CN106278245B - 一种纳米氧化钛-铌酸钾钠压电陶瓷的配方及制备工艺 - Google Patents

一种纳米氧化钛-铌酸钾钠压电陶瓷的配方及制备工艺 Download PDF

Info

Publication number
CN106278245B
CN106278245B CN201610583379.2A CN201610583379A CN106278245B CN 106278245 B CN106278245 B CN 106278245B CN 201610583379 A CN201610583379 A CN 201610583379A CN 106278245 B CN106278245 B CN 106278245B
Authority
CN
China
Prior art keywords
parts
nano
potassium
sodium niobate
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610583379.2A
Other languages
English (en)
Other versions
CN106278245A (zh
Inventor
阎惠至
张伟
魏发云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bengbu qiarc Intellectual Property Service Co.,Ltd.
Original Assignee
Shoreline Quanzhou Novel Material Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoreline Quanzhou Novel Material Science And Technology Ltd filed Critical Shoreline Quanzhou Novel Material Science And Technology Ltd
Priority to CN201610583379.2A priority Critical patent/CN106278245B/zh
Publication of CN106278245A publication Critical patent/CN106278245A/zh
Application granted granted Critical
Publication of CN106278245B publication Critical patent/CN106278245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明公开了一种纳米氧化钛‑铌酸钾钠压电陶瓷的配方及制备工艺,按照重量份数由如下原料组成:铌前驱物溶液3‑7份、钛酸丁脂2‑5份、碳酸钠7‑15份、碳酸钾10‑15份、氨水15‑20份、柠檬酸5‑10份、二乙醇胺20‑25份、醋酸25‑30份,在乙醇溶液中加入水、醋酸、二乙醇胺、钛酸丁脂,得到透明溶胶;将碳酸钠、碳酸钾通氨水混合后加入到铌前驱物溶液中,再加入柠檬酸,得到铌酸钾钠溶液;将铌酸钾钠溶液加入透明溶胶中,并进行升温凝胶;将凝胶干燥后进行密封煅烧,得到纳米粉体;将制备的纳米粉体装入石墨模具,手动预压后放入等离子烧结机上进行烧结;最后将烧结体置于氧气中退火,得到乳白色的纳米陶瓷体,本发明显著降低陶瓷的烧结温度,有利于制备高致密性陶瓷。

Description

一种纳米氧化钛-铌酸钾钠压电陶瓷的配方及制备工艺
技术领域
本发明涉及纳米陶瓷制备工艺领域,具体涉及一种纳米氧化钛-铌酸钾钠压电陶瓷及制备工艺。
背景技术
目前,商用的压电陶瓷仍以Pb(Zr,Ti)O3(锆钛酸铅,缩写为PZT)基材料为主。但是,PZT基陶瓷的主要生产原料为PbO,它具有较大的毒性,在生产和回收处理过程中都会对人类健康和环境造成很大的损害。因此,研究性能优异的无铅压电陶瓷来替代铅基压电陶瓷是目前压电陶瓷研究的紧迫任务,近年来,无铅压电陶瓷的研究主要集中在碱金属铌酸盐和钛酸铋盐等体系中,但是,碱金基陶瓷在制备过程中存在一个难题:传统工艺合成的粉体颗粒度大(通常在微米级),团聚严重,因而烧结活性差,而高温下烧结造成K和Na等元素的大量挥发,很难得到致密的陶瓷烧结体,严重影响了该类材料电学性能的提升及在器件上的应用。
发明内容
针对以上问题,本发明提供了一种纳米氧化钛-铌酸钾钠压电陶瓷及制备工艺,具有高的压电常数、机电耦合系数和居里温度,能显著降低陶瓷的烧结温度,减少钾钠的挥发,从而有利于制备高致密性陶瓷,可以有效解决背景技术中的问题。
为了实现上述目的,本发明采用的技术方案如下:一种纳米氧化钛-铌酸钾钠压电陶瓷,按照重量份数由如下原料组成:
铌前驱物溶液3-7份、钛酸丁脂2-5份、碳酸钠7-15份、碳酸钾10-15 份、氨水15-20份、柠檬酸5-10份、二乙醇胺20-25份、醋酸25-30份;所述纳米氧化钛-铌酸钾钠压电陶瓷的制备工艺包括如下步骤:
(1)在乙醇溶液中加入水,在快速搅拌条件下同时加入醋酸和二乙醇胺,将钛酸丁脂逐滴加入到上述混和溶液中,在密闭条件下将溶液静置,得到稳定透明溶胶;
(2)将碳酸钠、碳酸钾通氨水混合后加入到铌前驱物溶液中,在快速搅拌条件下再加入柠檬酸,升温搅拌,得到铌酸钾钠溶液;
(3)将铌酸钾钠溶液均匀加入透明溶胶中混合均匀,并进行升温凝胶;
(4)将得到的凝胶进行干燥后送入煅烧炉中进行密封煅烧,得到纳米粉体;
(5)将制备的纳米粉体装入石墨模具并手动预压,然后将其放入等离子烧结机上进行烧结;
(6)最后将烧结体置于氧气中退火,得到乳白色的纳米陶瓷体。
根据上述技术方案,所述步骤(4)中,升温速率20/min,煅烧温度为 500℃,煅烧时间为5h。
根据上述技术方案,所述钛酸丁酯为化学纯。
根据上述技术方案,所述无水乙醇、二乙醇胺、醋酸均为分析纯。
根据上述技术方案,所述氨水纯度为25.0-28.0%。
根据上述技术方案,所述铌前驱物溶液采用五氯化铌为前躯体,且纯度为68.0-75.0%。
根据上述技术方案,所述步骤(5)中,烧结温度为900℃,烧结压力为30MPa,升温速率为120/min℃左右,真空度为8Pa,烧结时间为1min。
根据上述技术方案,所述步骤(6)中,退火环境温度为800℃,退火时间2h。
本发明的有益效果:
本发明采用超细粉体,以氧化钛-铌酸钾钠作为混合基体,使得生产的纳米压电陶瓷具有高的压电常数、机电耦合系数和居里温度;采用超细粉体,提高粉体烧结活性,能显著降低陶瓷的烧结温度,减少钾钠的挥发,从而有利于制备高致密性陶瓷。
附图说明
图1为本发明初始粉体颗粒与纳米压电陶瓷密度的关系曲线图。
图2为本发明烧结温度与纳米压电陶瓷致密性的关系曲线图。
图3为本发明制备工艺流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:
一种纳米氧化钛-铌酸钾钠压电陶瓷,按照重量份数由如下原料组成:
铌前驱物溶液3份、钛酸丁脂3份、碳酸钠7份、碳酸钾10份、氨水 15份、柠檬酸5份、二乙醇胺20份、醋酸25份。
所述钛酸丁酯为化学纯;所述无水乙醇、二乙醇胺、醋酸均为分析纯;所述氨水纯度为25.0%;所述铌前驱物溶液采用五氯化铌为前躯体,且纯度为68.0%。
其制备工艺,包括如下步骤:
(1)在乙醇溶液中加入水,在快速搅拌条件下同时加入醋酸和二乙醇胺,将钛酸丁脂逐滴加入到上述混和溶液中,在密闭条件下将溶液静置,得到稳定透明溶胶;
(2)将碳酸钠、碳酸钾通氨水混合后加入到铌前驱物溶液中,在快速搅拌条件下再加入柠檬酸,升温搅拌,得到铌酸钾钠溶液;
(3)将铌酸钾钠溶液均匀加入透明溶胶中混合均匀,并进行升温凝胶;
(4)将得到的凝胶进行干燥后送入煅烧炉中进行密封煅烧,得到纳米粉体,升温速率20/min,煅烧温度为500℃,煅烧时间为5h;
(5)将制备的纳米粉体装入石墨模具并手动预压,然后将其放入等离子烧结机上进行烧结,烧结温度为900℃,烧结压力为30MPa,升温速率为 120/min℃左右,真空度为8Pa,烧结时间为1min;
(6)最后将烧结体置于氧气中退火,得到乳白色的纳米陶瓷体,退火环境温度为800℃,退火时间2h。
实施例2:
一种纳米氧化钛-铌酸钾钠压电陶瓷,按照重量份数由如下原料组成:
铌前驱物溶液4份、钛酸丁脂3份、碳酸钠9份、碳酸钾13份、氨水 17份、柠檬酸7份、二乙醇胺23份、醋酸27份。
所述钛酸丁酯为化学纯;所述无水乙醇、二乙醇胺、醋酸均为分析纯;所述氨水纯度为27.0%;所述铌前驱物溶液采用五氯化铌为前躯体,且纯度为70.0%。
其制备工艺,包括如下步骤:
(1)在乙醇溶液中加入水,在快速搅拌条件下同时加入醋酸和二乙醇胺,将钛酸丁脂逐滴加入到上述混和溶液中,在密闭条件下将溶液静置,得到稳定透明溶胶;
(2)将碳酸钠、碳酸钾通氨水混合后加入到铌前驱物溶液中,在快速搅拌条件下再加入柠檬酸,升温搅拌,得到铌酸钾钠溶液;
(3)将铌酸钾钠溶液均匀加入透明溶胶中混合均匀,并进行升温凝胶;
(4)将得到的凝胶进行干燥后送入煅烧炉中进行密封煅烧,得到纳米粉体,升温速率20/min,煅烧温度为500℃,煅烧时间为5h;
(5)将制备的纳米粉体装入石墨模具并手动预压,然后将其放入等离子烧结机上进行烧结,烧结温度为1000℃,烧结压力为30MPa,升温速率为120/min℃左右,真空度为8Pa,烧结时间为1min;
(6)最后将烧结体置于氧气中退火,得到乳白色的纳米陶瓷体,退火环境温度为800℃,退火时间2h。
实施例3:
一种纳米氧化钛-铌酸钾钠压电陶瓷,按照重量份数由如下原料组成:
铌前驱物溶液7份、钛酸丁脂5份、碳酸钠15份、碳酸钾15份、氨水20份、柠檬酸10份、二乙醇胺25份、醋酸29份。
所述钛酸丁酯为化学纯;所述无水乙醇、二乙醇胺、醋酸均为分析纯;所述氨水纯度为28.0%;所述铌前驱物溶液采用五氯化铌为前躯体,且纯度为75.0%。
其制备工艺,包括如下步骤:
(1)在乙醇溶液中加入水,在快速搅拌条件下同时加入醋酸和二乙醇胺,将钛酸丁脂逐滴加入到上述混和溶液中,在密闭条件下将溶液静置,得到稳定透明溶胶;
(2)将碳酸钠、碳酸钾通氨水混合后加入到铌前驱物溶液中,在快速搅拌条件下再加入柠檬酸,升温搅拌,得到铌酸钾钠溶液;
(3)将铌酸钾钠溶液均匀加入透明溶胶中混合均匀,并进行升温凝胶;
(4)将得到的凝胶进行干燥后送入煅烧炉中进行密封煅烧,得到纳米粉体,升温速率20/min,煅烧温度为500℃,煅烧时间为5h;
(5)将制备的纳米粉体装入石墨模具并手动预压,然后将其放入等离子烧结机上进行烧结,烧结温度为800℃,烧结压力为30MPa,升温速率为 120/min℃左右,真空度为8Pa,烧结时间为1min;
(6)最后将烧结体置于氧气中退火,得到乳白色的纳米陶瓷体,退火环境温度为700℃,退火时间2h。
通过以下测试方法研究了初始粉体颗粒、烧结温度等对压电陶瓷性能的影响。
(1)初始粉体颗粒对纳米压电陶瓷密度的影响(如图1所示)
将不同半径的粉体颗粒烧结成的陶瓷样品经切割、表面研磨、抛光至厚度为1mm,用D/Max-240型X射线衍射仪对纳米粉体和纳米陶瓷的物相组成进行分析,通过X射线衍射峰的宽化,利用Scherrer公式计算纳米粉体的平均颗粒粒径和纳米陶瓷的平均晶粒粒径。
由图1可见,粉体的平均颗粒粒径为15-40nm时,纳米陶瓷的相对密度随着粉体平均颗粒粒径的增大而减小,也就是说,在相同烧结条件下平均颗粒较小的粉体更容易致密化。粉体颗粒越粗,比表面积越小,本征表面能驱动力就越小;而颗粒越细,比表面积越大,本征表面能驱动力就越大。这也是实际烧结中小颗粒粉体比大颗粒粉体易于烧结的原因。然而,用平均颗粒粒径为7nm的粉体制备的纳米陶瓷其相对密度(90%)反而比平均颗粒粒径为15nm的粉体制备的纳米陶瓷的相对密度(96%)低,这个反常的结果可以从初始粉体的特征得到解释。经300℃煅烧获得的平均颗粒粒径为 7nm的粉体呈黑色,表明粉体中有未被燃烧的有机物质存在,这些残余的有机物在陶瓷的烧结过程中被燃烧分解,但同时在陶瓷中留下大量的气孔,导致所烧结的陶瓷相对密度降低。从图1还可以看出,陶瓷的相对密度随着成型压力的增加而提高,这是因为通过较高的成型压力可以获得较高密度的生坯,在相同烧结条件下,高密度的生坯更容易致密化。
(2)烧结温度对纳米压电陶瓷致密性的影响(如图2所示)
将烧结温度下制成的陶瓷样品经切割、表面研磨、抛光至厚度为1mm,用D/Max-240型X射线衍射仪对纳米粉体和纳米陶瓷的物相组成进行分析,通过X射线衍射峰的宽化,利用Scherrer公式计算纳米粉体的平均颗粒粒径和纳米陶瓷的平均晶粒粒径,从而得到对致命性的判断。
由图2可以看出,纳米压电陶瓷的相对密度随着烧结温度的升高而增大;在烧结温度小于800℃时,相对密度随烧结温度升高增大较快;当烧结温度超过800℃时,相对密度的增加程度减慢。因为烧结温度越高,颗粒内原子扩散系数越大,而且按指数规律迅速增大,烧结进行得越迅速;在烧结后期阶段,当闭气孔球化、缩小或消失,陶瓷烧结体已接近完全致密,虽然此时陶瓷密度进一步增加,但密度的增加幅度开始减慢。在800℃烧结时,陶瓷的相对密度已超过95%。同样,陶瓷的相对密度随成型压力的增加而增大。在较高的成型压力下不仅可以获得较高密度的生坯,而且在压制生坯时,高压可以压碎粉体中团聚体,使生坯中的气孔变小和气孔粒径分布变窄。去除小气孔比去除大气孔需要较低的烧结温度和较短的烧结时间。因此,高压通常被用于制备细晶粒纳米陶瓷。
基于上述,本发明的优点在于,本发明采用超细粉体,以氧化钛-铌酸钾钠作为混合基体,使得生产的纳米压电陶瓷具有高的压电常数、机电耦合系数和居里温度;采用超细粉体,提高粉体烧结活性,能显著降低陶瓷的烧结温度,减少钾钠的挥发,从而有利于制备高致密性陶瓷。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种纳米氧化钛-铌酸钾钠压电陶瓷,其特征在于,按照重量份数由如下原料组成:
铌前驱物溶液3-7份、钛酸丁酯 2-5份、碳酸钠7-15份、碳酸钾10-15份、氨水15-20份、柠檬酸5-10份、二乙醇胺20-25份、醋酸25-30份;
所述纳米氧化钛-铌酸钾钠压电陶瓷的制备工艺包括如下步骤:
(1)在乙醇中加入水,在快速搅拌条件下同时加入醋酸和二乙醇胺,将钛酸丁酯 逐滴加入到上述混和溶液中,在密闭条件下将溶液静置,得到稳定透明溶胶;
(2)将碳酸钠、碳酸钾通氨水混合后加入到铌前驱物溶液中,在快速搅拌条件下再加入柠檬酸,升温搅拌,得到铌酸钾钠溶液;
(3)将铌酸钾钠溶液均匀加入透明溶胶中混合均匀,并进行升温凝胶;
(4)将得到的凝胶进行干燥后送入煅烧炉中进行密封煅烧,得到纳米粉体;
(5)将制备的纳米粉体装入石墨模具并手动预压,然后将其放入等离子烧结机上进行烧结;
(6)最后将烧结体置于氧气中退火,得到乳白色的纳米陶瓷体。
2.根据权利要求1所述的一种纳米氧化钛-铌酸钾钠压电陶瓷,其特征在于,所述钛酸丁酯为化学纯。
3.根据权利要求1所述的一种纳米氧化钛-铌酸钾钠压电陶瓷,其特征在于,所述乙醇、二乙醇胺、醋酸均为分析纯。
4.根据权利要求1所述的一种纳米氧化钛-铌酸钾钠压电陶瓷,其特征在于,所述氨水纯度为25.0-28.0%。
5.根据权利要求1所述的一种纳米氧化钛-铌酸钾钠压电陶瓷,其特征在于,所述铌前驱物溶液采用五氯化铌为前躯体,且纯度为68.0-75.0%。
6.根据权利要求1所述的一种纳米氧化钛-铌酸钾钠压电陶瓷,其特征在于,所述步骤(4)中,升温速率20/min,煅烧温度为500℃,煅烧时间为5h。
7.根据权利要求1所述的一种纳米氧化钛-铌酸钾钠压电陶瓷,其特征在于,所述步骤(5)中,烧结温度为900℃,烧结压力为30MPa,升温速率为120/min℃左右,真空度为8Pa,烧结时间为1min。
8.根据权利要求1所述的一种纳米氧化钛-铌酸钾钠压电陶瓷,其特征在于,所述步骤(6)中,退火环境温度为800℃,退火时间2h。
CN201610583379.2A 2016-07-24 2016-07-24 一种纳米氧化钛-铌酸钾钠压电陶瓷的配方及制备工艺 Active CN106278245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610583379.2A CN106278245B (zh) 2016-07-24 2016-07-24 一种纳米氧化钛-铌酸钾钠压电陶瓷的配方及制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610583379.2A CN106278245B (zh) 2016-07-24 2016-07-24 一种纳米氧化钛-铌酸钾钠压电陶瓷的配方及制备工艺

Publications (2)

Publication Number Publication Date
CN106278245A CN106278245A (zh) 2017-01-04
CN106278245B true CN106278245B (zh) 2019-03-01

Family

ID=57652654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610583379.2A Active CN106278245B (zh) 2016-07-24 2016-07-24 一种纳米氧化钛-铌酸钾钠压电陶瓷的配方及制备工艺

Country Status (1)

Country Link
CN (1) CN106278245B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106995313B (zh) * 2017-05-06 2020-05-08 信阳师范学院 一种铌酸钾钠基陶瓷粉体及其制备方法
CN116477944A (zh) * 2022-12-02 2023-07-25 湖南大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024573A (zh) * 2007-01-30 2007-08-29 合肥工业大学 多元铌酸钾钠系无铅压电陶瓷及其制备方法
CN101973762B (zh) * 2010-10-20 2013-03-06 上海师范大学 一种钛铌镁酸铅铁电薄膜的制备方法
CN102173779B (zh) * 2011-01-06 2013-01-02 瑞科稀土冶金及功能材料国家工程研究中心有限公司 一种钛复合氧化物的制备方法
CN103360071A (zh) * 2013-07-18 2013-10-23 上海隆添新材料科技有限公司 一种铌酸钾钠/钛酸铋钠复相无铅压电陶瓷的生产方法

Also Published As

Publication number Publication date
CN106278245A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Dole et al. Technique for preparing highly-sinterable oxide powders
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN107056291B (zh) 一种亚微米晶尺度压电能量收集材料及其制备方法
CN108585847A (zh) 一种铌酸钾钠基陶瓷的制备方法
CN110845236A (zh) 一种Ta掺杂铌酸钾钠基压电陶瓷材料及其制备方法
CN106278245B (zh) 一种纳米氧化钛-铌酸钾钠压电陶瓷的配方及制备工艺
CN111747740B (zh) 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
CN103787653A (zh) 一种碳改性CaCu3Ti4O12高介电材料的制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN111233465A (zh) 一种钛酸铋钠-钛酸钡无铅压电织构陶瓷及其制备方法
CN111925208A (zh) 一种铌酸锂钠基无铅压电陶瓷及其制备方法
CN113698204B (zh) 具备高压电响应及高居里温度的铌酸钾钠基无铅压电织构陶瓷及其制备方法
CN107117960A (zh) 一种钛酸铋钠‑钛酸铋钾基无铅压电陶瓷及其制备方法
CN104446445B (zh) 一种单分散钛酸钡纳米粉体的制备方法
CN107162593A (zh) 一种铌酸钾钠无铅压电陶瓷的制备方法
CN111825451B (zh) 稀土元素Tm掺杂的铌酸银反铁电陶瓷材料及其制备方法
CN107857590A (zh) 一种铌酸钾钠基无铅压电陶瓷材料及其制备方法
CN109180185B (zh) 一种超短时间制备高储能铌酸钾钠铁电陶瓷材料的方法
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN114394832B (zh) 一种介电温度稳定的锆钛酸钡基瓷料及其制备方法
CN111704461B (zh) 一种高居里点低温共烧压电陶瓷配方及制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN110894161A (zh) 一种铌酸钾钠基无铅压电陶瓷材料及其在超声波电子烟中的应用
CN110498683A (zh) 一种低温烧结制备铪钛酸铅-铌镍酸铅压电陶瓷的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201215

Address after: Room 609, phase I, cross border e-commerce Industrial Park, 1151 Yan'an Road, bengshan District, Bengbu City, Anhui Province

Patentee after: Bengbu qiarc Intellectual Property Service Co.,Ltd.

Address before: 362011 room 901, unit 1, 15 floor, Hua Ting, Anji Road, Feng Ze District, Quanzhou, Fujian, China

Patentee before: QUANZHOU COASTLINE NEW MATERIAL TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right