CN106229155B - 一种制备单层2h相二硫化钼/微纳米碳复合材料的方法 - Google Patents

一种制备单层2h相二硫化钼/微纳米碳复合材料的方法 Download PDF

Info

Publication number
CN106229155B
CN106229155B CN201610698728.5A CN201610698728A CN106229155B CN 106229155 B CN106229155 B CN 106229155B CN 201610698728 A CN201610698728 A CN 201610698728A CN 106229155 B CN106229155 B CN 106229155B
Authority
CN
China
Prior art keywords
individual layer
phases
nano carbon
mos
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610698728.5A
Other languages
English (en)
Other versions
CN106229155A (zh
Inventor
常焜
李熠辉
汤宏伟
李苞
上官恩波
常照荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201610698728.5A priority Critical patent/CN106229155B/zh
Publication of CN106229155A publication Critical patent/CN106229155A/zh
Application granted granted Critical
Publication of CN106229155B publication Critical patent/CN106229155B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种制备单层2H相二硫化钼/微纳米碳复合材料的方法,具体过程为:以硫代钼酸铵和锂盐化合物为原料,通过简单的温度控制可以合成为插锂的2H相硫化钼块体,插锂的2H相硫化钼块体可以在水中水解自行剥离成2H相单层MoS2纳米片,再与微纳米碳自组装形成单层2H相二硫化钼/微纳米碳复合材料。本发明工艺操作简单,反应条件温和,所用试剂价格低廉,绿色环保。

Description

一种制备单层2H相二硫化钼/微纳米碳复合材料的方法
技术领域
本发明属于二硫化钼/碳复合材料的合成技术领域,具体涉及一种制备单层2H相二硫化钼/微纳米碳复合材料的方法。
背景技术
二硫化钼具有典型三明治层状结构,由于其层间相对较弱的范德华力,也可以剥离成单层或少层数的纳米片,被认为是另外一种相当重要的二维纳米片材料,具有独特的物理、化学和电学特性。Radisavljevic等人测试表明单层MoS2的电导率要比块体MoS2提高100个数量级,使得其在电子器件及电子传感器中有着优越的性能(Nat.Nanotechnol.2011,6,147);Mak等人通过计算模拟表明MoS2从块体剥离至单层,由于量子限域效应,其禁带宽度由间接带隙的1.3eV增大为直接带隙的1.8eV,使得光生电子空穴的分离能力提高(Phys.Rev.Lett.2010,105);Hinnemann等人通过密度函公式计算纳米级MoS2的暴露活性边缘的吸附氢吉布斯自由能,发现其边缘有很强的氢吸附能力,并有着金属Pt一样接近零吉布斯自由能的析氢性能,从而推断出单层的MoS2拥有更多的暴露活性边缘,很有希望成为替代Pt作为析氢材料的催化剂(J.Am.Chem.Soc.2005,127,5308)。ChenW.X.等人研究表明,单层MoS2在与碳基材料复合时,有着超高的容量贡献(>1500mAh/g),远远超过其块体材料的理论值(J.Mater.Chem.2011,21,6251)。
二硫化钼存在三种相态,即1T、2H和3R相。其中,1T相是MoS2以一个S-Mo-S单分子层作为最小重复单元堆叠,而2H和3R相是以两个和三个S-Mo-S单分子层作为最小重复单元堆叠。自然界中大部分MoS2是以2H稳定相存在的,1T和3R相属于亚稳态结构,在一定条件下可以转变为2H相。由于单层2H相的MoS2已经失去了双分子层为最小重复单元的特性,因此也被称为1H相。不同相态的MoS2材料所呈现的物理化学特性也不尽相同。例如,2H态MoS2材料展现出禁带宽度为1.3-1.9eV的半导体特性,其通过层数的多少来调节禁带宽度的大小;而1T态的MoS2材料则呈现出金属特性,其优越的导电性在催化水分解制氢以及超级电容领域取得了重要的突破(Advanced Energy Materials,2016,DOI:10.1002/aenm.201502555)。
虽然单层MoS2纳米材料在热、电、光、力学等方面的性质及其在光电子器件领域的潜在应用引起了科研人员的广泛关注。然而,一般的化学、物理法难以制备出纯单层结构的MoS2纳米材料,尤其是不同相态的单层硫化钼剥离制备。目前制备单层MoS2纳米材料的主要有微机械力剥离法、化学气相沉积法、锂离子插层法以及液相超声法等,这些剥离方法不仅操作繁琐,工艺复杂,而且单层MoS2的产量极低,大部分是厚度为1-100nm的少层数MoS2纳米片,而非真正意义上的单层MoS2。除了难以高效率地剥离制备单层MoS2纳米片外,MoS2纳米片只能在诸如二甲基甲酰胺和N-甲基吡咯烷酮等高沸点有机溶剂中剥离和保存,而这些有机溶剂粘度大、沸点很高,在离心收集过程中,单层或少层数MoS2又重新聚集成多层MoS2纳米片,从而限制了单层MoS2纳米片在一些科研或工业领域的探索和应用。此外,MoS2纳米片在实际应用研究过程中,常与无定型碳、碳纳米管、碳纤维以及石墨烯等碳材料复合,以增加其导电性能。
发明内容
本发明解决的技术问题是提供了一种简单、安全、高效且适合规模化生产的制备单层2H相二硫化钼/微纳米碳复合材料的方法,该方法是以硫代钼酸铵和锂盐化合物为原料,在一定温度下热处理得到2H相的插锂Li2MoS2块体,插锂Li2MoS2块体在去离子水中水解自行剥离,再与添加的微纳米碳自组装成单层2H相二硫化钼/微纳米碳复合材料,制得的单层2H相二硫化钼/微纳米碳复合材料既可以提高材料的导电性能,又可以有效抑制单层2H相二硫化钼的团聚。
本发明为解決上述技术问题采用如下技术方案,一种制备单层2H相二硫化钼/微纳米碳复合材料的方法,其特征在于具体步骤为:
(1)将硫代钼酸铵和锂盐化合物按1:2摩尔比混合研磨,研磨后的混合物在惰性气体保护下于200-400℃保温1-10h,冷却至室温得到插锂的2H相硫化钼块体;
(2)将插锂的2H相硫化钼块体直接置于去离子水中,辅助超声水解剥离5-30min,再将得到的悬浮液置于离心机中,经离心分离去除未剥离的沉淀物后得到单层2H相MoS2纳米片悬浮液;
(3)将微纳米碳加入到单层2H相MoS2纳米片悬浮液中得到混合悬浮液,再加入十六烷基三甲基溴化铵,其中十六烷基三甲基溴化铵的质量与混合悬浮液的体积比为1g:22.5-180mL,然后超声分散10-30min得到单层2H相MoS2/微纳米碳悬浮液;
(4)将得到的单层2H相MoS2/微纳米碳悬浮液在离心机上分别用水和乙醇离心洗涤去除可溶性杂质,最后将沉淀物单层2H相二硫化钼/微纳米碳复合材料分散于小分子溶剂中保存,其中单层2H相MoS2纳米片的厚度小于1nm。
进一步限定,步骤(1)中所述的锂盐化合物为氢氧化锂、氯化锂、醋酸锂、碳酸锂、硫酸锂或硝酸锂中的一种或多种。
进一步限定,步骤(2)中所述的离心机转速为1000r/min,步骤(4)中所述的离心机转速为4000-20000r/min。
进一步限定,步骤(3)中所述的微纳米碳为导电碳黑、纳米碳纤维、碳纳米管、石墨粉或还原氧化石墨烯。
进一步限定,步骤(3)中所述的微纳米碳与单层2H相MoS2纳米片悬浮液中MoS2的质量比为0.005-0.2:1。
进一步限定,步骤(4)中所述的小分子溶剂为水、甲醇、乙醇、异丙醇、丁醇、丙酮、N-甲基吡咯烷酮或N-甲基甲酰胺。
本发明与现有技术相比具有以下优点:
1、本发明以硫代钼酸铵和锂盐化合物为原料,通过简单的温度控制可以合成为插锂的2H相硫化钼块体,插锂的2H相硫化钼块体可以在水中水解自行剥离成2H相单层MoS2纳米片,再与微纳米碳自组装形成单层2H相二硫化钼/微纳米碳复合材料,并且可以在水、乙醇等小分子溶剂中稳定存在;
2、本发明得到的2H相单层MoS2纳米片的厚度小于1nm,而非现有技术中的1-100nm厚度的MoS2纳米片;
3、本发明合成的单层2H相二硫化钼/微纳米碳复合材料可以用于单层硫化钼在光析氢、电催化和储能等领域的研究;
4、本发明工艺操作简单,反应条件温和,所用试剂价格低廉,绿色环保。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
分别称取0.008mol的氢氧化锂和0.004mol的硫代钼酸铵,在玛瑙研钵中混合研磨1h,将研磨后的混合物置于刚玉坩埚中,放置在管式炉中,通氩气保护,程序升温至400℃,保温1h,然后继续通氩气自然降温至室温,得到插锂的2H相硫化钼(Li2MoS4)块体;将插锂的硫化钼块体置于盛有100mL去离子水的容器中,超声分散10min,分散后的悬浮液在转速为1000r/min的离心机上离心分离沉淀;根据去除沉淀后悬浮液中的二硫化钼含量加入1:0.1质量比的导电碳黑(乙炔黑)得到混合悬浮液,在90mL混合悬浮液中加入2g十六烷基三甲基溴化铵,超声分散30min后,得到单层2H相MoS2/碳黑悬浮液;将得到的单层2H相MoS2/碳黑悬浮液在转速为4000r/min的离心机上分别用水和乙醇离心洗涤3次去除可溶性杂质,最后将沉淀物单层2H相二硫化钼/碳黑复合材料分散于200mL去离子水中保存。所得的单层2H相二硫化钼/碳黑复合材料中碳含量约为10%。
实施例2
分别称取0.008mol的醋酸锂和0.004mol的硫代钼酸铵,在玛瑙研钵中混合研磨1h,将研磨后的混合物置于刚玉坩埚中,放置在管式炉中,通氩气保护,程序升温至200℃,保温10h,然后继续通氩气自然降温至室温,得到插锂的2H相硫化钼(Li2MoS4)块体;将插锂的硫化钼块体置于盛有200mL去离子水的容器中,超声分散10min,分散后的悬浮液在转速为1000r/min的离心机上离心分离沉淀;根据去除沉淀后悬浮液中的二硫化钼含量加入1:0.01质量比的碳纳米管得到混合悬浮液,在190mL混合悬浮液中加入2g十六烷基三甲基溴化铵,超声分散20min后,得到单层2H相MoS2/碳纳米管悬浮液;将得到的单层2H相MoS2/碳纳米管悬浮液在转速为10000r/min的离心机上分别用水和乙醇离心洗涤3次去除可溶性杂质,最后将沉淀物单层2H相二硫化钼/碳纳米管复合材料分散于200mL无水乙醇中保存。所得的单层2H相二硫化钼/碳纳米管复合材料中碳含量约为1.0%。
实施例3
分别称取0.008mol的硝酸锂和0.004mol的硫代钼酸铵,在玛瑙研钵中混合研磨1h,将研磨后的混合物置于刚玉坩埚中,放置在管式炉中,通氩气保护,程序升温至300℃,保温5h,然后继续通氩气自然降温至室温,得到插锂的2H相硫化钼(Li2MoS4)块体;将插锂的硫化钼块体置于盛有100mL去离子水的容器中,超声分散5min,分散后的悬浮液在转速为1000r/min的离心机上离心分离沉淀;根据去除沉淀后悬浮液中的二硫化钼含量加入1:0.005质量比的还原氧化石墨烯得到混合悬浮液,在90mL混合悬浮液中加入0.5g十六烷基三甲基溴化铵,超声分散10min,得到单层2H相MoS2/还原氧化石墨烯悬浮液;将得到的单层2H相MoS2/还原氧化石墨烯悬浮液在转速为20000r/min的离心机上分别用水和乙醇离心洗涤3次去除可溶性杂质,最后将沉淀物单层2H相二硫化钼/还原氧化石墨烯复合材料分散于200mL异丙醇中保存。所得的单层2H相二硫化钼/还原氧化石墨烯复合材料中碳含量约为0.5%。
实施例4
分别称取0.008mol的碳酸锂和0.004mol的硫代钼酸铵,在玛瑙研钵中混合研磨1h,研磨后的将混合物置于刚玉坩埚中,放置在管式炉中,通氩气保护,程序升温至300℃,保温5h,然后继续通氩气自然降温至室温,得到插锂的2H相硫化钼(Li2MoS4)块体;将插锂的硫化钼块体置于盛有100mL去离子水的容器中,超声分散30min,分散后的悬浮液在转速为1000r/min的离心机上离心分离沉淀;根据去除沉淀后悬浮液中的二硫化钼含量加入1:0.2质量比的纳米碳纤维得到混合悬浮液,在90mL混合悬浮液中加入4g十六烷基三甲基溴化铵,超声分散20min,得到单层2H相MoS2/纳米碳纤维悬浮液;将得到的单层2H相MoS2/纳米碳纤维悬浮液在转速为8000r/min的离心机上分别用水和乙醇离心洗涤3次去除可溶性杂质,最后将沉淀物单层2H相二硫化钼/纳米碳纤维复合材料分散于200mL N-甲基吡咯烷酮中保存。所得的单层2H相二硫化钼/纳米碳纤维复合材料中碳的含量约为20%。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (6)

1.一种制备单层2H相二硫化钼/微纳米碳复合材料的方法,其特征在于具体步骤为:
(1)将硫代钼酸铵和锂盐化合物按1:2摩尔比混合研磨,研磨后的混合物在惰性气体保护下于200-400℃保温1-10h,冷却至室温得到插锂的2H相硫化钼块体;
(2)将插锂的2H相硫化钼块体直接置于去离子水中,辅助超声水解剥离5-30min,再将得到的悬浮液置于离心机中,经离心分离去除未剥离的沉淀物后得到单层2H相MoS2纳米片悬浮液;
(3)将微纳米碳加入到单层2H相MoS2纳米片悬浮液中得到混合悬浮液,再加入十六烷基三甲基溴化铵,其中十六烷基三甲基溴化铵的质量与混合悬浮液的体积比为1g:22.5-180mL,然后超声分散10-30min得到单层2H相MoS2/微纳米碳悬浮液;
(4)将得到的单层2H相MoS2/微纳米碳悬浮液在离心机上分别用水和乙醇离心洗涤去除可溶性杂质,最后将沉淀物单层2H相二硫化钼/微纳米碳复合材料分散于小分子溶剂中保存,其中单层2H相MoS2纳米片的厚度小于1nm。
2.根据权利要求1所述的制备单层2H相二硫化钼/微纳米碳复合材料的方法,其特征在于:步骤(1)中所述的锂盐化合物为氯化锂、醋酸锂、碳酸锂、硫酸锂或硝酸锂中的一种或多种。
3.根据权利要求1所述的制备单层2H相二硫化钼/微纳米碳复合材料的方法,其特征在于:步骤(3)中所述的微纳米碳为导电碳黑、纳米碳纤维、碳纳米管、石墨粉或还原氧化石墨烯。
4.根据权利要求1所述的制备单层2H相二硫化钼/微纳米碳复合材料的方法,其特征在于:步骤(2)中所述的离心机转速为1000r/min,步骤(4)中所述的离心机转速为4000-20000r/min。
5.根据权利要求1所述的制备单层2H相二硫化钼/微纳米碳复合材料的方法,其特征在于:步骤(3)中所述的微纳米碳与单层2H相MoS2纳米片悬浮液中MoS2的质量比为0.005-0.2:1。
6.根据权利要求1所述的制备单层2H相二硫化钼/微纳米碳复合材料的方法,其特征在于:步骤(4)中所述的小分子溶剂为水、甲醇、乙醇、异丙醇、丁醇、丙酮、N-甲基吡咯烷酮或N-甲基甲酰胺。
CN201610698728.5A 2016-08-22 2016-08-22 一种制备单层2h相二硫化钼/微纳米碳复合材料的方法 Expired - Fee Related CN106229155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610698728.5A CN106229155B (zh) 2016-08-22 2016-08-22 一种制备单层2h相二硫化钼/微纳米碳复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610698728.5A CN106229155B (zh) 2016-08-22 2016-08-22 一种制备单层2h相二硫化钼/微纳米碳复合材料的方法

Publications (2)

Publication Number Publication Date
CN106229155A CN106229155A (zh) 2016-12-14
CN106229155B true CN106229155B (zh) 2018-03-06

Family

ID=57554078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610698728.5A Expired - Fee Related CN106229155B (zh) 2016-08-22 2016-08-22 一种制备单层2h相二硫化钼/微纳米碳复合材料的方法

Country Status (1)

Country Link
CN (1) CN106229155B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428565B (zh) * 2017-02-13 2019-09-27 中国科学院宁波材料技术与工程研究所 二硫化钨/氧化石墨烯复合材料、其制备方法与应用
CN115849448A (zh) * 2022-11-23 2023-03-28 杭州电子科技大学 三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835964A (zh) * 2015-05-14 2015-08-12 哈尔滨工业大学 一种三维大孔石墨烯-碳纳米管-二硫化钼复合材料及其制备方法和应用
CN104934602A (zh) * 2015-06-19 2015-09-23 上海交通大学 一种二硫化钼/碳复合材料及其制备方法
CN105293581A (zh) * 2015-10-25 2016-02-03 复旦大学 一种硫化钼/石墨烯/碳纳米球复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093491A1 (en) * 2014-09-29 2016-03-31 University Of North Texas LARGE SCALE AND THICKNESS-MODULATED MoS2 NANOSHEETS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835964A (zh) * 2015-05-14 2015-08-12 哈尔滨工业大学 一种三维大孔石墨烯-碳纳米管-二硫化钼复合材料及其制备方法和应用
CN104934602A (zh) * 2015-06-19 2015-09-23 上海交通大学 一种二硫化钼/碳复合材料及其制备方法
CN105293581A (zh) * 2015-10-25 2016-02-03 复旦大学 一种硫化钼/石墨烯/碳纳米球复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
二硫化钼及其碳复合材料的制备与电化学性能研究;蔡亚菱;《东南大学硕士学位论文》;20150401;第30、41、42页 *

Also Published As

Publication number Publication date
CN106229155A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
Hemanth et al. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review
CN106257609B (zh) 一种制备单层1t相二硫化钼/石墨烯复合材料的方法
Song et al. MXenes for polymer matrix electromagnetic interference shielding composites: A review
Tang et al. 2D metal carbides and nitrides (MXenes) as high‐performance electrode materials for Lithium‐based batteries
Fang et al. 2 D MXene‐based energy storage materials: interfacial structure design and functionalization
Shinde et al. Two-dimensional MXenes for electrochemical energy storage applications
Zhang et al. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+ LiF etchant: enhanced exfoliation and delamination
CN106241878B (zh) 一种1t相单层二硫化钼纳米片的制备方法
Lokhande et al. Prospects of MXenes in energy storage applications
Saroja et al. Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage
CN106335925B (zh) 一种制备单层2h相二硫化钼/石墨烯复合材料的方法
CN106495221B (zh) 一种单层二硫化钼纳米片的制备方法
Niu et al. Recycling waste tantalum capacitors to synthesize high value-added Ta2O5 and polyaniline-decorated Ta2O5 photocatalyst by an integrated chlorination-sintering-chemisorption process
CN104058399B (zh) 一种高纯度高质量石墨烯的直接制备方法
Sun et al. Porous Si/C anode materials by Al–Si dealloying method with PEA surfactant assisted cross-linked carbon coating for lithium-ion battery applications
Mateen et al. Ti2CTx–MXene aerogel based ultra–stable Zn–ion supercapacitor
Wang et al. Recycling Si waste cut from diamond wire into high performance porous Si@ SiO2@ C anodes for Li-ion battery
CN106517335B (zh) 一种单层二硫化钨纳米片的制备方法
Guo et al. MXene derivatives for energy storage and conversions
CN106298259B (zh) 一种2h相单层二硫化钼纳米片的制备方法
CN106229155B (zh) 一种制备单层2h相二硫化钼/微纳米碳复合材料的方法
Tien et al. Fast and simple reduction of graphene oxide in various organic solvents using microwave irradiation
Tung et al. Coupling graphene microribbons with carbon nanofibers: New carbon hybrids for high-performing lithium and potassium-ion batteries
Du et al. In situ synthesis of stable silicon carbide-reinforced silicon nanosheets from organoclay for high-performance lithium-ion battery anodes
CN106391058B (zh) 一种制备单层1t相二硫化钼/微纳米碳复合材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180306

Termination date: 20210822