CN106237983A - 一种有机废水处理剂及其制备方法 - Google Patents

一种有机废水处理剂及其制备方法 Download PDF

Info

Publication number
CN106237983A
CN106237983A CN201610809778.6A CN201610809778A CN106237983A CN 106237983 A CN106237983 A CN 106237983A CN 201610809778 A CN201610809778 A CN 201610809778A CN 106237983 A CN106237983 A CN 106237983A
Authority
CN
China
Prior art keywords
molecular sieve
reaction
activated
activated molecular
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610809778.6A
Other languages
English (en)
Other versions
CN106237983B (zh
Inventor
王利剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luoyang Institute of Science and Technology
Original Assignee
Luoyang Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luoyang Institute of Science and Technology filed Critical Luoyang Institute of Science and Technology
Priority to CN201610809778.6A priority Critical patent/CN106237983B/zh
Publication of CN106237983A publication Critical patent/CN106237983A/zh
Application granted granted Critical
Publication of CN106237983B publication Critical patent/CN106237983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种有机废水处理剂及其制备方法,由活化分子筛、用以包覆活化分子筛的无机钛盐和用调节反应体系pH值至4~5的碳酸氨反应后脱水、干燥、煅烧而成,无机钛盐按照[Ti]4+与活化分子筛质量比为15~20:100的比例加入,活化分子筛由废弃分子筛粉碎后经硫酸活化后制成。本发明将废弃分子筛进行酸浸活化,使堵塞其孔道的杂质被酸溶解,进而恢复其吸附及离子交换能力,将活化后的分子筛进行纳米二氧化钛负载改性,其目的是赋予活化分子筛一种新的功能,既光催化降解能力,改性后的活化分子筛不但具有吸附、离子交换能力,而且在紫外光照射下,还具有光催化降解能力。

Description

一种有机废水处理剂及其制备方法
技术领域
本发明涉及到固体废弃物开发利用及环保领域,具体的说是一种有机废水处理剂及其制备方法。
背景技术
分子筛是结晶态的硅酸盐或者硅铝酸盐,由硅氧四面体或铝氧四面体,分子筛因其具有纳米级的微孔结构及较强的吸附性能,在许多领域都有着广泛的应用,微孔分子筛作为吸附分离材料、主要的催化材料和离子交换材料,可应用于石油化工、石油的加工、日用化工以及精细化工领域。但分子筛在使用后就会失活,当前一般失活的分子筛常常被用做筑路的填埋材料使用或者固体废弃物堆积,这造成了巨大的浪费。关于废弃分子筛的研究报道的并不多,但是角度有很多。翟芝明等人研究了废分子筛综合利用问题,该研究是关于废弃分子筛经活化处理后生产脱色剂的工艺的综合性研究,其实验效果明显。初政伟,徐会君等人研究了废弃分子筛制备群蓝颜料问题,该研究是以工业废弃分子筛为原料,加入了活性炭、单质硫、碳酸钠以及二氧化硅,通过高温煅烧方法制备了群蓝颜料。范广能等人研究了废分子筛、废氧化铝的综合利用问题。
发明内容
本发明的目的是提供一种有机废水处理剂及其制备方法,该处理剂是利用废弃分子筛的微孔结构将纳米TiO2进行分散固定,用以提高TiO2催化剂颗粒的使用效率,同时,活化后分子筛的强吸附性可以将水体中有机污染物吸附于其表面,然后,通过光催化作用将其降解为无污染的小分子,最终可分解为CO2和H2O,从根本上将水体中的有机污染物去除。
本发明为实现上述发明目的所提供的技术方案为:一种有机废水处理剂,由活化分子筛、用以包覆活化分子筛的无机钛盐和用调节反应体系pH值至4~5的碳酸氨反应后脱水、干燥、煅烧而成,其中,无机钛盐按照[Ti]4+与活化分子筛质量比为15~20:100的比例加入,所述活化分子筛由废弃分子筛粉碎后经硫酸活化后制成。
所述无机钛盐为四氯化钛、硫酸钛、硫酸氧钛。
所述活化分子筛的制备方法为:首先将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1:5~7的固液比将其与质量浓度为30~50%的硫酸混合反应2~4h,且在反应过程中,不断搅拌并保持反应温度为90~100℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在100~110℃下干燥1~2小时后打散成粉体,即得到活化分子筛。
上述有机废水处理剂的制备方法,首先将废弃分子筛活化后制成粉末,而后利用无机钛盐进行包覆改性后,经脱水、洗涤、烘干、煅烧后制成,所述利用无机钛盐进行包覆改性的具体操作是:将活化后的分子筛粉末与去离子水按照1:15~20的固液比混合制成浆体,并在保持搅拌的条件下,向其中加入无机钛盐水溶液反应30~60分钟,反应结束后,再向其中加入浓度为1~3mol/L的碳酸铵溶液以调节反应体系的pH值为4~5,并继续反应1~2小时后完成包覆改性;
其中,无机钛盐按照[Ti]4+与活化分子筛质量比为15~20:100的比例加入。
所述废弃分子筛活化后制成粉末的操作为:首先将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1: 5~7的固液比将其与质量浓度为30~50%的硫酸混合反应2~4h,且在反应过程中,不断搅拌并保持反应温度为90~100℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在100~110℃下干燥1~2小时后打散成粉体,即得到活化分子筛粉末。
所述包覆改性后的脱水、洗涤、烘干和煅烧操作为:将包覆改性后的反应体系进行脱水、洗涤,洗涤后的滤饼在100~110℃下烘干3~5小时后打散成粉体,而后将该粉体在600~700℃下煅烧3~5小时,自然冷却后即得到产品。
有益效果:分子筛是一种硅铝酸盐,主要由硅铝通过氧桥连接组成空旷的骨架结构,在结构中有很多孔径均匀的孔道和排列整齐、内表面积很大的空穴。此外还含有电价较低而离子半径较大的金属离子和化合态的水。由于水分子在加热后连续地失去,但晶体骨架结构不变,形成了许多大小相同的空腔,空腔又有许多直径相同的微孔相连,比孔道直径小的物质分子吸附在空腔内部,而把比孔道大得分子排斥在外,从而使不同大小形状的分子分开,直到筛分分子的作用,因而称作分子筛,它主要用于各种气体、液体的深度干燥,气体、液体的分离和提纯,催化剂载体等;分子筛长期使用后,其内在孔道会被杂质堵塞,吸附和离子交换能力都会大大减弱,成为废弃分子筛。
本发明将废弃分子筛进行酸浸活化,使堵塞其孔道的杂质被酸溶解,进而恢复其吸附及离子交换能力;将活化后的分子筛进行纳米二氧化钛负载改性,其目的是赋予活化分子筛一种新的功能,既光催化降解能力,改性后的活化分子筛不但具有吸附、离子交换能力,而且在紫外光照射下,还具有光催化降解能力;煅烧的目的一是高温加热使化合态的水失去,以形成大量大小相同的空腔,增加其吸附能力,二是负载在活化分子筛表面的纳米二氧化钛在600℃高温下会实现锐钛矿晶型的转变,进而提高其光催化降解能力。
具体实施方式
下面结合具体实施例对本发明做进一步的阐述。
实施例1
一种有机废水处理剂,由活化分子筛、用以包覆活化分子筛的无机钛盐和用调节反应体系pH值至4的碳酸氨反应后脱水、干燥、煅烧而成,其中,无机钛盐为四氯化钛,其加入量按照[Ti]4+与活化分子筛质量比为15:100的比例加入,所述活化分子筛的制备方法为:首先将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1:5的固液比将其与质量浓度为30%的硫酸混合反应4h,且在反应过程中,不断搅拌并保持反应温度为90℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在100℃下干燥2小时后打散成粉体,即得到活化分子筛。
上述有机废水处理剂的制备方法,首先将废弃分子筛活化后制成粉末,而后利用无机钛盐进行包覆改性后,经脱水、洗涤、烘干、煅烧后制成,具体操作如下:
1)将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1: 5的固液比将其与质量浓度为30%的硫酸混合反应4h,且在反应过程中,不断搅拌并保持反应温度为90℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在100℃下干燥2小时后打散成粉体,即得到活化分子筛粉末;
2)将活化后的分子筛粉末与去离子水按照1:15的固液比混合制成浆体,并在保持搅拌的条件下,向其中加入四氯化钛水溶液反应30分钟,反应结束后,再向其中加入浓度为1mol/L的碳酸铵溶液以调节反应体系的pH值为4,并继续反应1小时后完成包覆改性;其中,四氯化钛按照[Ti]4+与活化分子筛质量比15:100的比例加入;
3)将包覆改性后的反应体系进行脱水、洗涤,洗涤后的滤饼在100℃下烘干5小时后打散成粉体,而后将该粉体在600℃下煅烧5小时,自然冷却后即得到产品。
实施例2
一种有机废水处理剂,由活化分子筛、用以包覆活化分子筛的无机钛盐和用调节反应体系pH值至5的碳酸氨反应后脱水、干燥、煅烧而成,其中,无机钛盐为硫酸钛,其加入量按照[Ti]4+与活化分子筛质量比为20:100的比例加入,所述活化分子筛的制备方法为:首先将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1:7的固液比将其与质量浓度为50%的硫酸混合反应2h,且在反应过程中,不断搅拌并保持反应温度为100℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在110℃下干燥1小时后打散成粉体,即得到活化分子筛。
上述有机废水处理剂的制备方法,首先将废弃分子筛活化后制成粉末,而后利用无机钛盐进行包覆改性后,经脱水、洗涤、烘干、煅烧后制成,具体操作如下:
1)将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1: 7的固液比将其与质量浓度为50%的硫酸混合反应2h,且在反应过程中,不断搅拌并保持反应温度为100℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在110℃下干燥1小时后打散成粉体,即得到活化分子筛粉末;
2)将活化后的分子筛粉末与去离子水按照1: 20的固液比混合制成浆体,并在保持搅拌的条件下,向其中加入硫酸钛水溶液反应60分钟,反应结束后,再向其中加入浓度为3mol/L的碳酸铵溶液以调节反应体系的pH值为5,并继续反应2小时后完成包覆改性;其中,硫酸钛按照[Ti]4+与活化分子筛质量比为20:100的比例加入;
3)将包覆改性后的反应体系进行脱水、洗涤,洗涤后的滤饼在110℃下烘干3小时后打散成粉体,而后将该粉体在700℃下煅烧3小时,自然冷却后即得到产品。
实施例3
一种有机废水处理剂,由活化分子筛、用以包覆活化分子筛的无机钛盐和用调节反应体系pH值至4.5的碳酸氨反应后脱水、干燥、煅烧而成,其中,无机钛盐为硫酸氧钛,其加入量按照[Ti]4+与活化分子筛质量比为17.5:100的比例加入,所述活化分子筛的制备方法为:首先将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1:6的固液比将其与质量浓度为40%的硫酸混合反应3h,且在反应过程中,不断搅拌并保持反应温度为95℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在105℃下干燥1.5小时后打散成粉体,即得到活化分子筛。
上述有机废水处理剂的制备方法,首先将废弃分子筛活化后制成粉末,而后利用无机钛盐进行包覆改性后,经脱水、洗涤、烘干、煅烧后制成,具体操作如下:
1)将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1: 6的固液比将其与质量浓度为40%的硫酸混合反应3h,且在反应过程中,不断搅拌并保持反应温度为95℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在105℃下干燥1.5小时后打散成粉体,即得到活化分子筛粉末;
2)将活化后的分子筛粉末与去离子水按照1:17.5的固液比混合制成浆体,并在保持搅拌的条件下,向其中加入硫酸氧钛水溶液反应45分钟,反应结束后,再向其中加入浓度为2mol/L的碳酸铵溶液以调节反应体系的pH值为4.5,并继续反应1.5小时后完成包覆改性;其中,硫酸氧钛按照[Ti]4+与活化分子筛质量比为17.5:100的比例加入;
3)将包覆改性后的反应体系进行脱水、洗涤,洗涤后的滤饼在105℃下烘干4小时后打散成粉体,而后将该粉体在650℃下煅烧4小时,自然冷却后即得到产品。
分别用实施例1-3制备的产品对学校校园生活废水(校园浴池废水、学生宿舍废水)进行光催化降解法治理,方法如下:
取校园生活废水水样150mL放入烧杯中,然后加入1.5g研制的处理剂,搅拌的同时,放在紫外灯下照射150分钟,停止光照后取上清液测其COD,得到的COD数值与原水COD数值进行对比,得到废水中COD的去除率。COD测定采用国标GB 11914-89化学需氧量的测定--COD标准测定法。
将实施例1-3制备的水处理剂按照前述方法进行光催化废水处理实验,结果发现废水中COD的去除率分别达到95%、96%和93%。

Claims (6)

1.一种有机废水处理剂,其特征在于:由活化分子筛、用以包覆活化分子筛的无机钛盐和用调节反应体系pH值至4~5的碳酸氨反应后脱水、干燥、煅烧而成,其中,无机钛盐按照[Ti]4+与活化分子筛质量比为15~20:100的比例加入,所述活化分子筛由废弃分子筛粉碎后经硫酸活化后制成。
2.根据权利要求1所述的一种有机废水处理剂,其特征在于:所述无机钛盐为四氯化钛、硫酸钛或硫酸氧钛。
3.根据权利要求1所述的一种有机废水处理剂,其特征在于,所述活化分子筛的制备方法为:首先将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1:5~7的固液比将其与质量浓度为30~50%的硫酸混合反应2~4h,且在反应过程中,不断搅拌并保持反应温度为90~100℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在100~110℃下干燥1~2小时后打散成粉体,即得到活化分子筛。
4.根据权利要求1所述的一种有机废水处理剂的制备方法,首先将废弃分子筛活化后制成粉末,而后利用无机钛盐进行包覆改性后,经脱水、洗涤、烘干、煅烧后制成,其特征在于:所述利用无机钛盐进行包覆改性的具体操作是:将活化后的分子筛粉末与去离子水按照1:15~20的固液比混合制成浆体,并在保持搅拌的条件下,向其中加入无机钛盐水溶液反应30~60分钟,反应结束后,再向其中加入浓度为1~3mol/L的碳酸铵溶液以调节反应体系的pH值为4~5,并继续反应1~2小时后完成包覆改性;
其中,无机钛盐按照[Ti]4+与活化分子筛质量比为15~20:100的比例加入。
5.根据权利要求4所述的一种有机废水处理剂的制备方法,其特征在于,所述废弃分子筛活化后制成粉末的操作为:首先将废弃分子筛粉碎至10微米以下制成超细粉体,然后按照1: 5~7的固液比将其与质量浓度为30~50%的硫酸混合反应2~4h,且在反应过程中,不断搅拌并保持反应温度为90~100℃,反应结束后将整个反应体系过滤至无SO4 2-离子,过滤后的滤饼在100~110℃下干燥1~2小时后打散成粉体,即得到活化分子筛粉末。
6.根据权利要求4所述的一种有机废水处理剂的制备方法,其特征在于,所述包覆改性后的脱水、洗涤、烘干和煅烧操作为:将包覆改性后的反应体系进行脱水、洗涤,洗涤后的滤饼在100~110℃下烘干3~5小时后打散成粉体,而后将该粉体在600~700℃下煅烧3~5小时,自然冷却后即得到产品。
CN201610809778.6A 2016-09-08 2016-09-08 一种有机废水处理剂及其制备方法 Active CN106237983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610809778.6A CN106237983B (zh) 2016-09-08 2016-09-08 一种有机废水处理剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610809778.6A CN106237983B (zh) 2016-09-08 2016-09-08 一种有机废水处理剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106237983A true CN106237983A (zh) 2016-12-21
CN106237983B CN106237983B (zh) 2018-11-23

Family

ID=57599285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610809778.6A Active CN106237983B (zh) 2016-09-08 2016-09-08 一种有机废水处理剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106237983B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892196A (zh) * 2018-07-09 2018-11-27 沈阳理工大学 一种净水材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1695796A (zh) * 2005-03-11 2005-11-16 哈尔滨工业大学 纳米级二氧化钛催化剂的制备及催化臭氧化水处理方法
CN1861252A (zh) * 2006-05-22 2006-11-15 苏州科技学院 一种沸石基纳米二氧化钛双功能材料及其制备方法
CN101053840A (zh) * 2007-04-06 2007-10-17 上海理工大学 用于处理染料废水的TiO2/13X分子筛复合材料的制备方法
CN101791570A (zh) * 2010-03-24 2010-08-04 南京工业大学 一种负载型光催化剂及其制备方法
CN102039117A (zh) * 2009-10-15 2011-05-04 中国矿业大学(北京) 以沉淀白炭黑为载体的负载型纳米TiO2复合材料的制备方法
CN105597668A (zh) * 2015-09-23 2016-05-25 辽宁石油化工大学 一种改性沸石的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1695796A (zh) * 2005-03-11 2005-11-16 哈尔滨工业大学 纳米级二氧化钛催化剂的制备及催化臭氧化水处理方法
CN1861252A (zh) * 2006-05-22 2006-11-15 苏州科技学院 一种沸石基纳米二氧化钛双功能材料及其制备方法
CN101053840A (zh) * 2007-04-06 2007-10-17 上海理工大学 用于处理染料废水的TiO2/13X分子筛复合材料的制备方法
CN102039117A (zh) * 2009-10-15 2011-05-04 中国矿业大学(北京) 以沉淀白炭黑为载体的负载型纳米TiO2复合材料的制备方法
CN101791570A (zh) * 2010-03-24 2010-08-04 南京工业大学 一种负载型光催化剂及其制备方法
CN105597668A (zh) * 2015-09-23 2016-05-25 辽宁石油化工大学 一种改性沸石的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王利剑等: "非金属矿物基纳米二氧化钛在废水处理中的应用", 《无机盐工业》 *
舒锋等: "纳米TiO2/硅藻土光催化降解罗丹明B废水的研究", 《中国非金属矿工业导刊》 *
马鸿文等: "《工业矿物与岩石》", 31 August 2002, 地质出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892196A (zh) * 2018-07-09 2018-11-27 沈阳理工大学 一种净水材料的制备方法
CN108892196B (zh) * 2018-07-09 2020-12-29 沈阳理工大学 一种净水材料的制备方法

Also Published As

Publication number Publication date
CN106237983B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
Peng et al. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution
Jia et al. The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin: Efficiency, toxicity evaluation, mechanisms and pathways
Xing et al. Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation
Gjipalaj et al. Easy recovery, mechanical stability, enhanced adsorption capacity and recyclability of alginate-based TiO2 macrobead photocatalysts for water treatment
Zhou et al. Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions
Motahari et al. Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment
US20180291266A1 (en) A carbon quantum dot synthesizing method and its application of modifying functional water purification material
Shen et al. Synthesis of high-efficient TiO2/clinoptilolite photocatalyst for complete degradation of xanthate
Zhang et al. Utilization of NaP zeolite synthesized with different silicon species and NaAlO2 from coal fly ash for the adsorption of Rhodamine B
Yuan et al. Removal of organic dye by air and macroporous ZnO/MoO3/SiO2 hybrid under room conditions
Chang et al. Regulation of the adsorption affinity of metal-organic framework MIL-101 via a TiO2 coating strategy for high capacity adsorption and efficient photocatalysis
Yu et al. AgI-modified TiO2 supported by PAN nanofibers: A heterostructured composite with enhanced visible-light catalytic activity in degrading MO
CN107892375A (zh) 含氯溶液中氯离子的去除方法
CN102294220A (zh) 分等级介孔γ-Al2O3纳米结构吸附剂的制备及应用
Feng et al. Biogenic synthesis and catalysis of porous CeO2 hollow microspheres
Bai et al. Study on the controlled synthesis of Zr/TiO2/SBA-15 nanophotocatalyst and its photocatalytic performance for industrial dye reactive red X–3B
Yin et al. Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme heterojunction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite
Si et al. Simultaneous removal of nitrogen and phosphorus by magnesium-modified calcium silicate core-shell material in water
Abarna et al. Influence of jute template on the surface, optical and photocatalytic properties of sol-gel derived mesoporous zinc oxide
El Saliby et al. TiO2 nanoparticles and nanofibres from TiCl4 flocculated sludge: Characterisation and photocatalytic activity
Ullah et al. Evaluations of physico-chemical properties of TiO2/clinoptilolite synthesized via three methods on photocatalytic degradation of crystal violet
Supothina et al. Hydrothermal synthesis and photocatalytic activity of anatase TiO2 nanofiber
Paziresh et al. Super effective recovery of industrial wastewater contaminated by multi-disperse dyes through hydroxyapatite produced from eggshell
Wang et al. Facile synthesis of porous TiO2 photocatalysts using waste sludge as the template
CN101142921A (zh) 沸石载纳米氧化锌无机抑硫酸盐还原菌粉剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20161221

Assignee: HENAN DAZHANG FILTER EQUIPMENT Co.,Ltd.

Assignor: LUOYANG INSTITUTE OF SCIENCE AND TECHNOLOGY

Contract record no.: X2024980000517

Denomination of invention: An organic wastewater treatment agent and its preparation method

Granted publication date: 20181123

License type: Common License

Record date: 20240111

EE01 Entry into force of recordation of patent licensing contract