CN106255746B - 用于大体积转染的装置和方法 - Google Patents

用于大体积转染的装置和方法 Download PDF

Info

Publication number
CN106255746B
CN106255746B CN201580022290.2A CN201580022290A CN106255746B CN 106255746 B CN106255746 B CN 106255746B CN 201580022290 A CN201580022290 A CN 201580022290A CN 106255746 B CN106255746 B CN 106255746B
Authority
CN
China
Prior art keywords
electrode
electrodes
chamber
inner space
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580022290.2A
Other languages
English (en)
Other versions
CN106255746A (zh
Inventor
L·阿特罗格
T·格莱斯纳
A·海因策
S·赫尔姆斯米尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lonza Cologne GmbH
Original Assignee
Lonza Cologne GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza Cologne GmbH filed Critical Lonza Cologne GmbH
Publication of CN106255746A publication Critical patent/CN106255746A/zh
Application granted granted Critical
Publication of CN106255746B publication Critical patent/CN106255746B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0412Specially adapted for transcutaneous electroporation, e.g. including drug reservoirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

本发明涉及一种用于向细胞悬浮液施加电场的装置,包括至少一个腔室,其包括用于容纳悬浮液的至少一个内部空间,内部空间包括至少两个区段,每个区段包括至少一个电极,并且相邻电极通过至少一个间隙彼此分开,间隙至少部分地填充有绝缘材料,电极在内部空间内彼此面对的边缘是倒圆角的。使面对相邻电极的电极边缘为圆形导致场梯度的显着减小,因此有电弧风险的显著减小。本发明还涉及一种方法,将电压施加到至少一个有源电极,而电极或邻近和/或与有源电极相对的电极段是设置为地电位。将围绕有源电极的相邻电极设置为接地电位导致内部空间内的电场的散射减少,使电有源区域被局部限制,且场线被聚焦在有源电极附近,从而增强工艺的控制。

Description

用于大体积转染的装置和方法
技术领域
本发明涉及一种用于向细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的悬浮液施加电场的装置,包括至少一个腔室,该至少一个腔室包括用于容纳保持悬浮液的至少一个内部空间,该内部空间包括至少两个区段,其中每个区段包括至少一个电极,并且其中相邻电极通过至少一个间隙彼此分离,所述至少一个间隙至少部分地填充有绝缘材料。本发明还涉及向细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的悬浮液施加电场的方法,其中将电压施加到腔室的各电极,所述腔室包括用于容纳悬浮液的至少一个内部空间,所述内部空间包括至少两个区段,其中每个区段包括至少一个电极。
背景技术
将例如DNA、RNA或蛋白质的生物活性分子引入活细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡可以例如用于检查这些分子的生物学功能,且此外,这是这些分子的治疗用途成功的基本前提,例如在基因治疗中。将外部分子引入细胞的优选方法称为电穿孔,其不像化学方法限制了靶细胞的结构和功能中的不希望的改变。在电穿孔中,通过短电流,即例如放电电容器的脉冲,将外部分子从水性溶液、较佳地特定适合于细胞的缓冲溶液或细胞培养基引入细胞,使得细胞膜瞬时透过外部分子。在细胞膜中形成的临时孔摂允许生物活性分子首先到达细胞质,在细胞质中它们可能已经执行其功能或施加待检查的任何治疗作用,然后例如在基因治疗应用中在某些条件下也根据需要达到细胞核。
由于短时间施加强电场,即具有高电流密度的短脉冲,细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡也可以融合。在这种所谓的电融合中,细胞例如最初通过不均匀的电交变场进行紧密的膜接触。随后施加电场脉冲导致膜部分之间的相互作用,这最终导致融合。与用于电穿孔的那些相当的装置也可以用于电融合。
较小体积的细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的悬浮液通常在相对简单的容器中以分批方法处理。溶液或细胞悬浮液分别经常位于试管中,即在顶部开口的窄容器中,其在底部附近在侧壁中具有用于施加电压的两个相对的平行电极。但是,这些容器不适于处理较大体积,因为可用于电处理的反应空间受到电极之间有限的最大距离的限制。因此,其中将细胞或囊泡悬浮液连续或不连续地进给通过电极之间的反应空间的流通过程通常用于较大体积的电穿孔或电融合。
WO 2011/161092 A1公开了用于向容器底部生长的粘附细胞施加电场的电极组件。该电极组件被设计成插入到容器中并且包括多个电极,每个电极具有与下一个电极的相应表面相对布置的表面。这些表面之间的间隙完全填充有电绝缘材料,使得电场集中在待处理的细胞的区域中,使得电压脉冲或由此产生的电流流过细胞。
US 2007/0128708 A1公开了用于在分段腔室中电穿孔相对大体积的携带生物细胞或囊泡的流体介质的可缩放装置,其中每个区段包括两个电极。腔室的有效容积可通过沿腔室的纵向轴线移动柱塞来改变。因此,所选择的容积与待电穿孔的样品的体积直接相关。样品通过设置在腔室的端壁中的端口被吸入和吹出腔室。通过向腔室的各个段的电极对顺次施加电压脉冲来处理室内的样品。
然而,现有技术的装置和方法的缺点是,增加了电弧的风险,特别是如果对分段电极施加高电压,并且电场线可以扩展到除了有源电极段之外的区域中。
发明内容
因此,本发明的目的是提供一种用于处理细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的装置和方法,其具有用于保持低电流的分段电极,并且具有降低的电弧风险并且电场被限制在有源电极段附近的区域。
该目的通过一种用于对细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的悬浮液施加电场的装置来满足,所述装置使得在内部空间内彼此面对的电极的边缘为圆形。如果电压施加到电极,或者如果电场的不均匀性非常接近于有源段的电极表面发生的话,则在尖锐轮廓变化的区域(边缘)中电弧的风险显着增加。令人惊讶的是,使面对相邻电极的电极边缘为圆形导致这种场梯度的显着减小,并且因此甚至有电弧风险的显著减小。根据本发明,通过设置从面向内部空间的内腔的第一电极表面到垂直于第一电极表面的第二电极表面的平滑的形状过渡,实现在腔室的内部空间内并且尤其是在电极段之间的间隙的区域中的电极表面附近的电场的均匀化,由此第二电极表面面向电极间隙。特别地,平滑的形状过渡由弯曲的电极表面提供,即从较大到较小的圆角半径(例如,几个切向连接的圆弧段或花键)。
此外,场梯度的减小和电场的均匀化也导致内部空间内的电场的散射减少。因此,在腔室的内部空间中彼此面对的电极的倒圆角边缘具有避免高场密度的令人惊讶的效果。
根据本发明的示例性实施例,电极的倒圆角边缘的圆角半径被最大化。令人惊讶的是,已经发现,通过使倒圆角边缘的圆角半径最大化来减小电场的不均匀性导致电弧放电的可能性的显着降低。也就是说,倒圆角边缘的半径越大,电弧的风险越低。
在本发明的另一示例性实施例中,间隙的宽度和/或两个相邻电极之间的距离被最小化。由于细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡在间隙周围的内部空间中没有被充分处理,所以间隙(即,两个相邻电极之间的距离)应当尽可能小。
因此,间隙的宽度越小,处理效率越高。
例如,根据本发明的装置的设计可以通过确定圆角半径和间隙宽度的最佳比率来优化。也就是说,电极的倒圆角边缘的圆角半径必须最大化,而间隙的宽度必须最小化。理想的设计确保极低的电弧风险和极高的处理效率。
在适用于许多应用的示例性实施例中,至少一个电极的倒圆角边缘的圆角半径在大约0.3-2.0mm的范围内。例如,半径可在约0.3-1.8、0.3-1.6、0.3-1.4、0.3-1.2、0.3-1.0、0.5-2.0、0.7-2.0、0.9-2.0、1.0-2.0、0.4-1.9、0.5-1.8、0.6-1.7、0.7-1.6,0.8-1.5、0.9-1.4或1.0-1.2范围内。
在同样或另一个也适用于许多应用的示例性实施例中,间隙的宽度和/或两个相邻电极之间的距离在约0.5-2.0mm的范围内。例如,宽度可在约0.5-1.8、0.5-1.6、0.5-1.4、0.5-1.2、0.5-1.0、0.6-2.0、0.7-2.0、0.9-2.0、1.0-2.0、0.6-1.9、0.7-1.8、0.8-1.7、0.9-1.6、1.0-1.5、1.1-1.4、或1.1-1.3范围内。
在本发明的另一示例性实施例中,面向内部空间的绝缘材料的表面以直角与至少一个电极的表面相交。通过将绝缘材料的表面设计成垂直于电极的表面布置,电场的等势线与电极的表面正交并且不偏转。结果,可以避免在腔室内的电场的其余不均匀性或者至少移动到绝缘材料内的区域或远离有源段的电极表面的区域,使得进一步减小电弧的可能性。此外,接近有源电极的最大场密度减小。
在相同或另一示例性实施例中,根据本发明的装置的设计可以通过改变电极曲率的半径来最优化,以便使面向腔室内部空间的内腔的电极表面的半径最大化,同时使间隙宽度最小化。也就是说,在示例性实施例中,面向内部空间的内腔的电极表面的半径可以大于面向间隙的绝缘材料的电极表面的半径。
特别地,在示例性实施例中,面向内部空间的内腔的电极表面的半径在大约1.0-2.0mm范围内,并且面向间隙的绝缘材料的电极表面的半径在0.3-2.0mm范围内。作为该实施例的另一方面,面向内部空间的绝缘材料的表面以正好在电极表面曲率的半径变化的位置处或附近的精确直角与至少一个电极的表面相交。
两个相邻电极之间的间隙内的绝缘材料可以例如包括聚碳酸酯或由聚碳酸酯组成。
在本发明的另一示例性实施例中,电极中的至少一个大于其它的一个或多个电极。例如,较大的电极可以是与较小的电极相对布置的反电极或接地电极。在该实施例中,较小的电极可以是设置为高电压的有源电极或设置为地电位的电极。
在适用于许多应用的示例性实施例中,至少一个电极具有在5-20mm范围内的宽度,并且至少一个电极具有在20-80mm范围内的宽度。
在本发明的另一示例性实施例中,间隙被布置成使得至少一个电极的一部分与所述间隙相对地设置。由于在该有利布置中,每个间隙不与另一间隙相对地布置,而是与电极相对,所以腔室的内部空间中未暴露于足以进行有效处理的电场的区域被最小化或甚至消除。结果,通过该措施有效地提高了总体处理效率。
在本发明的又一示例实施例中,每个区段设置有至少一个第一电极和至少一个第二电极,其中所述第二电极是至少两个区段的公共电极。这种构造便于根据本发明的装置的构造和组装,并且进一步避免复杂的布线。
例如,根据本发明的装置的腔室可以包括可以彼此附连的相应部件。也就是说,根据本发明的装置可以例如通过将两个部件彼此附连而组装,其中每个部件包括对应于另一个部件的凹陷的凹陷。如果这两个部件彼此附连,则它们的对准的凹陷形成腔室的内部空间。为了能够在内部空间内产生电场,每个凹陷可以设置有至少一个电极。至少一些电极可以是分段的。例如,电极的一半(在对称轴的一侧)可以分段,而电极的另一半(在对称轴的另一侧)可以是单个不分段的电极,其可以用作反电极。在有利的实施例中,两个部件是相同的,从而确保成本有效的生产。由于相同的部件是旋转对称的,因此确保通过将部件彼此附连而容易地组装。
在本发明的一个示例性实施方案中,至少一个区段具有在约10μl至500μl或20μl至400μl或30μl至300μl或50μl至200μl范围内的容积。
在相同或另一示例性实施例中,腔室的内部空间的内腔具有至少500μl或至少800μl或至少1ml的容积。
本发明还涉及用于制备用于向细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的悬浮液施加电场的装置的方法,例如,如上所述的根据本发明的装置,其中设置至少一个腔室,该腔室包括用于容纳悬浮液的至少一个内部空间,所述内部空间包括至少两个区段,且每个区段包括至少一个电极,其中绝缘材料至少部分地填充到至少一个间隙中,所述间隙将相邻的电极彼此分离,并且其中在内部空间内彼此面对的电极的边缘被加工成使得它们是倒圆角的。由于这种有利的设计,如果电压被施加到电极,则电弧的风险被显着降低。
根据该方法的一示例性实施例,电极的倒圆角边缘的圆角半径被最大化。在该方法的另一示例性实施例中,间隙的宽度和/或两个相邻电极之间的距离被最小化。例如,根据本发明的装置的设计可以通过确定圆角半径和间隙宽度的最佳比率来优化。也就是说,电极的倒圆角边缘的圆角半径必须最大化,而间隙的宽度必须最小化。理想的设计确保极低的电弧风险和极高的处理效率。
在该方法的另一示例性实施例中,面向内部空间的绝缘材料的表面形成为使得其以直角与至少一个电极的表面相交。通过将绝缘材料的表面形成为垂直于电极的表面布置,电场的等势线与电极的表面正交并且不偏转。结果,可以避免在腔室内的电场的其余不均匀性或者至少移动到绝缘材料内的区域和/或远离有源段的电极表面的区域,使得进一步减小电弧的可能性。此外,接近有源电极的最大场密度减小。
在本发明的又一示例性实施例中,集成在装置内的电极中的至少一个大于其它的一个或多个电极。例如,较大的电极可以用作与较小的电极相对布置的反电极或接地电极。在这种实施例中,较小的电极可以用作设置为高电压的有源电极或设置为地电位的电极。在该实施例中,每个区段可以设置有至少一个第一电极和至少一个第二电极,其中第二电极是至少两个区段的公共电极。这种构造便于根据本发明的装置的构造和组装,并且进一步避免装置的生产期间的复杂布线。
在本发明的又一示例性实施例中,间隙被布置成使得至少一个电极的一部分与所述间隙相对地设置。由于在该有利布置中,每个间隙不与另一间隙相对地布置,而是与电极相对,所以腔室的内部空间中未暴露于足以进行有效处理的电场的区域被最小化或甚至消除。结果,通过该措施有效地提高了总体处理效率。
该目的进一步通过用于向最初指定的细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的悬浮液施加电场的方法来满足,其中电压施加到至少一个有源电极,而接近和/或相对于有源电极的电极或电极段被设置为地电势。将围绕有源电极的相邻电极设置为接地电位导致内部空间内的电场的散射减少,使得电有源区域被局部限制,并且场线被聚焦在有源电极附近,从而增强了工艺的控制,尤其是如果在分段腔室中处理大容积。
在本发明的示例性和有利的实施例中,电压施加到仅一个有源电极,而内部空间中的所有其他电极或电极段被设置为地电位。将腔室的内部空间中的所有电极,除了对于有源电极设置为接地电位,确保场线聚焦在有源电极附近的内部空间中,并且因此仅在腔室的有源部分中并且局部地朝向相邻电极减弱。
在本发明的另一示例性实施例中,电压顺序地施加到内部空间中的至少两个电极或电极段。本发明的优点在于,腔室的内部空间的每个区段可以单独地电寻址,使得可以精确地实现在腔室内受控的电场产生。例如,为了避免悬浮液的电弧和/或不期望的加热,可以将电压脉冲顺次地施加到不同区段。为此,每个区段设置有至少一个电极,其可以被单独地寻址,使得电压脉冲可以顺序地施加到腔室的各区段。
例如最接近所述腔室的出口端口的区段作为第一区段被处理,接着是相邻区段,直到该序列中的最后区段、即离出口最远的区段正在处理为止。也就是说,首先将电压施加到最靠近室的出口端口的区段,随后是相邻区段,直到电压施加到该序列中的最后一区段,即离出口端口最远的区段。在本发明的该示例性实施例中,例如最接近出口端口的区段作为第一区段被处理,接着是相邻区段,直到该序列中的最后区段、即离出口最远的区段正在处理为止。该处理序列确保在将高电压施加到细胞悬浮液期间产生的气泡不会将未处理的样品而仅仅是将处理过的样品推向和/或推出出口。
在本发明的又一示例实施例中,每个区段设置有至少一个第一电极和至少一个第二电极,其中电压施加到第一电极,第二电极是至少两个区段的公共电极。因此,可以显着减少装置的内部空间中的电极的数量,从而促进工艺的控制。
本文所使用的术语“圆形”是指弯曲且平滑的表面,其中从平坦区域到另一平坦区域的形状过渡是切向的。
这里使用的术语“有源电极”是指施加电压但未设置为接地电位的电极。例如,“有源电极”可以是设置为高电压电位的电极。
这里使用的术语“电极段”是指分段电极的单独部分,即分成不同部分的电极,其中分段电极的单独部分不彼此电联接。
本文所使用的术语“区段”是指腔室的内部空间的区域,其包括至少一个电极或电极段。
本文使用的术语“有源区段”是指腔室的包含至少一个有源电极的区段。
附图说明
参照附图进一步示例性地详细描述本发明。
图1示出了根据本发明的装置的单个部件的示例性实施例,包括可旋转调节装置和弯曲腔室设计。
a)在下端点的位置处的分离元件
b)在中间位置的分离元件
图2示出了根据图1的装置的分离元件的不同位置的示意图。
a)下端点处的位置
b)上端点处的位置
c)中间位置
d)停放位置
图3示出了根据图1的装置的外侧的立体图。
图4示出了根据图3的基座构件的不同视图。
a)基座构件具有电极的内侧;
b)基部构件具有导电区域的外侧。
图5示出了根据本发明的装置的示例性实施例的示意性横截面图。
a)内部空间包括8个区段;
b)根据a)的内部空间的一部分,包括2个区段。
图6示出了如果高电压被施加到根据图5的装置的实施例的电场的模拟表示。
图7示出了如果将高电压施加到在两个相邻电极或电极段之间具有较大间隙和/或距离的装置上的电场的模拟表示。
图8示出了如果高电压施加到具有常规电极设计的装置时电场的模拟表示。
具体实施方式
图1a和1b示出了根据本发明的装置1的单个部件的示例性实施例。装置1包括具有弯曲凹陷3的基座构件2,弯曲凹陷3设置有四个电极4、5。这些电极中的三个是分段电极4,而一个电极是反电极5。基底构件2表示装置的由彼此附接的两个部件组装而成的一个部件,其中这些部件的至少内侧是相同的。也就是说,基座构件2和具有相同内侧的第二基座构件(图3所示的基座构件30)彼此附连,使得凹陷3和第二基座构件的相应凹陷形成用于保持细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的悬浮液的腔室6。在该腔室6中,可以向细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡施加电场,例如用于将例如核酸或蛋白质的生物活性分子转移到细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡。为此,基座构件2的电极4、5和第二基座构件的对应电极建立电极对,其中基座构件2的分段电极4和第二基座构件的相对布置的反电极建立三个电极对而基座部件2的反电极5和第二基座部件的三个相对布置的段电极也建立三个电极对。在这种结构中,基座部件2的反电极5和第二基座部件的反电极各是三个区段的公共电极,使得腔室6包括六个区段,其中每个区段设置有一个分段电极和一个公共反电极的区域。
两个端口7、8设置在腔室6的一端9,而两个端口10、11设置在腔室6的相反端12。上端口7、8中的一个端口可以用作装入腔室6的入口端口而端口7、8中的另一端口可以用作用于排出腔室6的出口端口。
类似地,下端口10、11中的一个端口可以用作填充腔室6的入口端口而端口10、11中的另一端口可以用作用于排出腔室6的出口端口。相应地,每端9、12设有两个端口7、8、10、11,腔室6的相应隔室可以通过所述端口7、8、10、11填充悬浮液和/或悬浮液可以通过其从该隔室中排出。该构造允许腔室6的同时填充和排出,使得用于更换悬浮液所需的时间以及因此在悬浮液的两次相继的电处理之间的时间延迟最小化。在腔室6的相反端9、12处设置端口7、8、10、11允许容易地建立推拉机制,其中悬浮液可以在腔室6的两个端部9、12之间移动,以便同时填充室6的一端9处的一个腔室,并且排出腔室6的相反端12处的另一腔室。因此,装置1不是流通装置,而是能够使腔室6通过推拉机制同时填充和排出的装置,其中液体总是在其进入腔室的同一侧离开腔室。
为了将已经通过电场处理的悬浮液与待处理的悬浮液分离,设置了分离元件13。分离元件13可以在腔室6内在两个端点14、15之间移动,并且如果腔室6处于两个端点14、15之间的位置,则将腔室6分成两个隔室,如图1b和2c所示。在图1和图2所示的示例性实施例中,分离元件13包括两个部分16、17,它们彼此间隔开并形成包括可压缩材料的内部空间18的侧面。两个间隔开的部分16、17是擦拭器状的指状物,使得分离元件13是密封构件,其如果在端点14、15之间的位置则提供腔室6的不同隔间的液体屏障和/或气体屏障(图1b和2c)。为此,分离元件13可以由柔性和/或弹性材料制成,使得还能够补偿腔室6内的压力峰值。分离元件13还可以包括用于最佳地清除腔室6的密封唇。填充内部空间18的可压缩材料可以是空气或任何其它气体,或可压缩泡沫或多孔材料,以便在腔室6中提供有效的压力补偿。因此,分离元件13还用作平衡腔室6中的压力变化的一种缓冲垫。
分离元件13联接到操作和/或控制分离元件13的调节元件19。即是说,分离元件13可以通过调节元件19在腔室6内移动。调节元件19设置在腔室6的外部,使得腔室6的每个隔室不含可能影响装置1的功能的任何干扰元件。调节元件19包括可旋转体20,其可操作地与分离元件13的隔开部分16、17联接。在该示例性实施例中,可旋转体20是转子状元件,其使分离元件13移动,从而其可沿着双箭头21执行旋转运动。该实施例确保分离元件13在弯曲腔室6内的精确控制和持续运动。可旋转体20被垫圈22包围,垫圈22将调节元件19抵靠腔室6密封,其中可旋转体20通过由弹性材料制成的辐条23连接到垫圈22。
装置1还包括密封嵌件24,其沿着腔室6的与上述垫圈22相对的外侧延伸并且将腔室6的隔室26和27彼此抵靠密封。密封嵌件24由弹性和可压缩材料制成,例如硅树脂泡沫或类似的惰性材料制成,使得其能够在腔室内进行压力补偿。
有利地,装置1包括用于将分离元件13固定在腔室6外部的装置,使得可缩放的腔室6可容易地转变成具有固定体积的静态腔室6,如图2d所示。为此,分离元件13借助于调节元件19移动到停放位置25,在该停放位置处,分离元件13被固定,以便提供用于在分批过程中处理悬浮液的腔室6的整个容积。
图2a-d示出了根据图1的装置1的分离元件13的不同位置。根据本发明的方法是向细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的悬浮液进行电处理的可缩放过程。在图2a)中,分离元件13设置在下端点15处的位置。如果分离元件13旋转到上端点14的位置(图2b),则悬浮液的第一等分量注入下端口10、11中的一个并因此填充到腔室6中。然后通过对悬浮的细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡施加电场,在腔室6中处理第一等分量。随后,通过将分离元件13旋转回到下端点15处的位置,将处理过的第一等分量通过下端口10、11中的一个排出,同时,将悬浮液的第二等分量提供到上端口7、8中的一个,然后填充到腔室6中。然后通过对悬浮的细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡施加电场,在腔室6中处理第二等分量。
随后,通过将分离元件13旋转回到上端点14处的位置,将处理过的第二等分量通过上端口7、8中的一个排出,同时,将悬浮液的第三等分量注入上端口10、11中的一个,然后填充到腔室6中。然后通过对悬浮的细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡施加电场,在腔室6中处理第三等分量。可以重复这种悬浮液的同时充填和排出的推拉机制,直到整个悬浮液被处理为止。
如果分离元件13处于端点14、15之间的位置(图2c),则分离元件13将腔室6分隔成两个隔室26、27,其中腔室6的每个隔室26、27设计成容纳悬浮液,包括用于填充或排放室6的两个端口7、8和10、11。每个隔室26、27可以接收和容纳悬浮液的等分量,其可以通过端口7、8和10、11移进和移出腔室6。隔室26、27各还设有一个端口7、10,相应的隔室26、27可以通过一个端口7、10填充悬浮液并具有一个端口8、11,悬浮液可以通过该端口8、11排出隔室26、27。当分离元件13旋转时,腔室6的一个隔室26,27填充有样品的等分量,而样品的另一等分量从另一个隔室26、27被排出并推出。用于所进入样品的容器可以连接到上入口端口7和下入口端口10,并且上出口端口8和下出口端口11可以连接到用于处理过样品的储存器。从图2可以看出,装置1不是以流通方式工作,而是以推拉方式工作,其中注入的样品在处理之后在其被填充的同一侧上排出。腔室6具有六个电极段,其中一个总是被分离元件13覆盖,因此是不可用的。例如,腔室6可以每个循环采用834μl。因此,在这种情况下,可以在完整的循环中处理1668μl。
在本发明的有利实施例中,分离元件被调整为使得其恰好覆盖一个或多个分段电极,使得可以在每隔一个电极段内建立相同的电参数。
装置1的静态变型不允许分离元件13旋转。相反,分离元件13固定在室6的外部停放位置25处,而不覆盖如图2d所示的任何电极段。对于该变型,可以使用所有六个电极段,并且因此可以处理1000μl样品。例如,样品可以在装置1的下入口端口7或上入口端口10处注入,并且可以在下出口端口11处收集。在装置1的这种状态下不可能进行重复填充。
图3示出了根据图1的装置1的外侧的立体图。装置1包括基座构件30,基座构件30的内侧(不可见)与根据图1的基座构件2的内侧相同。基座构件30表示装置1的另一部件,装置1由彼此附连的两个部件(基座构件2和30)组装而成。在其外侧,基座构件30设置有用于将管道连接到根据图1和图2的腔室6的端口7、8、10、11的各连接器31。用于待处理的悬浮液的一个或多个容器和用于处理过悬浮液的一个或多个储存器可以通过合适的管道连接到各连接器31。悬浮液可通过泵送元件(例如,真空泵或蠕动泵等)填充到腔室中和从腔室中排出,该泵送元件可连接到容器/储存器和各连接器31之间的悬浮液回路。为了使装置1与公共管道和泵送系统兼容,连接器31可以是鲁尔滑动或路厄锁定连接器。
装置1的调节元件19可以通过蜗轮、正齿轮、锥齿轮、齿轮杆、皮带传动装置、方形钢棒或类似的齿轮机构或动力传递元件(未示出)连接到例如电动机的动力单元(未示出)。
基座构件30还包括用于提供到腔室内电极的电连接的多个导电区域32。导电区域32可以包括导电聚合物,特别是掺杂有导电材料或固有导电聚合物的聚合物。导电区域32被设计成在电极和至少一个电接触点33之间提供电连接。在该实施例中,导电区域32是基座构件30中的至少部分地填充有导电材料的孔。导电区域32经由至少一个导电路径、例如基座构件的层上的铜迹线(未示出)与至少一个电接触点33电联接。电接触点可以与至少一个电触头连接,以便提供到电源的直接或间接电连接。
图4a和4b示出了根据图3的基座构件30的不同视图。基座构件30的内表面34在图4a)中示出。电极4、5附连到内表面34。这些电极4、5中的三个是分段电极4,而这些电极4、5中的一个是较大的反电极5。电极4、5附连并连接到导电区域32,其从基座构件30的内表面34延伸到外表面35。例如,电极4、5和导电区域32内的导电材料由相同的材料制成,例如导电聚合物,特别是如上所述掺杂有导电材料或固有导电聚合物的聚合物。聚合物可以模制在基座构件30的内表面34和导电区域32上,并且延伸穿过导电区域32的孔,如图5a)中详细示出的。导电区域32经由至少一个导电路径(未示出)与至少一个电接触点33电联接。电接触点33可以与至少一个电触头接触,以便提供到电源的直接或间接电连接。在本发明的有利实施例中,基座构件30是印刷电路板(PCB)。
图5a示出了根据本发明的示例性装置的内部空间40的一部分的示例性实施例。例如,内部空间40可以是根据图1和图2的装置1的腔室6的一部分。内部空间40包括八个区段41.1、41.2、41.3、41.4、42.1、42.2、42.3、42.4,每个区段包括电极43.1、43.2、43.3、43.4、44.1、44.2、44.3、44.4。另外两个电极45.1和45.2分别与电极43.1、43.2、43.3、43.4和44.1、44.2、44.3、44.4相对设置。相邻电极通过绝缘材料46彼此分开,绝缘材料46围绕电极43.1、43.2、43.3、43.4、44.1、44.2、44.3、44.4并填充相邻电极之间的每个间隙47.1-47.8。绝缘材料46可以例如由聚碳酸酯、FR4板或其它绝缘材料组成或至少包括聚碳酸酯,FR4板或其它绝缘材料。参考图5b进一步详细描述电极43.2和43.3的边缘的特性以及间隙47.2的特性。下面描述的这些特性也可以应用于其他电极43.1、43.4、44.1、44.2、44.3、44.4和间隙47.1、47.3-47.8。
图5b示出了根据图5a的内部空间40的一部分,其包括两个区段41.2、41.3,每个区段包括电极43.2、43.3。另一电极45.1与电极43.2、43.3相对设置。相邻电极43.2、43.3通过绝缘材料46彼此分离,绝缘材料46围绕电极43.2、43.3并填充相邻电极43.2,43.3之间的间隙47.2。为了避免不期望的电弧,在内部空间40中彼此面对的电极43.2、43.3的边缘48、49是倒圆角的。倒圆角边缘48、49确保电场中的干扰梯度的显着减小。
电场中的梯度产生不必要的高局部场密度,因此增加了不期望的电弧放电风险。此外,内部空间40内,特别是邻近电极43.2、43.3的表面的电场的均匀化可以通过提供从平坦电极表面到弯曲电极表面的平滑形状过渡来实现,即从较大到较小圆角半径。这种电极设计还导致内部空间40内的电场的散射减少,使得电场线聚焦在电极43.2、43.3附近。
根据本发明的装置的设计可以通过确定每个倒圆角边缘48、49的半径和间隙47.2的宽度的最佳比率来优化。这种优化是通过最大化电极43.2、43.3的倒圆角边缘48、49的圆角半径并同时保持间隙47.2的宽度尽可能小来实现的。理想的设计确保极低的电弧风险和极高的处理效率。例如,电极43.2、43.3中的至少一个的倒圆角边缘48,49的圆角半径可以在大约0.3-2.0mm的范围内,而间隙47.2的宽度,即相邻电极之间43.2、43.3的距离可以在约0.5-2.0mm的范围内。
面对内部空间40的绝缘材料46的表面50可以形成和对准,使得其以直角与每个电极43.2、43.3的表面相交。结果,绝缘材料46的表面50分别垂直于电极43.2和43.3的表面布置。由于这种有利的设计,内部空间40内的电场的等势线与电极43.2、43.3的表面正交地相交并且因此不被偏转。因此,可以避免或至少将电场的均匀性的电势移动到绝缘材料46内的区域,使得进一步减少电弧的可能性。
面向电极43.2、43.3的电极45.1大于相邻电极43.2、43.3并且与间隙47.2相对地布置。也就是说,没有其它间隙与间隙47.2相对设置,使得靠近间隙47.2的区域仍然暴露于足以用于有效处理的电场。因此有效地提高了整体处理效率。电极45.1在两个区段41.2、41.3的整个长度上延伸,并且因此是两个区段41.2、41.3的公共电极。例如,较大的电极45.1可以是反电极或接地电极,而较小的电极43.2、43.3可以是设置为高电压的有源电极或也设置为地电位的电极。电压可以施加到例如电极43.2(有源电极),而相邻电极43.3和反电极45.1被设置为地电位。将围绕有源电极43.2的电极43.3和45.1设置为地电位导致内部空间40内的电场的散射减少,使得场线聚焦在有源电极43.2附近,从而增强了工艺的控制。
例如,电极43.2、43.3中的至少一个可以具有在5-20mm范围内的宽度,而较大的电极45可以具有在20-80mm范围内的宽度。
在根据本发明的装置的操作期间,当通过在内部空间40内产生电场来处理细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡的悬浮液时,相邻电极43.2、43.3的与悬浮液接触的平面(或替代地稍微弯曲和/或凸起的)表面51、52是该工艺的主要活性表面。平坦平面51、52与较大的电极45.1相对,较大的电极45.1可用作设置为接地电位的反电极。例如,如果高电压施加到电极43.3并且相邻电极43.2被设置为接地电位,则在平行电极表面之间的区段41.3中产生具有高场强的电场,即电极43.3的平坦表面52以及电极45.1的相对布置的平坦(或者,略微弯曲和/或凸起)表面53(图6)。由于根据本发明的装置的有利的设计,该区域中的等势线均匀地分布,使得电弧的风险非常低。基本上,适用以下原则:等势线的分布越均匀,电弧的风险越小。因此,在从平坦表面52到电极43.3的圆形表面49的过渡区域中必须避免不均匀性和场梯度。为此,根据本发明,通过提供具有第一较大圆角半径的第一圆形和具有较小第二圆角半径的第二圆形来确保平滑且恒定的形状过渡。第二圆角半径使电极43.3的表面远离相对电极45.1移动,以便局部地降低场强。电极43.3的倒圆角边缘49和如上所述的绝缘材料46的表面50的设计导致电弧放电风险的显着降低。此外,电场集中在电极43.3的平坦表面52和电极45.1的相对布置的平坦表面53之间的区段41.3中。如果对电极43.2施加高电压,并且在随后的电压脉冲期间将电极43.3设置为接地电位,则相同的情况也适用于相邻电极43.2。
从图6可以看出,间隙47.2附近的区域仍然暴露于足以进行有效处理的电场。当随后的电压脉冲被施加到电极43.2时,该体积的悬浮液被处理两次,所以期望在间隙47.2和相对电极45.1之间的区域内的中等场强。因此优化了间隙47.2的宽度,即相邻电极43.2、43.3之间的距离。
如果间隙的宽度变得太大,则在绝缘间隙区域中间的细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡暴露于低于最大场强的一半的场强(例如,电极55、56,如图7所示)。因此,在该区域中处理两次的材料不被理想地处理。
根据本发明的装置的理想设计移动具有非常高的场梯度的可能的“热点”远离电极表面/角落。利用常规电极和间隙设计(即,如图8所示的直的矩形电极57、58)靠近电极的高场梯度与低电弧阈值相关,并因此与电弧事件高得多的可能性相关。

Claims (15)

1.一种用于向细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡悬浮液施加电场的装置(1),包括至少一个腔室,所述至少一个腔室包括用于容纳悬浮液的至少一个内部空间,所述内部空间包括至少两个区段,其中每个区段包括至少一个电极,并且其中相邻电极通过至少一个间隙彼此分开,所述间隙至少部分地填充有绝缘材料,其特征在于,所述电极在所述内部空间内彼此面对的边缘是倒圆角的,并且所述绝缘材料的面向所述内部空间的表面与至少一个电极的表面以直角相交。
2.如权利要求1所述的装置,其特征在于,所述电极的倒圆角边缘的圆角半径被最大化。
3.如权利要求1或2所述的装置,其特征在于,所述间隙的宽度和/或相邻电极之间的距离被最小化。
4.如权利要求2所述的装置,其特征在于,所述电极中的至少一个的倒圆角边缘的圆角半径在0.3-2.0mm的范围内。
5.如权利要求2所述的装置,其特征在于,所述间隙的宽度和/或相邻电极之间的距离在0.5-2.0mm的范围内。
6.如权利要求1至2中任一项所述的装置,其特征在于,所述电极中的至少一个大于其他的一个或多个电极。
7.如权利要求1至2中任一项所述的装置,其特征在于,至少一个电极具有在5-20mm范围内的宽度,并且至少一个电极具有在20-80mm范围内的宽度。
8.如权利要求1至2中任一项所述的装置,其特征在于,所述间隙(47)布置成使得至少一个电极的一部分与所述间隙(47)相对设置。
9.如权利要求1至2中任一项所述的装置,其特征在于,每个区段设置有至少一个第一电极和至少一个第二电极,其中所述第二电极是至少两个区段的公共电极。
10.如权利要求1至2中任一项所述的装置,其特征在于,所述腔室的所述内部空间的内腔具有至少500μl的容积。
11.一种将电场施加到细胞、细胞衍生物、细胞器官、亚细胞颗粒和/或囊泡悬浮液的方法,其中电压施加到权利要求1-10中任一项所述的装置的电极,其特征在于,所述电压被施加到至少一个有源电极,而将与有源电极相邻和/或相对的电极或电极段设置为接地电位。
12.如权利要求11所述的方法,其特征在于,将所述电压施加到仅一个有源电极,而将所述内部空间中的所有其他电极或电极段设置为地电位。
13.如权利要求11或12所述的方法,其特征在于,所述电压顺序地施加到所述内部空间中的至少两个电极或电极段。
14.如权利要求11至12中任一项所述的方法,其特征在于,各区段以一序列进行处理,最接近所述腔室的出口端口的区段作为第一区段被处理,接着是相邻区段,直到所述序列中的离出口最远的最后区段正在处理为止。
15.如权利要求11至12中任一项所述的方法,其特征在于,每个区段设置有至少一个第一电极和至少一个第二电极,其中所述电压施加到所述第一电极,且所述第二电极是至少两个区段的公共电极。
CN201580022290.2A 2014-05-02 2015-04-28 用于大体积转染的装置和方法 Active CN106255746B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP14166918.4 2014-05-02
EP14166918.4A EP2940120B1 (en) 2014-05-02 2014-05-02 Device and method for large volume transfection
EP14191272.5A EP2940121B1 (en) 2014-05-02 2014-10-31 Device and method for large volume transfection
EP14191272.5 2014-10-31
PCT/EP2015/059152 WO2015165881A1 (en) 2014-05-02 2015-04-28 Device and method for large volume transfection

Publications (2)

Publication Number Publication Date
CN106255746A CN106255746A (zh) 2016-12-21
CN106255746B true CN106255746B (zh) 2020-05-12

Family

ID=50721562

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201580022367.6A Active CN106459872B (zh) 2014-05-02 2015-04-28 用于大体积转染的装置和方法
CN202010191131.8A Pending CN111321077A (zh) 2014-05-02 2015-04-28 用于大体积转染的装置和方法
CN201580022290.2A Active CN106255746B (zh) 2014-05-02 2015-04-28 用于大体积转染的装置和方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201580022367.6A Active CN106459872B (zh) 2014-05-02 2015-04-28 用于大体积转染的装置和方法
CN202010191131.8A Pending CN111321077A (zh) 2014-05-02 2015-04-28 用于大体积转染的装置和方法

Country Status (10)

Country Link
US (4) US10336996B2 (zh)
EP (3) EP3260163B1 (zh)
JP (3) JP6642875B2 (zh)
KR (3) KR102412820B1 (zh)
CN (3) CN106459872B (zh)
AU (3) AU2015254739B2 (zh)
CA (2) CA2946666C (zh)
DK (3) DK2940120T3 (zh)
ES (3) ES2692530T3 (zh)
WO (2) WO2015165879A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2692530T3 (es) 2014-05-02 2018-12-04 Lonza Cologne Gmbh Dispositivo y método para la transfección de grandes volúmenes
CA3100050A1 (en) 2018-05-11 2019-11-14 Lupagen, Inc. Systems and methods for closed loop, real-time modifications of patient cells
EP3750983B1 (en) * 2019-06-13 2022-02-23 Lonza Cologne GmbH Method and device for controlling the filling level in a chamber
USD965170S1 (en) 2020-10-23 2022-09-27 Life Technologies Corporation Electroporation device
EP4163380A1 (en) * 2021-10-08 2023-04-12 ETH Zurich Device and method for manipulation of extracellular vesicles
KR20240006945A (ko) 2022-07-07 2024-01-16 주식회사 엘지에너지솔루션 배터리 모듈 부품

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370927A (zh) * 2005-12-07 2009-02-18 基因特伦尼克斯公司 可变容积电穿孔室以及其方法
CN101426929A (zh) * 2004-05-12 2009-05-06 麦克赛特股份有限公司 与可调流式电穿孔室相关的方法和装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148624A (en) * 1961-06-21 1964-09-15 Alan W Baldwin Hydraulic pump
JPS6384481A (ja) * 1986-09-29 1988-04-15 Shimadzu Corp 細胞融合装置
US5183744A (en) * 1988-10-26 1993-02-02 Hitachi, Ltd. Cell handling method for cell fusion processor
US5810725A (en) * 1993-04-16 1998-09-22 Matsushita Electric Industrial Co., Ltd. Planar electrode
US5563067A (en) * 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US6773669B1 (en) * 1995-03-10 2004-08-10 Maxcyte, Inc. Flow electroporation chamber and method
US6169394B1 (en) * 1998-09-18 2001-01-02 University Of The Utah Research Foundation Electrical detector for micro-analysis systems
US6150148A (en) 1998-10-21 2000-11-21 Genetronics, Inc. Electroporation apparatus for control of temperature during the process
GB9908681D0 (en) * 1999-04-16 1999-06-09 Central Research Lab Ltd Apparatus for, and method of, introducing a substance into an object
US6686193B2 (en) * 2000-07-10 2004-02-03 Vertex Pharmaceuticals, Inc. High throughput method and system for screening candidate compounds for activity against target ion channels
DE10127247B4 (de) * 2001-06-05 2006-12-07 Eppendorf Ag Vorrichtung und Verfahren zur elektrischen Behandlung suspendierter biologischer Partikel
DK2574662T3 (da) * 2001-08-22 2021-09-20 Maxcyte Inc Fremgangsmåde til elektroporation af biologiske prøver
AU2003302502A1 (en) * 2002-12-03 2004-06-23 Genetronics, Inc. Large-scale electroporation plates, systems, and methods of use
US9982251B2 (en) 2003-03-14 2018-05-29 Cellectis S.A. Large volume ex vivo electroporation method
CN1177030C (zh) * 2003-07-17 2004-11-24 中国科学院上海技术物理研究所 空间细胞电融合室
US7521224B2 (en) * 2003-09-30 2009-04-21 The United States Of America As Represented By The Secretary Of The Navy Microelectronic cell electroporation array
DE602004025146D1 (de) * 2004-01-29 2010-03-04 Narvalus S R L Biochip electroporationsgerät mit mehreren positionen zur einzelzellelectroporation
US7439014B2 (en) * 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
ES2562061T3 (es) * 2006-11-14 2016-03-02 Richard Clarke Flujo en microhuecos a través de dispositivos electroquímicos con superficies reactivas de autoajuste
WO2008072166A1 (en) * 2006-12-12 2008-06-19 Koninklijke Philips Electronics N.V. Method and apparatus for cell analysis
US8222014B2 (en) * 2007-03-01 2012-07-17 Queen's University At Kingston Planar electroporation apparatus and method
US20090053813A1 (en) * 2007-08-24 2009-02-26 David Mark Evans Multiplexed electroporation apparatus
WO2009076414A2 (en) * 2007-12-10 2009-06-18 Advanced Liquid Logic, Inc. Droplet actuator configurations and methods
CN101319191A (zh) * 2008-07-18 2008-12-10 圣太科医疗科技(上海)有限公司 一种多用途微电场网细胞处理装置
ES2657700T3 (es) * 2009-01-20 2018-03-06 Lonza Cologne Gmbh Procedimiento y dispositivo para el tratamiento eléctrico de varios recipientes
EP2208779B1 (de) * 2009-01-20 2017-04-05 Lonza Cologne GmbH Behältnis mit mehreren Reaktionsräumen und Elektroden
WO2010141361A1 (en) * 2009-06-05 2010-12-09 Isis Pharmaceuticals, Inc. Apparatus for synthesizing oligonucleotides and methods of use
US20130146459A1 (en) * 2009-06-16 2013-06-13 Massachusetts Institute Of Technology Multiphase non-linear electrokinetic devices
ES2413557T3 (es) 2010-06-22 2013-07-16 Lonza Cologne Gmbh Procedimiento y disposición de electrodos para tratar células adherentes
CN102296028B (zh) * 2011-09-08 2013-05-15 岭南大学校产学协力团 基于微孔微电极阵列的高通量细胞电融合微流控芯片装置
KR20130037470A (ko) * 2011-10-06 2013-04-16 영남대학교 산학협력단 초소형 세포 융합장치
CN203065488U (zh) * 2013-01-23 2013-07-17 苏州大学 一种细胞电融合装置
WO2015037604A1 (ja) 2013-09-11 2015-03-19 日本電気株式会社 ネットワーク設計支援装置、ネットワーク設計方法及びプログラム
ES2692530T3 (es) 2014-05-02 2018-12-04 Lonza Cologne Gmbh Dispositivo y método para la transfección de grandes volúmenes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426929A (zh) * 2004-05-12 2009-05-06 麦克赛特股份有限公司 与可调流式电穿孔室相关的方法和装置
CN101370927A (zh) * 2005-12-07 2009-02-18 基因特伦尼克斯公司 可变容积电穿孔室以及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Quantification of Electroporative Uptake Kinetics and Electric Field Heterogeneity Effects in Cells;Kennedy et al;《Biophysical Journal》;20080630;第94卷;材料与方法部分及图1 *

Also Published As

Publication number Publication date
CA2946472C (en) 2022-05-03
EP2940121A1 (en) 2015-11-04
US10336996B2 (en) 2019-07-02
JP6642875B2 (ja) 2020-02-12
EP3260163B1 (en) 2019-07-17
AU2015254739B2 (en) 2018-04-12
CN106459872B (zh) 2020-05-12
CN106255746A (zh) 2016-12-21
AU2015254741B2 (en) 2017-08-03
CN111321077A (zh) 2020-06-23
JP2019213539A (ja) 2019-12-19
KR20170017899A (ko) 2017-02-15
EP2940120B1 (en) 2018-08-01
US20170233715A1 (en) 2017-08-17
CN106459872A (zh) 2017-02-22
AU2018205130B2 (en) 2020-03-12
EP3260163A1 (en) 2017-12-27
US20170233716A1 (en) 2017-08-17
DK2940121T3 (en) 2018-11-26
AU2018205130A1 (en) 2018-07-26
ES2751732T3 (es) 2020-04-01
WO2015165881A1 (en) 2015-11-05
CA2946666C (en) 2022-06-07
KR102597255B1 (ko) 2023-11-01
AU2015254741A1 (en) 2016-11-17
CA2946472A1 (en) 2015-11-05
US10633646B2 (en) 2020-04-28
JP6750810B2 (ja) 2020-09-02
DK3260163T3 (da) 2019-09-02
WO2015165879A1 (en) 2015-11-05
DK2940120T3 (en) 2018-11-26
EP2940120A1 (en) 2015-11-04
KR102412820B1 (ko) 2022-06-23
KR102407937B1 (ko) 2022-06-10
CA2946666A1 (en) 2015-11-05
KR20220083860A (ko) 2022-06-20
JP2017514474A (ja) 2017-06-08
EP2940121B1 (en) 2018-08-01
ES2693752T3 (es) 2018-12-13
AU2015254739A1 (en) 2016-11-17
US20200325466A1 (en) 2020-10-15
ES2692530T3 (es) 2018-12-04
US11661595B2 (en) 2023-05-30
KR20170017876A (ko) 2017-02-15
US20190144844A1 (en) 2019-05-16
JP2017514475A (ja) 2017-06-08
US11352615B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
CN106255746B (zh) 用于大体积转染的装置和方法
WO2008051169A1 (en) Tip electrode chamber for small volume electroporation
WO2018226240A1 (en) Porated cell ejection devices
US11878300B2 (en) Method and device for high field strength electrotransfection of microvescicles and cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant