模型;
步骤2:在磁悬浮轴承转子系统的转子部位加入已知质量的不平衡质量,将磁悬浮轴承转子进行旋转运行,通过位移传感器采集不同转速下的磁悬浮轴承位移处的不平衡振动响应,同时采集转速信号;
步骤3:在磁悬浮轴承转子系统的转子部位不加入任何不平衡质量,将磁悬浮轴承转子进行旋转运行,通过位移传感器采集不同转速下的磁悬浮轴承位移处的不平衡振动响应,同时采集转速信号;
步骤4:将所述步骤2采集的数据,通过零相位滤波与一阶次傅里叶级数拟合,获得加入已知质量情况下的不平衡响应幅值数值;将拟合的一阶次傅里叶级数相位与转速相位做差,获得加入已知质量情况下的不平衡响应相位数据;
步骤5:将所述步骤3采集的数据,通过零相位滤波与一阶次傅里叶级数拟合,获得不加入任何不平衡质量情况下的不平衡响应幅值数值;将拟合的一阶次傅里叶级数相位与转速相位做差,获得不加入任何不平衡质量情况下的不平衡响应相位数据;
步骤6:用所述步骤4中获得不平衡响应减去步骤5获得的不平衡响应数值,获得幅值与相位数据即剔除干扰力之后的不平衡响应数值;
步骤7:利用矩阵逆变换方法,将所述剔除干扰力的不平衡相应数值转换到磁悬浮轴承传感器节点处;利用所述磁悬浮轴承传感器节点处的不平衡激振力与步骤6得到的传感器节点处的不平衡响应数值,计算获得磁悬浮轴承的刚度与阻尼数值。
所述步骤7的具体为:
步骤7-1:建立加入不平衡质量的磁悬浮轴承动力学方程:
M R q ·· + ( C R + C B + ΩG R ) q · + ( K R + K B ) q = f u n b + f r e s - - - ( 1 )
上式(1)中MR为转子质量矩阵,CR为转子阻尼矩阵,KR为转子刚度矩阵,GR为转子陀螺矩阵,q为转子各个节点位移响应向量;CB,KB为磁悬浮轴承提供的支承阻尼数值,即所需要辨识参数;funb为加入不平衡质量的不平衡激振力;fres为干扰激振力;
步骤7-2:建立不加入任何不平衡质量的磁悬浮轴承动力学方程:
M R q ·· + ( C R + C B + ΩG R ) q · + ( K R + K B ) q = f r e s - - - ( 2 )
步骤7-3:步骤7-1等式(1)减去步骤7-2等式(2)并进行拉氏变换:
[(KR+KB-MRω2)+iω(CR+CB+ΩGR)]qm=Funb (3)
上式中,qm为节点位移响应向量之差;
步骤7-4:将步骤7-3的等式(3)变化为传递函数形式,即:
H=[(KR+KB-MRω2)+iω(CR+CB+ΩGR)] (4)
步骤7-5:将步骤7-4的等式(4)拆分为转子自身传递函数HR与磁悬浮轴承提供刚度阻尼的传递函数HB
HR=[(KR-MRω2)+iω(CR+ΩGR)] (5)
HB=KB+iωCB. (6)
步骤7-6:将步骤7-3的等式(3)用步骤7-5获得的等式(5)与(6)来表示:
Hqm=(HR+HB)qm=Funb. (7)
步骤7-7:将步骤7-6的等式(7)进行行列矩阵变换,此时需要将含有磁悬浮轴承两个传感器节点的平动位移向量,记为ZB1,ZB2变换到矩阵前两行;其余的节点位移向量记做ZO
H ‾ R Z B 1 Z B 2 Z O + H ‾ B Z B 1 Z B 2 Z O = 0 0 F ‾ u n b - - - ( 8 )
等式(8)中的为行列变换后的传递函数矩阵;
步骤7-8:将步骤7-7中的传递函数矩阵划分为3×3矩阵,表示为等式(9):
H ‾ R = H R 1 H R 12 H R 13 H R 21 H R 22 H R 23 H R 31 H R 3 H R 33 ; H ‾ B = H B 1 0 0 0 H B 2 0 0 0 0 - - - ( 9 )
此时HB1和HB2即为需要辨识的磁悬浮轴承位置处的传递函数矩阵,将其表示如下形式:
H B i = K x x i + iΩC x x i 0 0 K y y i + iΩC y y i , i = 1 , 2 - - - ( 10 )
步骤7-9:将步骤7-8的等式(9)带入步骤7-7的等式(8)中,获得等式(11):
H R 11 H R 12 H R 13 H R 21 H R 22 H R 23 H R 31 H R 32 H R 33 Z B 1 Z B 2 Z O + H B 1 0 0 0 H B 2 0 0 0 0 Z B 1 Z B 2 Z O = 0 0 F ‾ u n b . - - - ( 11 )
由等式(11)的最后一行,得到等式(12):
Z O = H R 33 - 1 { F ‾ u n b - H R 31 Z B 1 - H R 32 Z B 2 } - - - ( 12 )
由等式(11)的前两行,得到等式(13)与(14):
HR11ZB1+HR12ZB2+HR13ZO=-HB1ZB1; (13)
HR21ZB1+HR22ZB2+HR13Zo=-HB2ZB2 (14)
步骤7-10:定义转换到磁悬浮轴承节点的不平衡激振力为fB1和fB2
fB1=-(HR11ZB1+HR12ZB2+HR13Zo) (15)
fB2=-(HR21ZB1+HR22ZB2+HR23Zo) (16)
由于Zo在等式(12)中可以求出,所以等式(15)与等式(16)定义的转换到磁悬浮轴承节点的不平衡激振力fB1和fB2可以求出;
步骤7-11:由步骤7-10和步骤7-9获得的结果,通过矩阵求逆运算,获得考虑干扰力下的两个磁悬浮轴承的提供的刚度与阻尼数值,即:
H B 1 = K x x 1 + iΩC x x 1 0 0 K y y 1 + iΩC y y 1 = f B 1 Z B 1 - 1 - - - ( 17 )
H B 2 = K x x 2 + iΩC x x 2 0 0 K y y 2 + iΩC y y 2 = f B 2 Z B 2 - 1 . - - - ( 18 ) .
实施方式1,仿真计算辨识:
1.1采用Nelson-Timoshenko梁单元,图1为磁悬浮轴承转子坐标系图,共有左右两个磁悬浮轴承,每个磁悬浮轴承控制力分解为相互垂直的x,y两个方向。K与C分布代表刚度与阻尼,其下标表示刚度与阻尼的方向。根据图1转子坐标系建立柔性磁悬浮轴承转子模型;设定左右两磁悬浮轴承支承位置分别位于转子有限元模型的节点20与节点40处,如图6所示;假定两磁悬浮轴承提供的刚度与阻尼如表1所示。假定干扰力为转子自身的残余不平衡力,其所在节点位置及数值如表2所示;假定外加的不平衡质量所在节点位置及数值如表3所示。
表1假定的磁悬浮轴承提供的刚度与阻尼数值
表2假定的转子自身的残余不平衡量
表3假定的外加不平衡质量
1.2计算磁悬浮轴承转子在给定的刚度阻尼数值下,只考虑干扰力激励下的磁悬浮轴承位置处转子自身的不平衡响应数值,如图2所示;
1.3计算磁悬浮轴承转子在给定的刚度阻尼数值下,考虑干扰力和外加不平衡质量共同激励下的磁悬浮轴承位置处转子自身的不平衡响应数值,如图3所示;
1.4将所述步骤1.2计算的数据,通过零相位滤波与一阶次傅里叶级数拟合,获得只考虑干扰力激励下不平衡响应幅值数值;将拟合的一阶次傅里叶级数相位与转速相位做差,获得只考虑干扰力激励下不平衡响应相位数据;
1.5将所述步骤1.3计算的数据,通过零相位滤波与一阶次傅里叶级数拟合,获得考虑干扰力和外加不平衡质量共同激励下不平衡响应幅值数值;将拟合的一阶次傅里叶级数相位与转速相位做差,获得考虑干扰力和外加不平衡质量共同激励下不平衡响应相位数据;
1.6用所述步骤1.5中获得不平衡响应减去步骤1.4获得的不平衡响应数值,获得幅值与相位数据即剔除干扰力之后的不平衡响应数值;
1.7将步骤1.5、1.6获得的两组试验数据,带入发明内容中的步骤7提出的辨识方法进行计算。
1.8图4为仿真辨识刚度的结果;图5为仿真辨识阻尼的结果。图中直线为假定磁悬浮轴承提供的刚度与阻尼数值,其值为表1所示。星号点数据为不同转速下辨识结果,可以发现即使有干扰力存在下,本法明提出的辨识方法可以准确辨识,即星号点数据与直线据吻合度很高。而如果不考虑干扰力的存在进行辨识,结果如图4图5中圆圈点数据所示,可以看出不考虑干扰力对辨识结果影响很大。
实施方式2,试验辨识:
2.1在磁悬浮轴承转子上加入不平衡质量,如图6所示;不平衡质量的具体信息如表所示;
表4试验中外加的不平衡质量
2.2运行磁悬浮轴承转子系统,从转速50Hz开始,每隔10Hz采集一次磁悬浮轴承处的位移数据;同时采集转子转速数据。
2.3将采集的数据,通过零相位滤波与一阶次傅里叶级数拟合,拟合成如下公式:
y=a0+a1cos(xω)+b1sin(xω), (19)
此时,振动的幅值A与相位数据可以通过以下公式获得,等式中为转速相位数值,
此时获得的试验位移振动幅值和相位数据如图7所示;
2.4去掉转子上加入的不平衡质量,运行磁悬浮轴承转子系统,从转速50Hz开始,每隔10Hz采集一次磁悬浮轴承处的位移数据;同时采集转子转速数据,将获得数据再次利用步骤2.3的方法进行处理,获得没有不平衡质量激励下,即只有干扰力激励下的磁悬浮轴承位置处位移幅与值相位数据,如图8所示。
2.5将获得的两组试验数据,带入发明内容中的步骤7提出的辨识方法进行计算。图9为试验辨识结果图。从图9中可以看出,转子在临界转速附近区域(480Hz)有明显的突变,准确的反应了柔性转子系统临界转速附近振动急剧增大的情况。这说明了此方法适合柔性磁悬浮轴承转子系统的刚度阻尼辨识;辨识方式适合弯曲临界转速以上的情况。

Claims (4)

1.一种柔性磁悬浮轴承转子刚度阻尼辨识方法,其特征在于,首先获取两组独立的磁悬浮轴承转子系统旋转响应:分别为加入不平衡质量与不加任何不平衡质量的响应;然后利用一阶次傅里叶级数拟合,获得两组独立响应的幅值与相位数据;通过两组响应对应幅值与相位数据相减,剔除磁悬浮轴承转子系统旋转过程中存在的干扰力影响;最后将剔除干扰力影响的幅值相位数据,计算获得磁悬浮轴承刚度阻尼动态特性。
2.根据权利要求1所述的一种柔性磁悬浮轴承转子刚度阻尼辨识方法,其特征在于,该方法具体包括如下步骤:
步骤1:采用梁单元建立柔性转子数学模型;
步骤2:在磁悬浮轴承转子系统的转子部位加入已知质量的不平衡质量,将磁悬浮轴承转子进行旋转运行,通过位移传感器采集不同转速下的磁悬浮轴承位移处的不平衡振动响应,同时采集转速信号;
步骤3:在磁悬浮轴承转子系统的转子部位不加入任何不平衡质量,将磁悬浮轴承转子进行旋转运行,通过位移传感器采集不同转速下的磁悬浮轴承位移处的不平衡振动响应,同时采集转速信号;
步骤4:将所述步骤2采集的数据,通过零相位滤波与一阶次傅里叶级数拟合,获得加入已知质量情况下的不平衡响应幅值数值;将拟合的一阶次傅里叶级数相位与转速相位做差,获得加入已知质量情况下的不平衡响应相位数据;
步骤5:将所述步骤3采集的数据,通过零相位滤波与一阶次傅里叶级数拟合,获得不加入任何不平衡质量情况下的不平衡响应幅值数值;将拟合的一阶次傅里叶级数相位与转速相位做差,获得不加入任何不平衡质量情况下的不平衡响应相位数据;
步骤6:用所述步骤4中获得不平衡响应减去步骤5获得的不平衡响应数值,获得幅值与相位数据即剔除干扰力之后的不平衡响应数值;
步骤7:利用矩阵逆变换方法,将所述剔除干扰力的不平衡相应数值转换到磁悬浮轴承传感器节点处;利用所述磁悬浮轴承传感器节点处的不平衡激振力与步骤6得到的传感器节点处的不平衡响应数值,计算获得磁悬浮轴承的刚度与阻尼数值。
3.根据权利要求1所述的一种柔性磁悬浮轴承转子刚度阻尼辨识方法,其特征在于,所述步骤7的具体为:
步骤7-1:建立加入不平衡质量的磁悬浮轴承动力学方程:
上式(1)中MR为转子质量矩阵,CR为转子阻尼矩阵,KR为转子刚度矩阵,GR为转子陀螺矩阵,q为转子各个节点位移响应向量;CB,KB为磁悬浮轴承提供的支承阻尼数值,即所需要辨识参数;funb为加入不平衡质量的不平衡激振力;fres为干扰激振力;
步骤7-2:建立不加入任何不平衡质量的磁悬浮轴承动力学方程:
步骤7-3:步骤7-1等式(1)减去步骤7-2等式(2)并进行拉氏变换:
[(KR+KB-MRω2)+iω(CR+CB+ΩGR)]qm=Funb (3)
上式中,qm为节点位移响应向量之差;
步骤7-4:将步骤7-3的等式(3)变化为传递函数形式,即:
H=[(KR+KB-MRω2)+iω(CR+CB+ΩGR)] (4)
步骤7-5:将步骤7-4的等式(4)拆分为转子自身传递函数HR与磁悬浮轴承提供刚度阻尼的传递函数HB
HR=[(KR-MRω2)+iω(CR+ΩGR)] (5)
HB=KB+iωCB. (6)
步骤7-6:将步骤7-3的等式(3)用步骤7-5获得的等式(5)与(6)来表示:
Hqm=(HR+HB)qm=Funb. (7)
步骤7-7:将步骤7-6的等式(7)进行行列矩阵变换,此时需要将含有磁悬浮轴承两个传感器节点的平动位移向量,记为ZB1,ZB2变换到矩阵前两行;其余的节点位移向量记做ZO
等式(8)中的为行列变换后的传递函数矩阵;
步骤7-8:将步骤7-7中的传递函数矩阵划分为3×3矩阵,表示为等式(9):
此时HB1和HB2即为需要辨识的磁悬浮轴承位置处的传递函数矩阵,将其表示如下形式:
步骤7-9:将步骤7-8的等式(9)带入步骤7-7的等式(8)中,获得等式(11):
由等式(11)的最后一行,得到等式(12):
由等式(11)的前两行,得到等式(13)与(14):
HR11ZB1+HR12ZB2+HR13ZO=-HB1ZB1; (13)
HR21ZB1+HR22ZB2+HR23ZO=-HB2ZB2 (14)
步骤7-10:定义转换到磁悬浮轴承节点的不平衡激振力为fB1和fB2
fB1=-(HR11ZB1+HR12ZB2+HR13ZO) (15)
fB2=-(HR21ZB1+HR22ZB2+HR23ZO) (16)
由于ZO在等式(12)中可以求出,所以等式(15)与等式(16)定义的转换到磁悬浮轴承节点的不平衡激振力fB1和fB2可以求出;
步骤7-11:由步骤7-10和步骤7-9获得的结果,通过矩阵求逆运算,获得考虑干扰力下的两个磁悬浮轴承的提供的刚度与阻尼数值,即:
4.根据权利要求1所述的一种柔性磁悬浮轴承转子刚度阻尼辨识方法,其特征在于,所述步骤1具体为:建立左右两个磁悬浮轴承的坐标系,每个磁悬浮轴承控制力分解为相互垂直的x,y两个方向。
CN201610619694.6A 2016-07-29 2016-07-29 一种柔性磁悬浮轴承转子刚度阻尼辨识方法 Active CN106289776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610619694.6A CN106289776B (zh) 2016-07-29 2016-07-29 一种柔性磁悬浮轴承转子刚度阻尼辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610619694.6A CN106289776B (zh) 2016-07-29 2016-07-29 一种柔性磁悬浮轴承转子刚度阻尼辨识方法

Publications (2)

Publication Number Publication Date
CN106289776A true CN106289776A (zh) 2017-01-04
CN106289776B CN106289776B (zh) 2020-07-07

Family

ID=57663736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610619694.6A Active CN106289776B (zh) 2016-07-29 2016-07-29 一种柔性磁悬浮轴承转子刚度阻尼辨识方法

Country Status (1)

Country Link
CN (1) CN106289776B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009989A (zh) * 2019-11-26 2020-04-14 西安航天精密机电研究所 一种用于陀螺电机与动平衡机间的转接装置
CN111796524A (zh) * 2020-08-10 2020-10-20 北京航空航天大学 一种基于最优阻尼原理的磁悬浮柔性转子稳定控制方法
CN112611564A (zh) * 2020-12-17 2021-04-06 大唐东北电力试验研究院有限公司 一种汽轮机支撑轴承刚度判别方法及装置
CN112987579A (zh) * 2021-05-13 2021-06-18 中国人民解放军国防科技大学 电磁悬浮控制系统中悬浮刚度的测量方法、系统及装置
CN114563173A (zh) * 2022-03-10 2022-05-31 中国航空发动机研究院 一种转子系统模态识别装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724799B1 (ko) * 2005-12-22 2007-06-04 한국항공우주연구원 베어링강성시험 장치 및 방법
CN101047368A (zh) * 2007-03-12 2007-10-03 北京航空航天大学 一种章动频率自动跟踪的高通数字滤波方法
DE102008060762A1 (de) * 2008-12-05 2010-06-10 Schaeffler Kg Verfahren und Vorrichtung zum Ermitteln der dynamischen Lebensdauer von Wälzlagern
CN102507187A (zh) * 2011-10-21 2012-06-20 北京航空航天大学 一种测定磁悬浮控制力矩陀螺径向磁轴承刚度特性的方法
KR20140055630A (ko) * 2012-10-31 2014-05-09 현대위아 주식회사 공기 베어링의 동특성 측정 장치 및 방법
CN104331565A (zh) * 2014-11-10 2015-02-04 河海大学常州校区 轴类磁悬浮刚性转子系统的动力学建模方法及控制方法
US8960009B2 (en) * 2011-04-28 2015-02-24 Hitachi, Ltd. Apparatus and method for measuring vibration characteristics
CN104503238A (zh) * 2014-12-15 2015-04-08 北京航空航天大学 一种基于自适应重复控制器的磁悬浮转子系统电流谐波抑制方法
CN105783898A (zh) * 2016-04-28 2016-07-20 北京航空航天大学 一种基于频域自适应lms算法的磁悬浮转子谐波振动抑制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724799B1 (ko) * 2005-12-22 2007-06-04 한국항공우주연구원 베어링강성시험 장치 및 방법
CN101047368A (zh) * 2007-03-12 2007-10-03 北京航空航天大学 一种章动频率自动跟踪的高通数字滤波方法
DE102008060762A1 (de) * 2008-12-05 2010-06-10 Schaeffler Kg Verfahren und Vorrichtung zum Ermitteln der dynamischen Lebensdauer von Wälzlagern
US8960009B2 (en) * 2011-04-28 2015-02-24 Hitachi, Ltd. Apparatus and method for measuring vibration characteristics
CN102507187A (zh) * 2011-10-21 2012-06-20 北京航空航天大学 一种测定磁悬浮控制力矩陀螺径向磁轴承刚度特性的方法
KR20140055630A (ko) * 2012-10-31 2014-05-09 현대위아 주식회사 공기 베어링의 동특성 측정 장치 및 방법
CN104331565A (zh) * 2014-11-10 2015-02-04 河海大学常州校区 轴类磁悬浮刚性转子系统的动力学建模方法及控制方法
CN104503238A (zh) * 2014-12-15 2015-04-08 北京航空航天大学 一种基于自适应重复控制器的磁悬浮转子系统电流谐波抑制方法
CN105783898A (zh) * 2016-04-28 2016-07-20 北京航空航天大学 一种基于频域自适应lms算法的磁悬浮转子谐波振动抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李增勇 等: "基于不平衡响应的柔性转子系统动态参数识别研究", 《密封与润滑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009989A (zh) * 2019-11-26 2020-04-14 西安航天精密机电研究所 一种用于陀螺电机与动平衡机间的转接装置
CN111796524A (zh) * 2020-08-10 2020-10-20 北京航空航天大学 一种基于最优阻尼原理的磁悬浮柔性转子稳定控制方法
CN112611564A (zh) * 2020-12-17 2021-04-06 大唐东北电力试验研究院有限公司 一种汽轮机支撑轴承刚度判别方法及装置
CN112611564B (zh) * 2020-12-17 2022-11-15 大唐东北电力试验研究院有限公司 一种汽轮机支撑轴承刚度判别方法及装置
CN112987579A (zh) * 2021-05-13 2021-06-18 中国人民解放军国防科技大学 电磁悬浮控制系统中悬浮刚度的测量方法、系统及装置
CN114563173A (zh) * 2022-03-10 2022-05-31 中国航空发动机研究院 一种转子系统模态识别装置

Also Published As

Publication number Publication date
CN106289776B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN106289776A (zh) 一种柔性磁悬浮轴承转子刚度阻尼辨识方法
CN102853979B (zh) 电主轴半主动振动控制试验台架、系统及电主轴控制方法
CN104331565B (zh) 轴类磁悬浮刚性转子系统的动力学建模方法及控制方法
CN104728054B (zh) 用于确定转角位置和/或转速的方法
CN110145541A (zh) 一种基于相位稳定的磁悬浮轴承转子不平衡运动控制方法
Artyunin et al. Effect of" crawling" and peculiarities of motion of a rotor with pendular self-balancers
CN103292958B (zh) 一种基于模型的转子无试重失衡参数辨识方法
Bin et al. Development of whole-machine high speed balance approach for turbomachinery shaft system with N+ 1 supports
CN109800512A (zh) 旋转圆柱壳-变截面盘-预扭叶片系统的动力学建模方法
Bin et al. Virtual dynamic balancing method without trial weights for multi-rotor series shafting based on finite element model analysis
Ma et al. A novel active online electromagnetic balancing method—Principle and structure analysis
CN113341714B (zh) 一种磁悬浮轴承转子控制系统同频干扰的抵消方法
CN105478245A (zh) 基于主轴振动检测的双自由度精密离心机副轴动不平衡量辨识方法
Wang et al. Certain type turbofan engine whole vibration model with support looseness fault and casing response characteristics
Yue et al. Unbalance identification of speed-variant rotary machinery without phase angle measurement
RU2499985C1 (ru) Способ балансировки ротора в одной плоскости коррекции
Shehovtsov et al. Influence of elements dynamic cohesiveness in power shafting on torsional vibrations spreading and dynamic equality of reducible model
CN110646139B (zh) 根据弯曲度确定轴弹性的转子的不平衡度的方法
CN109847952B (zh) 一种基于驱动电流的双轴精密离心机回转台动平衡方法
Spagnol et al. Rotor vibration under the coupled effects of mass unbalance and asymmetric bearings
Oke et al. Balancing of flexible rotors based on evolutionary algorithms
Meagher et al. Response of a warped flexible rotor with a fluid bearing
Luo et al. Stability analysis of nonlinear stiffness rotor-bearing system with pedestal looseness fault
Huo et al. A practical strategy of unbalance identification and correction for 2-DOF precision centrifuges
Werner Theoretical vibration analysis of soft mounted electrical machines regarding rotor eccentricity based on a multibody model

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant