CN106279693B - 一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用 - Google Patents

一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用 Download PDF

Info

Publication number
CN106279693B
CN106279693B CN201610782617.2A CN201610782617A CN106279693B CN 106279693 B CN106279693 B CN 106279693B CN 201610782617 A CN201610782617 A CN 201610782617A CN 106279693 B CN106279693 B CN 106279693B
Authority
CN
China
Prior art keywords
sulfone
side chain
benzimidazole
ether ketone
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610782617.2A
Other languages
English (en)
Other versions
CN106279693A (zh
Inventor
王建黎
吴凯
张祺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610782617.2A priority Critical patent/CN106279693B/zh
Publication of CN106279693A publication Critical patent/CN106279693A/zh
Application granted granted Critical
Publication of CN106279693B publication Critical patent/CN106279693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明提供了一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用,所述的侧链含苯并咪唑聚芳醚酮/砜为主链由式(I)所示的重复结构单元构成的分子量在7000~12000的磺化聚合物,或者为主链由式(II)所示的重复结构单元构成的分子量在7000~12000的非磺化聚合物;本发明利用一步合成法制备得到侧链含苯并咪唑聚芳醚酮/砜聚合物,不仅简化了合成步骤,而且苯并咪唑与磺酸基团分子内和分子间的相互作用解决了高磺化度聚合物溶于水、聚苯并咪唑溶解性差等问题,可以进一步改善聚合物的综合性能;

Description

一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用
(一)技术领域
本发明涉及一类高分子材料及其制备方法与应用,尤其是主链含醚酮或者醚砜结构,侧链含苯并咪唑及磺酸根基团的聚合物及其合成方法与应用。
(二)背景技术
聚芳醚、聚酰亚胺、聚苯并咪唑等芳香型聚合物以其优异的热化学稳定性和机械性能以及具有良好的抗水解和耐腐蚀等性能广泛应用在航空航天等领域,而且它们的磺化产物作为质子交换膜材料亦得到广泛研究。
为了获得高的质子传导率,需要提高聚合物的磺化度。磺化聚芳醚类聚合物主要通过后磺化和直接共聚的方法得到。后磺化法是用适当的磺化试剂对已合成的聚合物进行磺化,从而将磺酸基团引入到聚合物中;直接共聚法是指先合成含有磺酸基团的磺化单体再进行聚合。与聚合物的后磺化改性相比,采用磺化单体直接聚合成磺化聚合物的方法,便于从分子设计上控制聚合反应。Ueda等人(J.Polym.Sci.,1993,31(4):853~858.)首先制备了带磺酸钠侧基的磺化4,4’-二氯二苯砜单体,并通过直接聚合的方法与双酚A缩聚合成了含有磺酸钠基团的磺化聚芳醚砜共聚物,通过调整非磺化单体与磺化单体的比例,进而控制聚合物中磺酸基团的含量,从而控制磺化度,而且避免了后磺化引起的降解、交联等其他副反应。
但是高磺化度的磺化聚芳醚类材料遇水严重溶胀,使得材料的机械性能降低,抗氧化稳定性降低,大大降低了膜材料的寿命。为了克服这一问题,我们希望引入苯并咪唑基团,利用其与磺酸基之间的协同作用,可以提高膜材料的热稳定性和化学稳定性。Y.Fu等(Electrochemistry Communication.,2006,8(8):1386~1390)报导了含苯并咪唑基团的聚合物与磺化聚醚醚酮共混膜,由于苯并咪唑与磺酸基之间的相互作用,可以不依赖水的情况下传导质子,在高温或者低湿度时仍具有较好的质子传导能力。另外那辉等人(CN101357984A)也公开了利用含有羧基的磺化聚芳醚酮与邻苯二胺的反应,合成了侧链中同时含有磺酸基和苯并咪唑基团的聚芳醚酮类聚合物。上述两种方法都是以含羧基的磺化聚芳醚酮作中间聚合物接上咪唑进行改性。本发明旨在以4,4’-亚甲基-2,2’-苯并咪唑双酚等单体为原料,利用一步合成法直接缩聚得到磺化度不同的侧链含苯并咪唑聚芳醚酮/砜。
(三)发明内容
本发明的目的是从分子结构设计出发,提供一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用,该聚合物的侧链中可同时含有磺酸基和苯并咪唑基团,利用两者间的离子交联结构,可以有效提高材料的热稳定性、机械性能、抗氧化稳定性。
本发明可以通过改变单体结构及其比例,制备出不同磺化度、不同苯并咪唑含量的聚芳醚酮/砜聚合物。
为实现上述目的,本发明采用如下技术方案:
一种侧链含苯并咪唑聚芳醚酮/砜,其为主链由式(I)所示的重复结构单元构成的分子量在7000~12000的磺化聚合物,或者为主链由式(II)所示的重复结构单元构成的分子量在7000~12000的非磺化聚合物:
式(I)中:
m=0或1,n=0或1,且m≤n;
式(I)或(II)中:
A1、A3各自独立为:
A2为下列之一:
本发明还提供了所述侧链含苯并咪唑聚芳醚酮/砜的制备方法,所述的制备方法为:
所述磺化聚合物的制备:
惰性气体(如氮气)保护下,以双酚单体、二氟单体为聚合原料,碱性物质为催化剂,甲苯为带水剂,在非质子极性有机溶剂中,于120~260℃下反应1~24h,之后反应液经后处理,得到式(I)所示聚合物;
所述的双酚单体为4,4’-亚甲基-2,2’-苯并咪唑双酚与其他双酚单体物质的量之比1:0~10(优选1:5~10)的混合物,其中0的含义是只有单一的4,4’-亚甲基-2,2’-苯并咪唑双酚,不含其他双酚单体;所述的其他双酚单体选自下列之一:双酚A、双酚S、六氟双酚A、四甲基联苯二酚或叔丁基对苯二酚;
所述的二氟单体为非磺化二氟单体与磺化二氟单体物质的量之比1:0.1~10(优选1:0.1~5)的混合物;所述的非磺化二氟单体选自4,4’-二氟二苯酮、4,4’-二氟三苯二酮或4,4’-二氟二苯砜;所述的磺化二氟单体选自3,3’-二磺酸钠-4,4’-二氟二苯酮或3,3’-二磺酸钠-4,4’-二氟二苯砜;
所述的碱性物质为无水碳酸钠或无水碳酸钾;
所述的非质子极性有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜、环丁砜或二苯砜;
所述二氟单体与双酚单体的物质的量之比为1:0.98~1.02;
所述二氟单体与催化剂的物质的量之比为1:1.01~3;
所述甲苯的体积用量为所述非质子极性有机溶剂体积的30%~90%;
所述非质子极性有机溶剂的用量为:使反应液的固含量(除了非质子极性有机溶剂与甲苯之外所有物料的质量总含量)控制在10wt%~30wt%;
所述反应液后处理的方法为:停止反应后,待反应液冷却至50~80℃,将反应液倒入无水乙醇中,析出沉淀,过滤收集沉淀得到粗产物,所得粗产物重新用聚合反应中所采用的非质子极性有机溶剂溶解,离心去无机盐,再加入无水乙醇中析出沉淀,过滤,滤饼置于真空烘箱中干燥(100~150℃,10~24h),即得目标产物。
所述非磺化聚合物的制备:
将所述的二氟单体替换为非磺化二氟单体,即4,4’-二氟二苯酮、4,4’-二氟三苯二酮或4,4’-二氟二苯砜,其余操作条件均与式(I)所示聚合物的制备相同,即得到式(II)所示聚合物。
本发明所述的侧链含苯并咪唑聚芳醚酮/砜可应用于燃料电池隔膜的制备。
具体的,所述应用的方法为:将本发明所述的侧链含苯并咪唑聚芳醚酮/砜溶于N,N’-二甲基乙酰胺(DMAc)中配制成5%(w/v,g/mL)的溶液,以0.01~0.05g/cm2的量浇铸于玻璃板上,然后将玻璃板放置于60℃烘箱中保温12h,再升温至90℃保温6h,最后于110℃真空烘箱中干燥12h,得到均质聚合物薄膜(厚度50~200μm),待自然冷却至室温(20~30℃)后,于去离子水中揭膜,再将从玻璃板上揭下来的聚合物薄膜置于1mol/L硫酸溶液中浸泡24h(以充分质子化),最后用去离子水洗涤(以去除多余酸),自然晾干,待用。
将制得的聚合物薄膜样品固定于测试池,利用交流阻抗仪(Hewlett Packard4294A)和两电极交流阻抗法,测定聚合物薄膜的电导率。测试频率范围为0.1~106Hz,电压为10mV。测定时,将样品夹紧在2个不锈钢圆片电极之间,然后将电极放入测试池内,在不同温度的100%相对湿度环境中,平衡一定时间,多次测量直至阻抗趋于稳定,计算公式如下:
其中,σ为膜的质子电导率(S cm-1);L为膜的厚度(cm);R为测得的质子膜的电阻(Ω),通过交流阻抗谱中复平面半圆高频端最低点与实轴Re(Z’)的交点得出;S为膜的面积(cm2)。
本发明的有益效果在于:利用一步合成法制备得到侧链含苯并咪唑聚芳醚酮/砜聚合物,而现有技术中大多是先合成带活性官能团的中间聚合物,再与二胺反应得到目标聚合物。本发明不仅简化了合成步骤,而且苯并咪唑与磺酸基团分子内和分子间的相互作用解决了高磺化度聚合物溶于水、聚苯并咪唑溶解性差等问题,可以进一步改善聚合物的综合性能。
(四)附图说明
图1:实施例1制备的侧链含苯并咪唑的磺化聚芳醚酮的核磁谱图;
图2:实施例1制备的侧链含苯并咪唑的磺化聚芳醚酮的DSC曲线。
(五)具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明所要求保护的范围并不局限于实例所涉及的范围。
实施例1
在装有磁力搅拌器、通氮管、分水器和冷凝管的100mL三颈烧瓶中加入式(i)所示的4,4’-二氟二苯酮(0.4364g,2mmol),式(ii)所示的3,3’-二磺酸钠-4,4’-二氟二苯酮(1.2669g,3mmol),式(iii)所示的六氟双酚A(1.5130g,4.5mmol),式(iv)所示的4,4’-亚甲基-2,2’-苯并咪唑双酚(0.2162g,0.5mmol)和碳酸钾(0.8293g,6mmol),用17mL N,N-二甲基乙酰胺溶解,加入15mL甲苯作带水剂,先通氮除氧10min,升温至145~150℃回流4h,蒸出甲苯,再升温至160~165℃继续反应20h(溶液粘度明显增大),停止反应。待反应液冷却,用5mL N,N-二甲基乙酰胺将反应液稀释,倒入200mL乙醇中,析出沉淀,过滤得到粗产品。粗产品重新用17mL N,N-二甲基乙酰胺溶解,离心去无机盐,再加入200mL乙醇中析出沉淀,过滤,滤饼置于100℃真空烘箱中干燥12h,得到目标聚合物2.97g,结构式如下:
将所得聚合物以DMSO-d6为溶剂,在AVANCE III 500MHz上测定聚合物的核磁共振谱,结果见图1。将所得聚合物置于氮气氛围中,利用TA DSCQ200扫描差热分析仪,以10℃/min的升温速率进行热性能测试,结果见图2。
将所得聚合物配制成浓度为0.5g/dL的DMF溶液,在25℃下用乌氏粘度计测得其特性粘度为0.76dL/g。
计算公式如下所示:
其中,ηinh代表特性粘度,t代表聚合物溶液流经毛细管的时间,t0代表纯溶剂流经毛细管的时间,C代表聚合物溶液浓度。
实施例2
在装有磁力搅拌器、通氮管、分水器和冷凝管的100mL三颈烧瓶中加入式(v)所示的4,4’-二氟二苯砜(0.7628g,3mmol),式(ii)所示的3,3’-二磺酸钠-4,4’-二氟二苯酮(0.8446g,2mmol),式(iii)所示的六氟双酚A(1.3449g,4mmol),式(iv)所示的4,4’-亚甲基-2,2’-苯并咪唑双酚(0.4325g,1mmol)和碳酸钾(0.8293g,6mmol),用17mL N,N-二甲基乙酰胺溶解,加入15mL甲苯作带水剂,先通氮除氧10min,升温至145~150℃回流4h,蒸出甲苯,再升温至160~165℃继续反应22h(溶液粘度明显增大),停止反应。待反应液冷却,用5mL N,N-二甲基乙酰胺将反应液稀释,倒入200mL乙醇中,析出沉淀,过滤得到粗产品。粗产品重新用17mL N,N-二甲基乙酰胺溶解,离心去无机盐,再加入200mL乙醇中析出沉淀,过滤,滤饼置于100℃真空烘箱中干燥12h,得到目标聚合物2.87g,结构式如下:
将所得聚合物配制成浓度为0.5g/dL的DMF溶液,在25℃下用乌氏粘度计测得其特性粘度为0.74dL/g。
实施例3
在装有磁力搅拌器、通氮管、分水器和冷凝管的100mL三颈烧瓶中加入式(v)所示的4,4’-二氟二苯砜(0.2542g,1mmol),式(ii)所示的3,3’-二磺酸钠-4,4’-二氟二苯酮(1.6892g,4mmol),式(vi)所示的双酚A(0.6849g,3mmol),式(iv)所示的4,4’-亚甲基-2,2’-苯并咪唑双酚(0.8649g,2mmol)和碳酸钾(0.8293g,6mmol),用17mL N,N-二甲基乙酰胺溶解,加入15mL甲苯作带水剂,先通氮除氧10min,升温至145~150℃回流4h,蒸出甲苯,再升温至160~165℃继续反应22h(溶液粘度明显增大),停止反应。待反应液冷却,用5mL N,N-二甲基乙酰胺将反应液稀释,倒入200mL乙醇中,析出沉淀,过滤得到粗产品。粗产品重新用17mL N,N-二甲基乙酰胺溶解,离心去无机盐,再加入200mL乙醇中析出沉淀,过滤,滤饼置于100℃真空烘箱中干燥12h,得到目标聚合物3.03g,结构式如下:
将所得聚合物配制成浓度为0.5g/dL的DMF溶液,在25℃下用乌氏粘度计测得其特性粘度为0.69dL/g。
实施例4
在装有磁力搅拌器、通氮管、分水器和冷凝管的100mL三颈烧瓶中加入式(v)所示的4,4’-二氟二苯砜(1.0170g,4mmol),式(vii)所示的3,3’-二磺酸钠-4,4’-二氟二苯砜(0.4583g,1mmol),式(iii)所示的六氟双酚A(0.6725g,2mmol),式(iv)所示的4,4’-亚甲基-2,2’-苯并咪唑双酚(1.2974g,3mmol)和碳酸钾(0.8293g,6mmol),用17mL二甲基亚砜溶解,加入15mL甲苯作带水剂,先通氮除氧10min,升温至150℃回流4h,蒸出甲苯,再升温至180℃继续反应24h(溶液粘度明显增大),停止反应。待反应液冷却,用5mL二甲基亚砜将反应液稀释,倒入200mL乙醇中,析出沉淀,过滤得到粗产品。粗产品重新用17mL二甲基亚砜溶解,离心去无机盐,再加入200mL乙醇中析出沉淀,过滤,滤饼置于100℃真空烘箱中干燥12h,得到目标聚合物2.92g,结构式如下:
将所得聚合物配制成浓度为0.5g/dL的DMF溶液,在25℃下用乌氏粘度计测得其特性粘度为0.65dL/g。
实施例5
在装有磁力搅拌器、通氮管、分水器和冷凝管的100mL三颈烧瓶中加入式(i)所示的4,4’-二氟二苯酮(1.0910g,5mmol),式(vi)所示的双酚A(0.9132g,4mmol),式(iv)所示的4,4’-亚甲基-2,2’-苯并咪唑双酚(0.4325g,1mmol)和碳酸钾(0.8293g,6mmol),用17mLN,N-二甲基乙酰胺溶解,加入15mL甲苯作带水剂,先通氮除氧10min,升温至145~150℃回流4h,蒸出甲苯,再升温至160~165℃继续反应18h(溶液粘度明显增大),停止反应。待反应液冷却,用5mL N,N-二甲基乙酰胺将反应液稀释,倒入200mL乙醇中,析出沉淀,过滤得到粗产品。粗产品重新用17mL N,N-二甲基乙酰胺溶解,离心去无机盐,再加入200mL乙醇中析出沉淀,过滤,滤饼置于100℃真空烘箱中干燥12h,得到目标聚合物2.06g,结构式如下:
将聚合物配制成浓度为0.5g/dL的DMF溶液,在25℃下用乌氏粘度计测得其特性粘度为0.57dL/g。
实施例6
在装有磁力搅拌器、通氮管、分水器和冷凝管的100mL三颈烧瓶中加入式(i)所示的4,4’-二氟二苯酮(1.0910g,5mmol),式(iv)所示的4,4’-亚甲基-2,2’-苯并咪唑双酚(2.1623g,5mmol)和碳酸钾(0.8293g,6mmol),用17mL N,N-二甲基乙酰胺溶解,加入15mL甲苯作带水剂,先通氮除氧10min,升温至145~150℃回流4h,蒸出甲苯,再升温至160~165℃继续反应20h(溶液粘度明显增大),停止反应。待反应液冷却,用5mL N,N-二甲基乙酰胺将反应液稀释,倒入200mL乙醇中,析出沉淀,过滤得到粗产品。粗产品重新用17mL N,N-二甲基乙酰胺溶解,离心去无机盐,再加入200mL乙醇中析出沉淀,过滤,滤饼置于100℃真空烘箱中干燥12h,得到目标聚合物2.75g,结构式如下:
将所得聚合物配制成浓度为0.5g/dL的DMF溶液,在25℃下用乌氏粘度计测得其特性粘度为0.59dL/g。
应用实施例
取1g实施例1制备的聚合物溶于20mLDMAc中配制成5%(w/v)的溶液,取10mL溶液浇铸于玻璃板(5×5cm)上,将玻璃板放置于60℃烘箱中保温12h,再升温至90℃保温6h,最后于110℃真空烘箱中干燥12h,得到棕色均质透明聚合物薄膜。待自然冷却至室温后,于去离子水中揭膜。再将薄膜置于1mol/L硫酸溶液中浸泡24h以充分质子化,用去离子水洗涤以去除多余酸,最后晾干,待用。
将制得的薄膜样品固定于测试池,在测试频率范围为0.1~106Hz,电压为10mV,100%相对湿度环境条件下测定不同温度下离子膜的电导率,平衡一定时间,多次测量直至阻抗趋于稳定。得到离子膜在25℃时的电导率为0.012(S cm-1),当温度升高到80℃,电导率也增大到0.087(S cm-1),说明离子膜具有良好的电导率,且离子膜的玻璃化转变温度(DSC曲线)可达到221℃,因此,制得的离子膜可用做燃料电池隔膜。
根据上述实施例,一步合成法制备侧链含苯并咪唑聚芳醚酮/砜的方法有效可行。上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (9)

1.一种侧链含苯并咪唑聚芳醚酮/砜,其特征在于,所述的侧链含苯并咪唑聚芳醚酮/砜为主链由式(I)所示的重复结构单元构成的分子量在7000~12000的磺化聚合物,或者为主链由式(II)所示的重复结构单元构成的分子量在7000~12000的非磺化聚合物:
式(I)中:
m=1,n=1;
式(I)或(II)中:
A1、A3各自独立为:
A2为下列之一:
2.如权利要求1所述的侧链含苯并咪唑聚芳醚酮/砜的制备方法,其特征在于:
所述的侧链含苯并咪唑聚芳醚酮/砜为主链由式(I)所示的重复结构单元构成的分子量在7000~12000的磺化聚合物,其制备方法为:
惰性气体保护下,以双酚单体、二氟单体为聚合原料,碱性物质为催化剂,甲苯为带水剂,在非质子极性有机溶剂中,于120~260℃下反应1~24h,之后反应液经后处理,得到式(I)所示聚合物;
所述的双酚单体为4,4’-亚甲基-2,2’-苯并咪唑双酚与其他双酚单体物质的量之比1:5~10的混合物;所述的其他双酚单体选自下列之一:双酚A、六氟双酚A或四甲基联苯二酚;
所述的二氟单体为非磺化二氟单体与磺化二氟单体物质的量之比1:0.1~10的混合物;所述的非磺化二氟单体选自4,4’-二氟二苯酮、4,4’-二氟三苯二酮或4,4’-二氟二苯砜;所述的磺化二氟单体选自3,3’-二磺酸钠-4,4’-二氟二苯酮或3,3’-二磺酸钠-4,4’-二氟二苯砜;
所述的碱性物质为无水碳酸钠或无水碳酸钾;
所述的非质子极性有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜、环丁砜或二苯砜;
所述二氟单体与双酚单体的物质的量之比为1:0.98~1.02;
所述二氟单体与催化剂的物质的量之比为1:1.01~3。
3.如权利要求2所述的侧链含苯并咪唑聚芳醚酮/砜的制备方法,其特征在于:
将所述的二氟单体替换为非磺化二氟单体,即所述的二氟单体为4,4’-二氟二苯酮、4,4’-二氟三苯二酮或4,4’-二氟二苯砜,则得到的侧链含苯并咪唑聚芳醚酮/砜为主链由式(II)所示的重复结构单元构成的分子量在7000~12000的非磺化聚合物。
4.如权利要求2或3所述的侧链含苯并咪唑聚芳醚酮/砜的制备方法,其特征在于,所述甲苯的体积用量为所述非质子极性有机溶剂体积的30%~90%。
5.如权利要求2或3所述的侧链含苯并咪唑聚芳醚酮/砜的制备方法,其特征在于,所述非质子极性有机溶剂的用量为:使反应液的固含量控制在10wt%~30wt%。
6.如权利要求2所述的侧链含苯并咪唑聚芳醚酮/砜的制备方法,其特征在于,所述的二氟单体为非磺化二氟单体与磺化二氟单体物质的量之比1:0.1~5的混合物。
7.如权利要求2或3所述的侧链含苯并咪唑聚芳醚酮/砜的制备方法,其特征在于,所述反应液后处理的方法为:停止反应后,待反应液冷却至50~80℃,将反应液倒入无水乙醇中,析出沉淀,过滤收集沉淀得到粗产物,所得粗产物重新用聚合反应中所采用的非质子极性有机溶剂溶解,离心去无机盐,再加入无水乙醇中析出沉淀,过滤,滤饼置于真空烘箱中干燥,即得目标产物。
8.如权利要求1所述的侧链含苯并咪唑聚芳醚酮/砜在燃料电池隔膜制备中的应用。
9.如权利要求8所述的应用,其特征在于,所述应用的方法为:将所述的侧链含苯并咪唑聚芳醚酮/砜溶于DMAc中配制成5%的溶液,以0.01~0.05g/cm2的量浇铸于玻璃板上,然后将玻璃板放置于60℃烘箱中保温12h,再升温至90℃保温6h,最后于110℃真空烘箱中干燥12h,得到均质聚合物薄膜,待自然冷却至室温后,于去离子水中揭膜,再将从玻璃板上揭下来的聚合物薄膜置于1mol/L硫酸溶液中浸泡24h,最后用去离子水洗涤,自然晾干,待用。
CN201610782617.2A 2016-08-31 2016-08-31 一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用 Active CN106279693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610782617.2A CN106279693B (zh) 2016-08-31 2016-08-31 一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610782617.2A CN106279693B (zh) 2016-08-31 2016-08-31 一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN106279693A CN106279693A (zh) 2017-01-04
CN106279693B true CN106279693B (zh) 2018-08-21

Family

ID=57672367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610782617.2A Active CN106279693B (zh) 2016-08-31 2016-08-31 一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106279693B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106910923B (zh) * 2017-02-13 2019-12-06 常州大学 一类含二苯六氟异丙基结构侧链型磺化聚芳醚酮质子交换膜材料及其制备方法
CN107141478B (zh) * 2017-06-19 2019-11-15 佛山市珀力玛高新材料有限公司 一种改性聚醚砜的酮类树脂及其合成方法
EP3473659A1 (de) * 2017-10-17 2019-04-24 Evonik Degussa GmbH Polymere anionen leitende membrane
CN109616689B (zh) * 2018-12-18 2020-05-15 长春工业大学 一种交联型阴离子交换膜及其制备方法
CN110860220B (zh) * 2019-08-23 2022-03-15 浙江工业大学 一种耐溶剂改性聚芳醚酮超滤膜的制备方法
CN113004654B (zh) * 2019-12-20 2022-04-15 中国科学院大连化学物理研究所 一种环氧树脂组合物、其制备方法及应用
CN111682212A (zh) * 2020-06-05 2020-09-18 浙江中科玖源新材料有限公司 一种锂电池用粘结剂及制备方法、电极片和锂离子电池
CN111701459B (zh) * 2020-07-01 2022-10-11 浙江工业大学 一种含氮杂环的聚芳醚酮/砜的超/微滤膜及其结构调控方法
WO2023038156A1 (en) * 2021-09-10 2023-03-16 Mitsubishi Gas Chemical Company, Inc. (het)aryl substituted bisphenol compounds and thermoplastic resins
WO2023161357A1 (en) * 2022-02-28 2023-08-31 Basf Se Sulfonated polyarylenesulfone polymer (sp) having an at least bimodal molecular weight distribution
WO2023161355A1 (en) * 2022-02-28 2023-08-31 Basf Se Process for the preparation of a sulfonated polyarylenesulfone polymer (sp)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230137A (zh) * 2007-12-29 2008-07-30 浙江工业大学 含醚酮/醚砜结构聚苯并咪唑及其磺化聚合物和它们的制备方法
CN101357984A (zh) * 2008-09-23 2009-02-04 吉林大学 侧链含苯并咪唑基团的磺化聚芳醚酮聚合物及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574664B2 (en) * 2008-09-02 2013-11-05 General Electric Company Electrolyte membrane, methods of manufacture thereof and articles comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230137A (zh) * 2007-12-29 2008-07-30 浙江工业大学 含醚酮/醚砜结构聚苯并咪唑及其磺化聚合物和它们的制备方法
CN101357984A (zh) * 2008-09-23 2009-02-04 吉林大学 侧链含苯并咪唑基团的磺化聚芳醚酮聚合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPEEK-BI质子交换膜的水解和热稳定性能;王建黎等;《天津工业大学学报》;20080630;第27卷(第3期);第12-14,18页 *

Also Published As

Publication number Publication date
CN106279693A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN106279693B (zh) 一种侧链含苯并咪唑聚芳醚酮/砜及其制备方法与应用
Wang et al. Proton-conducting membranes from poly (ether sulfone) s grafted with sulfoalkylamine
Xie et al. Synthesis and properties of highly branched star-shaped sulfonated block poly (arylene ether) s as proton exchange membranes
Mistri et al. Naphthalene dianhydride based semifluorinated sulfonated copoly (ether imide) s: Synthesis, characterization and proton exchange properties
Kim et al. Cross-linked poly (2, 5-benzimidazole) consisting of wholly aromatic groups for high-temperature PEM fuel cell applications
Gao et al. Sulfonated copoly (phthalazinone ether ketone nitrile) s as proton exchange membrane materials
Gao et al. Novel cardo poly (arylene ether sulfone) s with pendant sulfonated aliphatic side chains for proton exchange membranes
Yao et al. Pendant-group cross-linked highly sulfonated co-polyimides for proton exchange membranes
Gong et al. Synthesis of poly (arylene ether sulfone) s with locally and densely sulfonated pentiptycene pendants as highly conductive polymer electrolyte membranes
Kang et al. Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells
Pirali-Hamedani et al. Effect of sulfonation degree on molecular weight, thermal stability, and proton conductivity of poly (arylene ether sulfone) s membrane
Li et al. Sulfonated polyimides bearing benzimidazole groups for proton exchange membranes
Zhang et al. Sulfonated poly (arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes
Wang et al. Sulfonated aromatic polyamides containing nitrile groups as proton exchange fuel cell membranes
JP4501052B2 (ja) 熱架橋性高分子固体電解質、高分子固体電解質膜及びその製造方法
JP4517272B2 (ja) 光架橋性高分子固体電解質、架橋高分子固体電解質膜及びその製造方法
Gong et al. Synthesis of highly sulfonated poly (arylene ether sulfone) s with sulfonated triptycene pendants for proton exchange membranes
Li et al. Synthesis and properties of sulfonated poly [bis (benzimidazobenzisoquinolinones)] as hydrolytically and thermooxidatively stable proton conducting ionomers
Pang et al. Synthesis and characterization of sulfonated poly (arylene ether) s with sulfoalkyl pendant groups for proton exchange membranes
Kang et al. Synthesis and properties of soluble sulfonated polybenzimidazoles from 3, 3′-disulfonate-4, 4′-dicarboxylbiphenyl as proton exchange membranes
Zhang et al. Synthesis and characterization of poly (arylene ether ketone) s bearing pendant sulfonic acid groups for proton exchange membrane materials
CN107722275A (zh) 新型侧链磺化聚芳醚酮砜质子交换膜及其制备方法
Yao et al. Novel sulfonated polyimides proton-exchange membranes via a facile polyacylation approach of imide monomers
Guo et al. Novel postsulfonated poly (ether ether ketone)-block-poly (ether sulfone) s as proton exchange membranes for fuel cells: Design, preparation and properties
CN101887979B (zh) 具有高质子传导率的质子交换膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant