CN106229148B - 一种SrRuO3纳米材料的生产方法及用该材料制备的对电极 - Google Patents

一种SrRuO3纳米材料的生产方法及用该材料制备的对电极 Download PDF

Info

Publication number
CN106229148B
CN106229148B CN201610545481.3A CN201610545481A CN106229148B CN 106229148 B CN106229148 B CN 106229148B CN 201610545481 A CN201610545481 A CN 201610545481A CN 106229148 B CN106229148 B CN 106229148B
Authority
CN
China
Prior art keywords
srruo
nano material
electrode
solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610545481.3A
Other languages
English (en)
Other versions
CN106229148A (zh
Inventor
王宁
高丽娜
于坤
刘涛
何泓材
赵强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610545481.3A priority Critical patent/CN106229148B/zh
Publication of CN106229148A publication Critical patent/CN106229148A/zh
Application granted granted Critical
Publication of CN106229148B publication Critical patent/CN106229148B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及纳米材料及其应用领域,特别是一种SrRuO3纳米材料的生产方法及用该材料制备的对电极。本发明利用水热法生产SrRuO3纳米材料,生产流程简单,生产过程中反应温度低,成本低。用SrRuO3纳米材料制备的对电极由透明导电玻璃基板及导电玻璃基板上的SrRuO3纳米材料层构成。该对电极光电转化效率与铂相当且不与电介质溶液反应,成本低,稳定性高。

Description

一种SrRuO3纳米材料的生产方法及用该材料制备的对电极
技术领域
本发明涉及纳米材料及其应用领域,特别是一种用于制备染料敏化太阳能电池对电极的钌酸锶SrRuO3纳米材料的生产方法及用该材料制备的对电极。
技术背景
典型的染料敏化太阳能电池的组成包括透明导电光学玻璃、透明纳米孔半导体电极(光阳极)、染料、电解质、对电极(光电阴极)等,形成三明治的电池结构。其中对电极的主要作用是收集来自外电路的电子以及催化I3 -的还原,传统对电极是由透明导电玻璃基板及导电玻璃基板上的一层铂构成,虽然铂具有较高的光电转化效率,但铂资源有限,价格昂贵,且易受I-/I3 -电解质溶液腐蚀,从而增加了染料敏化太阳能电池的成本,降低了染料敏化太阳能电池的稳定性,因此人们一直在寻找性能稳定,制备简单,陈本低廉的可替代铂的材料。据报道,导电钙钛矿(ABO3)(A:碱土金属和镧系元素;B:过渡元素)可被用于直接醇燃料电池阳极催化剂,拥有优秀的质子传输特性[Complex SrRuO3-Pt and LaRuO3-PtCatalysts for Direct Alcohol Fuel Cells.Industrial&Engineering ChemistryResearch,2008,47(23):8989– 8994]。因此钙钛矿SrRuO3具有良好的催化性能,可作为染料敏化太阳能电池对电极材料使用,对于SrRuO3纳米材料的制备方法存在两种公知方法,在《SrRuO3颗粒样品的制备及其性能》 (岳彩霞,《材料科学与工程学报》2014,32(6):918-921)中介绍的固相烧结法和化学共沉淀法,其中固相烧结法是将SrRuO3和RuO2按正比例化学配比混合,研磨2个小时后在空气氛围1073K(800℃)下预烧12个小时,自然冷却到室温后重新研磨,再在空气氛围1473 K(1200℃)下烧结,自然冷却后再研磨,此过程反复几次制备出SrRuO3样品;化学共沉淀法将RuCl3·3H2O、Sr(NO3)2按比例混合,溶于一定的去离子水中,待完全溶解后滴加一定量 NaOH水溶液,搅拌加热至阳离子完全沉淀,保温一个小时使反应完全,然后沉淀、洗涤直到溶液的pH值等于7为止。然后将样品放在干燥箱里干燥得到前驱体,最后在空气气氛1473 K(1200℃)温度下热处理得到的SrRuO3化合物。然而两种方法均存在过程复杂,热处理温度高,成本较高的弊病。
发明内容
本发明的目的是提供一种可用于染料敏化太阳能电池对电极的SrRuO3纳米材料的生产方法及用该材料制备的对电极,以达到SrRuO3纳米材料生产工艺简单,成本低,同时用该材料制备的对电极能够降低染料敏化电池的生产成本,提高稳定性的目的。
本发明采用水热法生产SrRuO3纳米材料,生产方法包括如下步骤:
步骤1、将SrCl·6H2O、RuCl3·3H2O和NaOH溶于去离子水中,得到钌离子,锶离子,钠离子的摩尔浓度比为1:1~2:25~40的混合溶液,搅拌至溶液混合均匀;
步骤2、将油酸加入到步骤1制得的混合均匀溶液中,所加油酸与步骤1所述NaOH的物质的量之比为1:3~4,继续搅拌至均匀得到反应前驱溶液;
步骤3、将步骤2制得的反应前驱溶液转移到水热反应装置中,放入加热装置中于180~200 ℃下水热反应24~48小时,反应结束后自然冷却至室温,得到SrRuO3与杂质的混合物;
步骤4、将步骤3制得的SrRuO3与杂质的混合物溶于去离子水中,在温度为60~80℃下恒温加热搅拌,搅拌至得到均一黑色溶液;
步骤5、将步骤4制得的均一黑色溶液放入离心机中室温下进行离心分离处理至黑色固体全部沉淀,倒掉上层白色浆状物,继续加去离子水在温度为60~80℃下恒温加热搅拌,然后在常温下进行离心分离处理,倒掉上层白色浆状物,重复此步骤直到上层溶液不再有白色浆状物得到黑色固体;
步骤6、将步骤5制得的黑色固体依次用环己烷、无水乙醇离心洗涤,反复洗涤3~5次;
步骤7、将步骤6所制得的产物放置在加热装置中于60~80℃下加热直至无水乙醇含量少于0.01%,即得到粒径为20~50nm的SrRuO3颗粒。
步骤4和步骤5中采用的恒温加热搅拌可以是恒温磁力搅拌或恒温电动搅拌或其他恒温搅拌。
采用SrRuO3纳米材料制备的对电极是由透明玻璃基板,形成于玻璃基板上的导电层构成的透明导电玻璃基板,和形成于导电层上的SrRuO3纳米材料层构成。
用SrRuO3纳米材料制备对电极的方法包括如下步骤:
步骤A、将SrRuO3纳米材料与无水乙醇、乙基纤维素、松油醇置于烧杯中,其质量比为 1:10~20:5~8:4~6,将混合材料进行磁力搅拌至溶液混合均匀得到混合溶液;
步骤B、将步骤A制得的的混合溶液进行旋蒸,得到SrRuO3浆料全部附着于旋蒸瓶内壁;
步骤C、将步骤B制得的浆料与无水乙醇按质量比为2:6~8一起加入小玻璃瓶中,磁力搅拌至SrRuO3溶液均一;
步骤D、将步骤C制得的SrRuO3溶液涂覆于透明导电玻璃基板上,厚度为5~6μm;
步骤E、将步骤D制得的涂覆上SrRuO3溶液的透明导电玻璃基板进行烧结处理,温度从室温按2~10℃/min的升温速率升至450~500℃,保温30分钟,随炉冷却至室温后得到目标电极。
本发明提供的方法生产的SrRuO3纳米材料生产流程简单,生产过程中反应温度低,成本低,用其制备的对电极光电转化效率与铂相当且不与电介质溶液反应,成本低,稳定性高。 SrRuO3纳米材料是一种很有前景的可替代铂的新型对电极材料。
附图说明
图1是染料敏化太阳能电池的结构示意图;
图2是涂覆在导电玻璃基板上的SrRuO3对电极的XRD图;
图3是涂覆在导电玻璃基板上的SrRuO3对电极的SEM图;
图4是涂覆在导电玻璃基板上的SrRuO3对电极与传统pt电极组装的染料敏化太阳能电池的光电流密度-电压曲线图;
附图标记:1.透明玻璃基板,2.FTO导电层,3.N719染料敏化过的TiO2光阳极,4.电解液,5.SrRuO3,6.封装层。
具体实施方式
SrRuO3纳米材料的生产包括如下步骤:
步骤1、分别称取0.3g的SrCl·6H2O、0.156g的RuCl3·3H2O和0.9g的NaOH溶于15mL去离子水中,得到锶离子浓度为0.075mol/L,钌离子浓度为0.05mol/L,钠离子浓度为1.5mol/L 的混合溶液,磁力搅拌1小时后,得到均匀的混合溶液;
步骤2、加入1.695g的油酸,继续搅拌2小时,形成反应前驱溶液;
步骤3、将步骤2制得的反应前驱溶液转移到聚四氟乙烯水热釜内胆中,装备好水热釜,放入烘箱中于200℃下水热反应48小时,反应结束后自然冷却至室温得到SrRuO3与杂质的混合物;
步骤4、将步骤3制得的SrRuO3与杂质的混合物溶于去离子水中,在恒温加热磁力搅拌器中80℃加热搅拌,至得到均一黑色溶液;
步骤5、将步骤4制得的均一黑色溶液放入离心机中在室温下进行离心分离处理至黑色固体全部沉淀,倒掉上层白色膏状物,继续加去离子水在恒温加热磁力搅拌器中80℃下搅拌然后在室温下进行离心分离处理至黑色固体全部沉淀,倒掉上层白色膏状物,得到黑色固体;
步骤6、将步骤5制得的黑色固体依次用环己烷、无水乙醇离心洗涤,反复洗涤3次。
步骤7、将步骤6所制得的产物放置在烘箱中60℃加热12小时,即得到粒径为20~50nm 的SrRuO3纳米颗粒。
用SrRuO3纳米材料制备对电极的方法包括如下步骤:
步骤A、将制得的SrRuO3纳米材料与1.78g的无水乙醇、0.89g的乙基纤维素、0.712g 松油醇置于烧杯中进行磁力搅拌至溶液混合均匀;
步骤B、对步骤A制得的溶液进行旋蒸得到SrRuO3浆料全部附着于旋蒸瓶内壁;
步骤C、将步骤B制得的SrRuO3浆料与无水乙醇按质量比为2:7一起加入小玻璃瓶中,磁力搅拌2个小时;
步骤D、将步骤C制得的SrRuO3溶液旋涂到导电玻璃基板上,转速为2000r/min,旋涂时间30秒;
步骤E、将步骤D中旋涂上浆料的导电玻璃基板进行烧结处理,温度从室温按2℃/min 的升温速率升至450℃,保温30分钟,随炉冷却至室温后得到SrRuO3对电极。
采用N719染料敏化的TiO2作为光阳极,采用实施例中制得的SrRuO3纳米材料层对电极,含有乙腈为溶剂的I-/I3 -电解质,组装成常规的三明治结构的染料敏化太阳能电池标为1号电池;采用较常用的铂对电极,含有乙腈为溶剂的I-/I3 -电解质,组装成常规的三明治结构的染料敏化太阳能电池,标为2号电池。采用AAA级别的太阳光模拟器(型号为94032A,美国 Newport公司产),光照强度为AM 1.5G下100mW/cm2,在-0.1-1.0V范围内测试1-2号电池的光电流密度-电压曲线,如图4所示,1号电池的短路电流密度Jsc为15.656mA/cm2,开路电压Voc为0.714V,光电转换效率为6..91%;2号电池的短路电流密度Jsc为15.44mA/cm2,开路电压Voc为0.782V,光电转换效率为6.82%。1号电池的效率高于2号电池,因此SrRuO3纳米材料完全可以作为替代铂的对电极材料。

Claims (3)

1.一种SrRuO3纳米材料的生产方法,包括如下步骤:
步骤1、将SrCl2·6H2O、RuCl3·3H2O和NaOH溶于去离子水中,得到钌离子,锶离子,钠离子的摩尔浓度比为1:1~2:25~40的混合溶液,搅拌至溶液混合均匀;
步骤2、将油酸加入到步骤1制得的混合均匀溶液中,所加油酸与步骤1所述NaOH的物质的量之比为1:3~4,继续搅拌至均匀得到反应前驱溶液;
步骤3、将步骤2制得的反应前驱溶液转移到水热反应装置中,放入加热装置中于180~200℃下水热反应24~48小时,反应结束后自然冷却至室温,得到SrRuO3与杂质的混合物;
步骤4、将步骤3制得的SrRuO3与杂质的混合物溶于去离子水中,在温度为60~80℃下恒温加热搅拌,搅拌至得到均一黑色溶液;
步骤5、将步骤4制得的均一黑色溶液放入离心机中室温下进行离心分离处理至黑色固体全部沉淀,倒掉上层白色浆状物,继续加去离子水在温度为60~80℃下恒温加热搅拌,然后在常温下进行离心分离处理,倒掉上层白色浆状物,重复此步骤直到上层溶液不再有白色浆状物得到黑色固体;
步骤6、将步骤5制得的黑色固体依次用环己烷、无水乙醇离心洗涤,反复洗涤3~5次;
步骤7、将步骤6所制得的产物放置在加热装置中于60~80℃下加热直至无水乙醇含量少于0.01%,即得到粒径为20~50nm的SrRuO3颗粒。
2.如权利要求1所述的SrRuO3纳米材料的生产方法,其特征在于:所述步骤4和步骤5中所用的恒温加热搅拌为恒温磁力搅拌或恒温电动搅拌。
3.一种采用权利要求1所述方法生产的SrRuO3纳米材料制备的对电极,其特征在于:包括透明玻璃基板,形成于玻璃基板上的导电层,和形成于导电层上的SrRuO3纳米材料层。
CN201610545481.3A 2016-07-12 2016-07-12 一种SrRuO3纳米材料的生产方法及用该材料制备的对电极 Expired - Fee Related CN106229148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610545481.3A CN106229148B (zh) 2016-07-12 2016-07-12 一种SrRuO3纳米材料的生产方法及用该材料制备的对电极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610545481.3A CN106229148B (zh) 2016-07-12 2016-07-12 一种SrRuO3纳米材料的生产方法及用该材料制备的对电极

Publications (2)

Publication Number Publication Date
CN106229148A CN106229148A (zh) 2016-12-14
CN106229148B true CN106229148B (zh) 2018-06-19

Family

ID=57520174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610545481.3A Expired - Fee Related CN106229148B (zh) 2016-07-12 2016-07-12 一种SrRuO3纳米材料的生产方法及用该材料制备的对电极

Country Status (1)

Country Link
CN (1) CN106229148B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112758996B (zh) * 2020-12-14 2022-04-19 清华大学 一种双功能氧电催化剂及其制备和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651428A (zh) * 2012-05-24 2012-08-29 常州大学 一种梯度铁电薄膜太阳能电池的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651428A (zh) * 2012-05-24 2012-08-29 常州大学 一种梯度铁电薄膜太阳能电池的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Correlation between the in-plain substrate strain and electrocatalytic activity of strontium ruthenate thin films in dye-sensitized solar cells;Tao Liu等;《Journal of Materials Chemistry A》;20160608;第4卷;全文 *
Hydrothermal synthesis of SrRuO3 nanocubes;Jennifer M. Noblitt等;《The Rocky Mountain Regional Meeting》;20070829;全文 *
SrRuO3颗粒样品的制备及其性能;岳彩霞等;《材料科学与工程学报》;20141231;第32卷(第6期);全文 *

Also Published As

Publication number Publication date
CN106229148A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
CN105957966A (zh) 稀土氧化物下转换材料钙钛矿太阳电池及制备方法
CN102723208B (zh) 一维氧化锌-二氧化钛核壳结构复合纳米线阵列的制备方法
CN105810442A (zh) 一种g-C3N4增强型太阳能电池的制造方法
CN101593627B (zh) 金属掺杂的低能隙纳米晶半导体光阳极薄膜的制备方法
CN103943365B (zh) 一种染料敏化太阳能电池改性光阳极的制备方法
CN100431176C (zh) 电泳沉积低温制备二氧化钛纳晶多孔薄膜电极的制备方法
CN109768163A (zh) 一种TiO2/CdS钙钛矿太阳能电池及制备方法
Li et al. An unprecedented fully reduced {Mo V 60} polyoxometalate: from an all-inorganic molecular light-absorber model to improved photoelectronic performance
CN104078244A (zh) 一种掺杂金属铌二氧化钛纳米片及其制备方法和应用
CN105576132B (zh) 基于上转化材料掺杂的钙钛矿太阳能电池及其制备方法
CN109638164B (zh) 一种水处理SnO2薄膜及其钙钛矿太阳能电池的制备方法
CN106971852A (zh) 一种改进型光阳极结构的染料敏化太阳能电池
CN106229148B (zh) 一种SrRuO3纳米材料的生产方法及用该材料制备的对电极
CN108987117A (zh) CoSe2电催化材料的制备方法及其在双面准固态染料敏化太阳能电池中的应用
CN107705993B (zh) 染料敏化太阳电池氧化铜纳米棒阵列对电极及其制备方法
CN109216559A (zh) 一种快速合成的b相二氧化钛在钙钛矿太阳能电池中的应用
CN105869897B (zh) 一种空心材料CeO2@TiO2的制备方法及其应用
CN105870335B (zh) 一种制备工艺简单的钙钛矿太阳能电池及其制备方法
CN108511197A (zh) 基于三层TiO2复合薄膜的染料电池
CN113804736A (zh) 铋/铋氧硒金属半导体异质结的制备方法及其应用
CN103165291B (zh) 基于三维TiO2纳米网状材料的太阳能电池光阳极及其制备方法
CN106449099A (zh) 一种基于ZnO纳米粉光阳极膜的制备方法及其制得的光阳极膜
CN107814410B (zh) 一种三氟氧钛酸铵及其制备和应用
CN108899422B (zh) HxMoO3-y纳米材料、HxMoO3-y电极以及包含其的太阳能电池及制备方法
CN106566550A (zh) 复合材料上转换发光材料的制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180619

Termination date: 20210712

CF01 Termination of patent right due to non-payment of annual fee