CN106268706A - 一种磁性纳米无机砷吸附剂的制备方法及其应用 - Google Patents

一种磁性纳米无机砷吸附剂的制备方法及其应用 Download PDF

Info

Publication number
CN106268706A
CN106268706A CN201610651205.5A CN201610651205A CN106268706A CN 106268706 A CN106268706 A CN 106268706A CN 201610651205 A CN201610651205 A CN 201610651205A CN 106268706 A CN106268706 A CN 106268706A
Authority
CN
China
Prior art keywords
cofe
magnetic nano
inorganic arsenic
adsorbent
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610651205.5A
Other languages
English (en)
Other versions
CN106268706B (zh
Inventor
尹学博
杨纪春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201610651205.5A priority Critical patent/CN106268706B/zh
Publication of CN106268706A publication Critical patent/CN106268706A/zh
Application granted granted Critical
Publication of CN106268706B publication Critical patent/CN106268706B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种磁性纳米无机砷吸附剂的制备方法,所述吸附剂为具有介孔核壳结构的CoFe2O4@MIL‑100(Fe),步骤如下:1)将氯化钴、氯化铁、醋酸钠、聚乙二醇‑6000溶于乙二醇中,160℃水热反应16小时制得介孔CoFe2O4磁性纳米粒子;2)将CoFe2O4纳米粒子加入到巯基乙酸的乙醇溶液中,氮气保护搅拌24小时进行表面改性;3)将改性后的CoFe2O4交替浸泡在氯化铁和均苯三酸乙醇溶液中,通过层层自组装的方法制得目标物。本发明的优点是:制备工艺简单、易于实施、成本低;该磁性纳米吸附剂对无机砷去除效率高,抗干扰能力强,可在无需任何前处理的条件下实现天然水中三价砷与五价砷的同时高效去除。

Description

一种磁性纳米无机砷吸附剂的制备方法及其应用
技术领域
本发明属于纳米材料制备领域和水污染处理领域,尤其涉及一种磁性纳米无机砷吸附剂的制备方法及其应用。
背景技术
砷(As)广泛分布于自然界中,天然水中的无机砷[As(V)和As(III)]污染已成为一个世界性的难题。当前全世界有超过一亿人仍在饮用砷污染地下水,而长期饮用砷污染水对人体存在极大的危害,世界卫生组织(WHO)已经颁布法令严格控制了饮用水中的砷含量。因此,开发一种经济、高效、环境友好、适用范围广的吸附剂去除天然水中的无机砷对人类健康十分重要。
目前,报道的无机砷吸附剂主要有以下几种类型:活性炭纳米材料,如,1)C.L.Chuang,M.Fan,M.Xu,R.C.Brown,S.Sung,B.Saha,C.P.Huang,Chemosphere 2005,61(4):478-483;2)W.F.Chen,R.Parette,J.Y.Zou,F.S.Cannon,B.A.Dempsey,WaterRes.2007,41(9):1851-1858;基于Fe3O4的磁性纳米材料,如,3)L.Guo,P.Ye,J.Wang,F.Fu,Z.Wu,J.Hazard.Mater.2015,298:28-35;4)L.Feng,M.Cao,X.Ma,Y.Zhu,C.Hu,J.Hazard.Mater.2012,217:439-446;5)W.Jiang,X.Chen,Y.Niu,B.Pan,J.Hazard.Mater.2012,243:319-325;基于TiO2的纳米材料,如,6)M.Pena,X.Meng,G.P.Korfiatis,C.Jing,Environ.Sci.Technol.2006,40:1257-1262;7)W.W.Bennett,P.R.Teasdale,J.G.Panther,D.T.Welsh,D.F.Jolley,Anal.Chem.2010,82:7401-7407;8)J.Cui,J.Du,S.Yu,C.Jing,T.Chan,Environ.Sci.Pollut.R.2015,22:8224-8234。虽然这些吸附剂具有较简单的制备工艺、较低廉的制备成本等优点,但同时存在吸附效率低、抗干扰能力差、应用范围窄、不易回收等缺点。因此,有必要制备新型的、具有较强抗干扰能力的高效无机砷吸附剂。
发明内容
本发明的目的是针对上述存在问题,提供一种工艺简单、易于实施、成本低廉的磁性纳米无机砷吸附剂的制备方法及其应用。
本发明的技术方案:
一种磁性纳米无机砷吸附剂的制备方法,所述磁性纳米无机砷吸附剂为具有介孔核壳结构的CoFe2O4@MIL-100(Fe),步骤如下:
1)将氯化钴、氯化铁、醋酸钠和聚乙二醇-6000溶于乙二醇中,在50℃条件下搅拌20分钟后转入反应釜,160℃水热反应16小时,将黑色沉淀磁性分离并用乙醇和水分别洗涤2次,真空干燥制得介孔CoFe2O4磁性纳米粒子;
2)将上述介孔CoFe2O4磁性纳米粒子加入到浓度为0.58mM的巯基乙酸的乙醇溶液中,氮气保护下、室温搅拌24小时进行表面改性,用乙醇洗净表面残留的巯基乙酸,制得改性的MAA-CoFe2O4
3)在70℃条件下将上述改性的MAA-CoFe2O4交替浸泡在氯化铁-乙醇溶液中15分钟和均苯三酸-乙醇溶液中30分钟,经过10个循环的层层自组装包裹后,磁性分离用乙醇洗涤2次,真空干燥后制得磁性纳米无机砷吸附剂CoFe2O4@MIL-100(Fe)。
所述步骤1)中氯化钴、氯化铁、醋酸钠、聚乙二醇-6000与乙二醇的用量比为148.7mg:337.9mg:900.0mg:500.0mg:10mL。
所述步骤2)中介孔CoFe2O4磁性纳米粒子与巯基乙酸的乙醇溶液的用量比为50.0mg:10mL。
所述步骤3)中氯化铁-乙醇溶液和均苯三酸-乙醇溶液的浓度均为50mM,改性的MAA-CoFe2O4与氯化铁-乙醇溶液的用量比为50.0mg:10mL,改性的MAA-CoFe2O4与均苯三酸-乙醇溶液的用量比为50.0mg:10mL。
一种所制备的磁性纳米无机砷吸附剂的应用,用于高效去除天然水中无机砷。
本发明的优点是:
该介孔核壳结构磁性纳米吸附剂制备工艺简单、易于实施、成本低廉、吸附效率高、抗干扰能力强、pH应用范围广,具有无需复杂样品前处理、无干扰、高效去除天然水中无机砷的应用潜力。
附图说明
图1为CoFe2O4磁性纳米粒子和CoFe2O4@MIL-100(Fe)磁性纳米吸附剂的形貌图,其中:A为CoFe2O4磁性纳米粒子透射电镜图;B为CoFe2O4磁性纳米粒子高分辨率透射电镜图;C为CoFe2O4@MIL-100(Fe)磁性纳米吸附剂透射电镜图;D为CoFe2O4@MIL-100(Fe)磁性纳米吸附剂高分辨率透射电镜图;插图为两种磁性纳米粒子的动态光散射粒径分布。
图2为CoFe2O4磁性纳米粒子(a)和CoFe2O4@MIL-100(Fe)磁性纳米吸附剂(b)的性质表征,其中:A为其红外光谱图;B为其热重表征图;C为其磁滞回线的表征图;D为其X射线粉末衍射图;E为氮气吸附比表面积表征图;F为孔径分布表征图。
图3为样品pH和离子强度以及干扰离子对不同吸附剂去除天然水中无机砷效率的影响,其中:A,B分别为不同pH值下CoFe2O4(a),MIL-100(Fe)(b),CoFe2O4@MIL-100(Fe)(c)对As(V)和As(III)的去除效率;C,D为CoFe2O4@MIL-100(Fe)在0.2M NaCl离子强度下对As(V)和As(III)的去除效率;E,F为不同干扰离子对CoFe2O4和CoFe2O4@MIL-100(Fe)去除As(V)和As(III)效率的影响。
图4为CoFe2O4磁性纳米粒子(a)和CoFe2O4@MIL-100(Fe)磁性纳米吸附剂(b)的zeta电位图。
图5为CoFe2O4@MIL-100(Fe)磁性纳米吸附剂对无机砷的吸附动力学和热力学曲线,其中:A,B为不同As(V)和As(III)浓度0.1mg L-1(a),1mg L-1(b),10mg L-1(c)下,0.5gL-1CoFe2O4@MIL-100(Fe)磁性纳米吸附剂的吸附动力学曲线,插图为吸附初始30min或60min内吸附动力学曲线的放大图;C,D为不同温度25℃(a),40℃(b),50℃(c)条件下,0.5gL-1CoFe2O4@MIL-100(Fe)磁性纳米吸附剂对As(V)和As(III)的吸附热力学曲线。
图6为两种简单的水处理模式实际应用照片,其中:A,B为CoFe2O4@MIL-100(Fe)磁性纳米吸附剂静态吸附实际应用照片;C,D为将CoFe2O4@MIL-100(Fe)磁性纳米吸附剂封装于滤头内的动态吸附模式实际应用照片;E,F为经滤头处理前后实际水样对比照片。
具体实施方式
实施例:
一种磁性纳米无机砷吸附剂的制备方法,所述磁性纳米无机砷吸附剂为具有介孔核壳结构的CoFe2O4@MIL-100(Fe),步骤如下:
1)将148.7mg氯化钴、337.9mg氯化铁、900.0mg醋酸钠、500.0mg聚乙二醇-6000溶于10mL乙二醇中,在50℃条件下搅拌20分钟形成均一棕色溶液后转入反应釜,160℃水热反应16小时,得到的黑色沉淀经磁性分离并用乙醇和水各洗涤2次,真空干燥制得介孔CoFe2O4磁性纳米粒子;
2)将50mg上述介孔CoFe2O4磁性纳米粒子加入到10mL 0.58mM巯基乙酸(MAA)的乙醇溶液中,氮气保护,室温搅拌24小时进行表面改性,用乙醇洗净表面残留的巯基乙酸,制得改性后的MAA-CoFe2O4
3)在70℃条件下将上述改性后的MAA-CoFe2O4交替浸泡在10mL 50mM氯化铁乙醇溶液中15分钟和10mL 50mM均苯三酸乙醇溶液中30分钟,每一步之间均用乙醇洗净表面残留药品,经过10个循环层层自组装包裹后,磁性分离,乙醇洗涤2次,空干燥制得介孔核壳结构CoFe2O4@MIL-100(Fe)。
图1为CoFe2O4磁性纳米粒子和CoFe2O4@MIL-100(Fe)磁性纳米吸附剂的形貌图,其中:A为CoFe2O4磁性纳米粒子透射电镜图;B为CoFe2O4磁性纳米粒子高分辨率透射电镜图;C为CoFe2O4@MIL-100(Fe)磁性纳米吸附剂透射电镜图;D为CoFe2O4@MIL-100(Fe)磁性纳米吸附剂高分辨率透射电镜图;插图为两种磁性纳米粒子的动态光散射粒径分布。说明CoFe2O4@MIL-100(Fe)磁性纳米吸附剂具有良好的介孔性质与核壳结构。
图2为CoFe2O4磁性纳米粒子(a)和CoFe2O4@MIL-100(Fe)磁性纳米吸附剂(b)的性质表征,其中:A为其红外光谱图;B为其热重表征图;C为其磁滞回线的表征图;D为其X射线粉末衍射图;ABCD四个表征图证明了MIL-100(Fe)壳已成功包覆在CoFe2O4磁性纳米粒子核的外层,且CoFe2O4@MIL-100(Fe)磁性纳米吸附剂能够容易的实现磁性回收分离。E为氮气吸附比表面积表征图和F为孔径分布表征图。说明该CoFe2O4@MIL-100(Fe)磁性纳米吸附剂具有较大的比表面积和良好的介孔结构,具有作为天然水无机砷的高效吸附剂的应用潜力。
图3为pH,离子强度及干扰离子对不同吸附剂去除天然水中无机砷效率的影响,其中:A,B分别为不同pH值下0.5mg L-1CoFe2O4(a),MIL-100(Fe)(b),CoFe2O4@MIL-100(Fe)(c)对1mg L-1As(V)和As(III)的去除效率,说明CoFe2O4@MIL-100(Fe)磁性纳米吸附剂具有宽的pH应用范围;C,D为0.5mg L-1CoFe2O4@MIL-100(Fe)在0.2M NaCl离子强度下对1mg L-1As(V)和As(III)的去除效率,说明CoFe2O4@MIL-100(Fe)磁性纳米吸附剂具有强的抗离子强度干扰能力;E,F为不同干扰离子(1mM硫酸根,碳酸根,硅酸根,刚果红,0.1mM磷酸根,50mg L-1腐殖酸)对0.5mg L-1CoFe2O4和CoFe2O4@MIL-100(Fe)去除1mg L-1As(V)和As(III)效率的影响,说明包覆上MIL-100(Fe)壳后,吸附剂的抗干扰能力得到了显著提高。图3证明了CoFe2O4@MIL-100(Fe)磁性纳米吸附剂在吸附去除无机砷方面的应用潜力,可直接应用于天然水中无机砷的高效去除而无需任何前处理。
图4为CoFe2O4磁性纳米粒子(a)和CoFe2O4@MIL-100(Fe)磁性纳米吸附剂(b)的zeta电位图。包覆上MIL-100(Fe)壳后,吸附剂的zeta电位显著下降,说明由于MOFs壳的静电排斥作用,可以起到提高吸附剂的抗干扰离子能力的作用。
图5为CoFe2O4@MIL-100(Fe)磁性纳米吸附剂对无机砷的吸附动力学和热力学曲线,其中:A,B为不同As(V)和As(III)浓度0.1mg L-1(a),1mg L-1(b),10mg L-1(c)下,0.5gL-1CoFe2O4@MIL-100(Fe)磁性纳米吸附剂的吸附动力学曲线,插图为吸附初始30min或60min内吸附动力学曲线的放大图;C,D为不同温度25℃(a),40℃(b),50℃(c)条件下,0.5gL-1CoFe2O4@MIL-100(Fe)磁性纳米吸附剂对As(V)和As(III)的吸附热力学曲线。证明该吸附剂对天然水中无机砷的吸附速率快[对于0.1mg L-1As(V)和As(III),2分钟内即可达到吸附平衡],吸附容量高[As(V)的饱和吸附容量为114.8mg g-1,As(III)的饱和吸附容量为143.6mg g-1],具有实际应用的潜力。
将实施例中制备的CoFe2O4@MIL-100(Fe)磁性纳米吸附剂用于实际水样,实现天然水中无机砷的吸附去除:
实际高砷水样取自山西山阴(无机砷浓度约为0.5mg L-1)。在静态吸附实验中,将1g CoFe2O4@MIL-100(Fe)磁性纳米吸附剂加入到500mL高砷实际水样中,吸附12h后磁性分离回收,用ICP-MS测量水样中残留无机砷浓度;在动态吸附实验中,将50mg CoFe2O4@MIL-100(Fe)磁性纳米吸附剂封装于0.2μm滤头内,用注射器将50mL高砷天然水样从滤头缓慢推出,ICP-MS测量水样中残留无机砷浓度。
图6为两种简单的水处理模式实际应用照片,其中:A,B为CoFe2O4@MIL-100(Fe)磁性纳米吸附剂静态吸附实际应用照片,经过静态吸附后,实际水样中残留的砷浓度降低至4.2μg L-1,符合饮用水安全标准(低于10μg L-1),且吸附剂易于磁性回收分离;C,D为将CoFe2O4@MIL-100(Fe)磁性纳米吸附剂封装于滤头内的动态吸附模式实际应用照片,E,F为经滤头处理前后实际水样对比照片,经过动态吸附后,实际水样中残留的砷浓度降低至8.6μg L-1,符合饮用水安全标准,且浑浊度由4.9降低至1.2NTU,水质得到了明显提升。图6说明CoFe2O4@MIL-100(Fe)磁性纳米吸附剂具有吸附去除天然水中无机砷的实际应用潜力。

Claims (5)

1.一种磁性纳米无机砷吸附剂的制备方法,其特征在于所述磁性纳米无机砷吸附剂为具有介孔核壳结构的CoFe2O4@MIL-100(Fe),步骤如下:
1)将氯化钴、氯化铁、醋酸钠和聚乙二醇-6000溶于乙二醇中,在50℃条件下搅拌20分钟后转入反应釜,160℃水热反应16小时,将黑色沉淀磁性分离并用乙醇和水分别洗涤2次,真空干燥制得介孔CoFe2O4磁性纳米粒子;
2)将上述介孔CoFe2O4磁性纳米粒子加入到浓度为0.58mM的巯基乙酸的乙醇溶液中,氮气保护下、室温搅拌24小时进行表面改性,用乙醇洗净表面残留的巯基乙酸,制得改性的MAA-CoFe2O4
3)在70℃条件下将上述改性的MAA-CoFe2O4交替浸泡在氯化铁-乙醇溶液中15分钟和均苯三酸-乙醇溶液中30分钟,经过10个循环的层层自组装包裹后,磁性分离用乙醇洗涤2次,真空干燥后制得磁性纳米无机砷吸附剂CoFe2O4@MIL-100(Fe)。
2.根据权利要求1所述磁性纳米无机砷吸附剂的制备方法,其特征在于:所述步骤1)中氯化钴、氯化铁、醋酸钠、聚乙二醇-6000与乙二醇的用量比为148.7mg:337.9mg:900.0mg:500.0mg:10mL。
3.根据权利要求1所述磁性纳米无机砷吸附剂的制备方法,其特征在于:所述步骤2)中介孔CoFe2O4磁性纳米粒子与巯基乙酸的乙醇溶液的用量比为50.0mg:10mL。
4.根据权利要求1所述磁性纳米无机砷吸附剂的制备方法,其特征在于:所述步骤3)中氯化铁-乙醇溶液和均苯三酸-乙醇溶液的浓度均为50mM,改性的MAA-CoFe2O4与氯化铁-乙醇溶液的用量比为50.0mg:10mL,改性的MAA-CoFe2O4与均苯三酸-乙醇溶液的用量比为50.0mg:10mL。
5.一种权利要求1所制备的磁性纳米无机砷吸附剂的应用,其特征在于:用于高效去除天然水中无机砷。
CN201610651205.5A 2016-08-10 2016-08-10 一种磁性纳米无机砷吸附剂的制备方法及其应用 Active CN106268706B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610651205.5A CN106268706B (zh) 2016-08-10 2016-08-10 一种磁性纳米无机砷吸附剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610651205.5A CN106268706B (zh) 2016-08-10 2016-08-10 一种磁性纳米无机砷吸附剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106268706A true CN106268706A (zh) 2017-01-04
CN106268706B CN106268706B (zh) 2018-08-10

Family

ID=57667808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610651205.5A Active CN106268706B (zh) 2016-08-10 2016-08-10 一种磁性纳米无机砷吸附剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106268706B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107089688A (zh) * 2017-04-21 2017-08-25 四川理工学院 一种对丙酮气体高灵敏度的介孔铁酸钴材料的制备方法及应用
CN109569522A (zh) * 2018-12-20 2019-04-05 吴荣臻 一种碘吸附材料及其制备方法和应用
WO2019081536A1 (en) * 2017-10-23 2019-05-02 Pro-1 Nanosolution Oü COBALT METALLIC NANOPARTICLES WITHOUT COATING FOR THE EXTRACTION OF HEAVY METALS FROM WATER
CN113522225A (zh) * 2021-08-05 2021-10-22 沈阳化工大学 一种去除有机/无机砷污染水的草木灰吸附剂制备方法
CN114210308A (zh) * 2021-11-16 2022-03-22 南方科技大学 一种核壳结构材料及其制备方法与应用
CN115028226A (zh) * 2022-04-24 2022-09-09 中南大学 基于碳酸氢根促进MIL-100(Fe)去除As(III)或As(V)的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105214613A (zh) * 2015-09-23 2016-01-06 济南大学 一种核壳结构Fe3O4@MIL(Fe)复合材料的制备方法及应用
KR20160031672A (ko) * 2014-09-12 2016-03-23 한국생산기술연구원 탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물
CN105597686A (zh) * 2016-01-12 2016-05-25 郑州轻工业学院 Fe3O4MIL-100(Fe)的制备方法及其应用
CN105688825A (zh) * 2016-04-21 2016-06-22 济南大学 一种基于铁基金属-有机骨架材料的磁性吸附剂制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160031672A (ko) * 2014-09-12 2016-03-23 한국생산기술연구원 탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물
CN105214613A (zh) * 2015-09-23 2016-01-06 济南大学 一种核壳结构Fe3O4@MIL(Fe)复合材料的制备方法及应用
CN105597686A (zh) * 2016-01-12 2016-05-25 郑州轻工业学院 Fe3O4MIL-100(Fe)的制备方法及其应用
CN105688825A (zh) * 2016-04-21 2016-06-22 济南大学 一种基于铁基金属-有机骨架材料的磁性吸附剂制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAO-FENG ZHANG ET AL.,: "A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
M. PENCHAL REDDY ET AL.,: "A facile hydrothermal synthesis,characterization and magnetic properties of mesoporous CoFe2O4 nanospheres", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107089688A (zh) * 2017-04-21 2017-08-25 四川理工学院 一种对丙酮气体高灵敏度的介孔铁酸钴材料的制备方法及应用
WO2019081536A1 (en) * 2017-10-23 2019-05-02 Pro-1 Nanosolution Oü COBALT METALLIC NANOPARTICLES WITHOUT COATING FOR THE EXTRACTION OF HEAVY METALS FROM WATER
CN109569522A (zh) * 2018-12-20 2019-04-05 吴荣臻 一种碘吸附材料及其制备方法和应用
CN113522225A (zh) * 2021-08-05 2021-10-22 沈阳化工大学 一种去除有机/无机砷污染水的草木灰吸附剂制备方法
CN114210308A (zh) * 2021-11-16 2022-03-22 南方科技大学 一种核壳结构材料及其制备方法与应用
CN114210308B (zh) * 2021-11-16 2024-03-12 南方科技大学 一种核壳结构材料及其制备方法与应用
CN115028226A (zh) * 2022-04-24 2022-09-09 中南大学 基于碳酸氢根促进MIL-100(Fe)去除As(III)或As(V)的方法
CN115028226B (zh) * 2022-04-24 2023-10-03 中南大学 基于碳酸氢根促进MIL-100(Fe)去除As(III)或As(V)的方法

Also Published As

Publication number Publication date
CN106268706B (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
CN106268706A (zh) 一种磁性纳米无机砷吸附剂的制备方法及其应用
You et al. A review of amino-functionalized magnetic nanoparticles for water treatment: Features and prospects
Huang et al. Highly selective uranium adsorption on 2-phosphonobutane-1, 2, 4-tricarboxylic acid-decorated chitosan-coated magnetic silica nanoparticles
Qi et al. Development of a magnetic core-shell Fe3O4@ TA@ UiO-66 microsphere for removal of arsenic (III) and antimony (III) from aqueous solution
Lu et al. Fabrication of cross-linked chitosan beads grafted by polyethylenimine for efficient adsorption of diclofenac sodium from water
Lv et al. Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb (II) and Cu (II) removal from aqueous solutions
Ali et al. Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid
Wang et al. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars
Sun et al. Efficient As (III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation
Yu et al. Recent advances in halloysite nanotube derived composites for water treatment
Bayazit et al. Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites
Sun et al. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles
Liu et al. Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions
Huang et al. Hydroxyl-functionalized TiO2@ SiO2@ Ni/nZVI nanocomposites fabrication, characterization and enhanced simultaneous visible light photocatalytic oxidation and adsorption of arsenite
Zeng et al. Adsorption of heavy metal ions in water by surface functionalized magnetic composites: a review
Xi et al. The fabrication and arsenic removal performance of cellulose nanocrystal-containing absorbents based on the “bridge joint” effect of iron ions
Feng et al. An environmental-friendly magnetic bio-adsorbent for high-efficiency Pb (Ⅱ) removal: Preparation, characterization and its adsorption performance
Lin et al. Iron-doped chitosan microsphere for As (III) adsorption in aqueous solution: Kinetic, isotherm and thermodynamic studies
Mi et al. Synthesis of Fe 3 O 4 nanocomposites for efficient separation of ultra-small oil droplets from hexadecane–water emulsions
Aryee et al. Functionalized magnetic biocomposite based on peanut husk for the efficient sequestration of basic dyes in single and binary systems: adsorption mechanism and antibacterial study
Chen et al. Preparation and recycled simultaneous adsorption of methylene blue and Cu2+ co-pollutants over carbon layer encapsulated Fe3O4/graphene oxide nanocomposites rich in amino and thiol groups
KR101679563B1 (ko) 다층막으로 된 하이드로젤 캡슐 및 이의 제조방법
Mahmoud et al. A novel multifunctional sandwiched activated carbon between manganese and tin oxides nanoparticles for removal of divalent metal ions
Elwakeel et al. Effect of the magnetic core in alginate/gum composite on adsorption of divalent copper, cadmium, and lead ions in the aqueous system
Chen et al. Hierarchical porous tannic-acid-modified MOFs/alginate particles with synergized adsorption-photocatalysis for water remediation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared