CN106268364A - 一种应用于气隙式薄膜脱盐的复合膜结构 - Google Patents

一种应用于气隙式薄膜脱盐的复合膜结构 Download PDF

Info

Publication number
CN106268364A
CN106268364A CN201610891383.5A CN201610891383A CN106268364A CN 106268364 A CN106268364 A CN 106268364A CN 201610891383 A CN201610891383 A CN 201610891383A CN 106268364 A CN106268364 A CN 106268364A
Authority
CN
China
Prior art keywords
thin film
composite membrane
layer
gap type
desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610891383.5A
Other languages
English (en)
Inventor
郭飞
蔡景成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201610891383.5A priority Critical patent/CN106268364A/zh
Publication of CN106268364A publication Critical patent/CN106268364A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于化学工程技术领域,是一种应用于气隙式薄膜脱盐的复合膜结构。该发明的粗纤维以不规则方式附着于除盐薄膜上形成复合膜结构,复合膜直接应用于气隙式薄膜除盐中,不用增加额外隔层。本发明的效果和益处是简化了现有的气隙式薄膜脱盐模块结构,增加蒸汽单位通过量,增加了气隙式薄膜脱盐的单位净水能力。

Description

一种应用于气隙式薄膜脱盐的复合膜结构
技术领域
本发明属于化学工程技术领域,涉及到膜分离相关技术,特别涉及一种应用于气隙式薄膜脱盐的复合膜结构。
背景技术
薄膜脱盐是一种分离的技术,是膜分离技术与传统蒸发过程相结合的新型膜分离过程。它与常规蒸馏一样都以汽液平衡为基础,依靠蒸发潜热来实现相变。它以膜两侧的温差所引起的传递组分的蒸汽压力差为传质驱动力,以不被待处理的溶液润湿的疏水性微孔膜为传递介质。膜分离技术的核心是膜本身。用来制备薄膜材料的固有化学特性和物理结构等直接影响分离的能力和效果。薄膜脱盐模块的结构形式主要有直接接触式、空气间隙式、真空式、空气扫气试等。其中,直接接触式和空气间隙式(气隙式)是最为常用的两种结构形式。直接接触式是利用两相异温水溶液直接接触于薄膜的两侧,水蒸气从高温侧穿过薄膜,并直接凝结在低温侧的水溶液中。空气间隙式结构中,薄膜与冷凝板之间加入空气间隙,高温侧水溶液产生的水蒸气穿过薄膜直接凝结在冷凝板上,同时冷凝板被另一侧的低温介质带走热量,冷凝水可以被单独收集,主要优势是避免了直接接触式的预混合过程。在空气间隙式结构中薄膜与冷凝板之间一般需要隔层支撑,用以保证冷凝水可以沿冷凝板排出。但隔层的厚度显著影响获得净水的单位通量。隔层厚度越大,在单位薄膜面积、单位时间内,可以收集到的净水总量越低。目前,对于采用空气间隙式结构的薄膜脱盐装置中,隔层一般由塑料网格构成,常用材料为聚丙烯(PP)等,这种网格厚度一般在1毫米、2毫米甚至更厚([1].Alsaadi A S,Ghaffour N,Li J D,et al.Modeling of air-gap membranedistillation process:a theoretical and experimental study[J].Journal ofmembrane science,2013,445:53-65.[2].Guo F,Servi A,Liu A,et al.Desalination bymembrane distillation using electrospun polyamide fiber membranes withsurface fluorination by chemical vapor deposition[J].ACS applied materials&interfaces,2015,7(15):8225-8232.)。已有的实验数据表明,降低隔层厚度将提高膜两侧的有效蒸汽压差,进而增加水蒸气穿过薄膜的通量。由于隔层的厚度约束,采用空气间隙式结构的薄膜脱盐的单位通量受到限制。另外,对于空气间隙式结构的改进,也包括在间隙中添加海绵、沙子等多孔介质([3]Francis L,Ghaffour N,Alsaadi A A,et al.Materialgap membrane distillation:a new design for water vapor flux enhancement[J].Journal of membrane science,2013,448:240-247.),这种方法也可以有效提高薄膜脱盐的单位通量,但同时也增加了结构的复杂程度。
发明内容
本发明针对现有技术存在的问题,通过制备一种复合结构的薄膜或者对现有薄膜的后期处理,使得用于气隙式薄膜脱盐模块的结构简化,不需要放入隔层,直接将复合膜置于高温侧与冷凝板之间。
本发明的技术方案是一种应用于气隙式薄膜脱盐的复合膜结构,该结构包括粗纤维层和薄膜层,粗纤维层由直径在1μm~100μm的粗纤维构成,粗纤维层作为支撑结构附着于薄膜层上,形成复合膜结构;其中,薄膜层的原有化学性质、物理结构均不发生变化。
所述的粗纤维层由纤维液体拉伸或挤压或喷射成型,再经过干燥或冷却定型得到或由纤维液体通过拉伸方式直接形成。
所述的粗纤维层附着于薄膜层的方式分为两种,一种是在纤维层尚未干燥或冷却定型前,将一层或几层粗纤维覆盖于薄膜上,粗纤维以不规则的方式覆盖在薄膜一侧,并自发附着于薄膜上,形成复合膜结构;另一种是固态的粗纤维层通过热压或者有机溶解或者化学交联的方式附着于薄膜上,形成复合膜结构。
本发明的效果和益处是简化了现有的气隙式薄膜脱盐模块结构,增加蒸汽单位通过量,增加了气隙式薄膜脱盐的单位净水能力。
附图说明
图1是盐度(质量浓度)为3.5%使用复合膜材料与使用隔层渗透流量对比图。
图2是盐度(质量浓度)为5%使用复合膜材料与使用隔层渗透流量对比图。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
一种复合结构的薄膜或者对现有薄膜的后期处理,包括薄膜层和粗纤维层。除盐薄膜层为疏水材料,粗纤维层既可以为疏水材料,也可以为亲水材料。粗纤维的材料可以为亲水材料,例如尼龙等;也可以为疏水材料,例如聚偏氟乙烯、聚四氟乙烯、聚丙烯等。
本发明是将粗纤维附着于薄膜上的新型复合膜材料。制作方式可以将粗纤维直接喷附于薄膜上;也可以将粗纤维提前制作,然后在附着在现有薄膜上。粗纤维制作可采用纺丝技术,也可采用拉伸等成膜方式。纤维附着方式可采用热压,有机溶解,化学交联等方式。
将粗纤维附着于薄膜上制成新型复合膜材料。将新型复合膜材料用于薄膜除盐实验中,所得实验曲线如图1和图2所示:
通过对比可以看出复合膜材料可以提高膜的渗透通量。相同温差条件下,复合膜材料渗透通量是使用隔层的一倍以上,最高可达6倍,说明复合膜材料在相同条件下,有更好的净水能力。

Claims (3)

1.一种应用于气隙式薄膜脱盐的复合膜结构,其特征在于,该结构包括粗纤维层和薄膜层,粗纤维层由直径在1μm~100μm的粗纤维构成,粗纤维层作为支撑结构附着于薄膜层上,形成复合膜结构;其中,薄膜层的原有化学性质、物理结构均不发生变化。
2.根据权利要求1所述的一种应用于气隙式薄膜脱盐的复合膜结构,其特征在于,所述的粗纤维层由纤维液体拉伸或挤压或喷射成型,再经过干燥或冷却定型得到或由纤维液体通过拉伸方式直接形成。
3.根据权利要求2所述的一种应用于气隙式薄膜脱盐的复合膜结构,其特征在于,粗纤维层附着于薄膜层的方式分为两种,一种是在纤维层尚未干燥或冷却定型前,将一层或几层粗纤维覆盖于薄膜上,粗纤维以不规则的方式覆盖在薄膜一侧,并自发附着于薄膜上,形成复合膜结构;另一种是固态的粗纤维层通过热压或者有机溶解或者化学交联的方式附着于薄膜上,形成复合膜结构。
CN201610891383.5A 2016-10-13 2016-10-13 一种应用于气隙式薄膜脱盐的复合膜结构 Pending CN106268364A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610891383.5A CN106268364A (zh) 2016-10-13 2016-10-13 一种应用于气隙式薄膜脱盐的复合膜结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610891383.5A CN106268364A (zh) 2016-10-13 2016-10-13 一种应用于气隙式薄膜脱盐的复合膜结构

Publications (1)

Publication Number Publication Date
CN106268364A true CN106268364A (zh) 2017-01-04

Family

ID=57718591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610891383.5A Pending CN106268364A (zh) 2016-10-13 2016-10-13 一种应用于气隙式薄膜脱盐的复合膜结构

Country Status (1)

Country Link
CN (1) CN106268364A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080035567A1 (en) * 2006-08-08 2008-02-14 Sabottke Craig Y Enhanced membrane separation system
CN101249388A (zh) * 2008-04-16 2008-08-27 天津工业大学 一种复合蒸馏膜及其制备方法和用途
US20090114594A1 (en) * 2007-08-31 2009-05-07 New Jersey Institute Of Technology Pervaporation Membranes Highly Selective For Volatile Solvents Present In Fermentation Broths
US20140326658A1 (en) * 2011-11-17 2014-11-06 Ngee Ann Polytechnic Triple Layer Hydrophobic-Hydrophilic Membrane for Membrane Distillation Applications
US20150114818A1 (en) * 2012-04-02 2015-04-30 James Antony Prince Vacuum Air Gap Membrane Distillation System for Desalination
CN204973605U (zh) * 2015-07-10 2016-01-20 天津锐马兰盾科技有限公司 一种新型流道式全逆流膜蒸馏装置
CN205461827U (zh) * 2016-03-09 2016-08-17 浙江东大环境工程有限公司 一种膜蒸馏元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080035567A1 (en) * 2006-08-08 2008-02-14 Sabottke Craig Y Enhanced membrane separation system
US20090114594A1 (en) * 2007-08-31 2009-05-07 New Jersey Institute Of Technology Pervaporation Membranes Highly Selective For Volatile Solvents Present In Fermentation Broths
CN101249388A (zh) * 2008-04-16 2008-08-27 天津工业大学 一种复合蒸馏膜及其制备方法和用途
US20140326658A1 (en) * 2011-11-17 2014-11-06 Ngee Ann Polytechnic Triple Layer Hydrophobic-Hydrophilic Membrane for Membrane Distillation Applications
US20150114818A1 (en) * 2012-04-02 2015-04-30 James Antony Prince Vacuum Air Gap Membrane Distillation System for Desalination
CN204973605U (zh) * 2015-07-10 2016-01-20 天津锐马兰盾科技有限公司 一种新型流道式全逆流膜蒸馏装置
CN205461827U (zh) * 2016-03-09 2016-08-17 浙江东大环境工程有限公司 一种膜蒸馏元件

Similar Documents

Publication Publication Date Title
Yu et al. Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics
Gu et al. Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil-water separation applications
CN104428053B (zh) 分离膜、其制备方法及净化单元
Ge et al. Recent advances in fibrous materials for interfacial solar steam generation
CN103998115B (zh) 用于膜蒸馏应用的三层疏水-亲水膜
Liu et al. Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation
Tsou et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration
CN103269782B (zh) 半透膜支撑体用湿式无纺布、其制造方法及其低密度缺陷的确认方法
CN105696197B (zh) 一种c型核壳纳米纤维膜及其偏心轴静电纺丝制备方法
Xie et al. Engineering carbon nanotubes enhanced hydrophobic membranes with high performance in membrane distillation by spray coating
CN104411384B (zh) 用于除盐的真空气隙膜蒸馏体系
CN108404685A (zh) 一种高通透、耐润湿、抗污染膜蒸馏用蒸馏膜的制备方法
Wu et al. PPy nanotubes-enabled in-situ heating nanofibrous composite membrane for solar-driven membrane distillation
Wang et al. Tuning interlayer structure to construct steady dual-crosslinked graphene oxide membranes for desalination of hypersaline brine via pervaporation
US20200282362A1 (en) Reverse osmosis membrane support material and preparation method thereof
Gu et al. Electrospun polyurethane microporous membranes for waterproof and breathable application: the effects of solvent properties on membrane performance
JP2012206062A (ja) 複合膜
Zhang et al. Transition sandwich Janus membrane of cellulose acetate and polyurethane nanofibers for oil–water separation
CN104307388A (zh) 自脱水疏水性分离膜以及制备方法
Ebrahimi et al. Characterization of triple electrospun layers of PVDF for direct contact membrane distillation process
Si et al. Design and modification of Janus polyvinylidene fluoride/deacetylated cellulose acetate nanofiber membrane and its multifunctionality
KR20120077266A (ko) 여과용 멤브레인 및 그의 제조방법
CN106268364A (zh) 一种应用于气隙式薄膜脱盐的复合膜结构
CN206285727U (zh) 一种应用于气隙式薄膜脱盐的复合膜结构
Keleş et al. Production of a microfiltration membrane from acrylic fiber (AF) and low-density polyethylene (LDPE) shrink film wastes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104

WD01 Invention patent application deemed withdrawn after publication