CN106227923A - 一种岩体结构面三维粗糙度评价方法 - Google Patents

一种岩体结构面三维粗糙度评价方法 Download PDF

Info

Publication number
CN106227923A
CN106227923A CN201610554491.3A CN201610554491A CN106227923A CN 106227923 A CN106227923 A CN 106227923A CN 201610554491 A CN201610554491 A CN 201610554491A CN 106227923 A CN106227923 A CN 106227923A
Authority
CN
China
Prior art keywords
rock mass
mass discontinuity
infinitesimal
roughness
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610554491.3A
Other languages
English (en)
Other versions
CN106227923B (zh
Inventor
蔡毅
唐辉明
葛云峰
谭钦文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201610554491.3A priority Critical patent/CN106227923B/zh
Publication of CN106227923A publication Critical patent/CN106227923A/zh
Application granted granted Critical
Publication of CN106227923B publication Critical patent/CN106227923B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明提供了一种岩体结构面三维粗糙度评价方法,包括以下步骤:建立岩体结构面三维几何模型,基于Delaunay三角剖分算法将岩体结构面离散为一系列三角形微元;根据剪切方向确定岩体结构面发生剪切作用时可能发生接触的部位,即潜在接触微元;计算岩体结构面的所有潜在接触微元在垂直于剪切方向的面上的总投影面积;计算上述总投影面积与岩体结构面水平投影面积之比,该比值用于描述岩体结构面三维粗糙程度。本发明结合结构面剪切破坏机制,获得具有明确理论依据的粗糙度评价指标,该指标不仅反映了结构面在剪切方向上的几何形态,考虑了岩体粗糙度的各向异性,同时与结构面抗剪强度存在一定联系,能更好的服务抗剪强度估算模型。

Description

一种岩体结构面三维粗糙度评价方法
技术领域
本发明涉及一种岩体结构面的粗糙度评价方法,属于岩体力学参数领域。
背景技术
岩体结构面是指在岩体内部发育具有一定方向、规模和形态的物质分界面或不连续面,如层面、节理、断层、裂隙等等。结构面的存在使得岩体物理力学性质存在不连续性、各向异性、非均一性等特点,同时也降低了岩体整体性及强度。因此,结构面的抗剪强度影响岩体整体力学性质。而结构面抗剪强度影响因素很多,如岩性、粗糙程度、连通性、充填胶结特征等。岩体结构面粗糙度研究的目的是建立与强度、变形、渗流特性间的相互关系,最终服务工程实践。自20世纪60年代以来,根据粗糙度评价结构面抗剪强度的估算模型的研究,受到国内外广泛关注。因此,结构面粗糙程度的准确快速评价对结构面抗剪强度的估算至关重要。
岩体结构面粗糙程度的评价涉及结构面数据的采集和具体评价方法。数据采集方式可分为接触式和非接触式,前者如单排针状轮廓尺、单针自动式轮廓仪等;后者如摄影测量法、三维激光扫描法等。关于岩体结构面粗糙度评价方法,国内外学者开展了大量有意义的研究,可分为经验取值法,数理统计法以及分形几何法等。不难发现,粗糙度评价方法经历由定性到定量、由二维到三维的发展趋势。现有的粗糙度评价方法相当一部分是基于结构面二维剖面提出的,不能完全反映结构面的真实情况,如JRC;大多数数理统计法仅从单一的几何信息入手,没有和结构面的力学特征联系起来,通过统计分析获取评价结构面粗糙程度的参数,评价指标缺乏理论推理;虽然分形维数法可以较好地表征结构面形态的无规律、复杂性,但是大部分分形方法无法考虑方向因素。
发明内容
针对现有技术的不足,本发明结合结构面剪切破坏机制,将结构面粗糙度评价指标与力学性质建立联系,基于结构面三维几何数据,提出一种岩体结构面三维粗糙度评价方法。
实现本发明目的所采用的技术方案为,一种岩体结构面三维粗糙度评价方法,包括如下步骤:
(1)建立岩体结构面三维几何模型;
(2)基于Delaunay三角剖分算法将岩体结构面三维几何模型离散为一系列三角形的微元;
(3)在一系列三角形的微元中确定潜在接触微元,潜在接触微元满足下列条件,微元的单位外法向量为单位外法向量在水平面投影向量的反向向量与剪切方向单位向量的夹角DA满足DA∈[0°,90°),其中,微元单位外法向量的正方向由岩体的内部指向外部;
(4)计算岩体结构面所有潜在接触微元在垂直于剪切方向的面上的总投影面积Av,计算公式为
其中,为第i个潜在接触微元的单位外法向量,Ai为第i个潜在接触微元的面积,n为潜在接触微元的总数量;
(5)计算粗糙度指标IPAP,粗糙度指标IPAP即为描述岩体三维结构面粗糙程度的参数,其计算公式为
其中,An为整个岩体结构面的水平投影面积。
步骤(1)建立岩体结构面三维几何模型的具体内容为,利用三维激光扫描仪以一定分辨率扫描岩体结构面,获取结构面三维几何信息的点云数据,根据点云数据建立岩体结构面三维几何模型。
由上述技术方案可知,本发明提供的岩体结构面三维粗糙度评价方法,首先将岩体结构面三维几何信息数字化,获取岩体结构面数字化几何模型,基于Delaunay三角剖分算法将岩体结构面离散为一系列三角形的微元;根据剪切方向确定岩体结构面发生剪切作用时可能发生接触的部位,即潜在接触微元;计算岩体结构面的所有潜在接触微元在垂直于剪切方向的面上的总投影面积;最后,计算上述岩体结构面的所有潜在接触微元在垂直于剪切方向的面上的总投影面积与岩体结构面水平投影面积之比,该比值的百分数形式即作为描述岩体三维结构面粗糙程度的新参数—粗糙度指标IPAP
自然界中绝大多数结构面具有不规则的粗糙起伏形态,即为不规则起伏结构面,为了方便分析,将不规则起伏结构面简化为规则锯齿形结构面进行分析研究(如图1),这也符合基于数字高程模型(Digital Elevation Model,简称DEM)三角剖分建立岩体模型的思想,当法向应力较低时,岩体以剪胀效应为主进行破坏,随着法向应力的增大,岩体将逐渐转变为以啃断效应为主进行破坏。
考虑到岩体结构面剪切破坏的复杂性,本发明进行的岩体结构面破坏机制的分析基于如下假设:所研究结构面的缝隙间无充填物质,且结构面受法向应力为低应力状态(以剪胀效应为主的岩体破坏形式)。做出上述假设的原因是:具有充填物的结构面受力破坏机制复杂,结构面的抗剪切能力一定程度上取决于充填物质的性质;当所受法向应力过大,可能使得结构面周围的岩体先行破坏,表面凸起部分被啃断,粗糙度亦发挥不出应有的作用。
由剪胀效应分析可知,发生剪切作用时结构面的接触部分影响结构面抗剪强度。大量研究亦表明,一定剪切方向下,结构面潜在接触部分决定其抗剪强度的大小。本发明以潜在接触微元为计算对象,潜在接触微元满足下列条件:微元的单位外法向量为单位外法向量在水平面投影向量的反向向量与剪切方向单位向量的夹角DA满足DA∈[0°,90°),其中,微元单位外法向量的正方向由岩体的内部指向外部;潜在接触微元表征的对象即为根据剪切方向确定岩体结构面发生剪切作用时可能发生接触的部位。
以S表示潜在接触微元,如图2,坐标轴x、y所在的平面即为水平面,z轴正方向表示结构面高程。y轴与x轴正方向分别表示方位角0°(360°)和90°。S受沿x轴正方向的剪应力τ和沿z轴负方向的法向应力σ的作用。为进一步阐明上述DA,对α定义如下:剪切方向单位向量的反向向量为微元的单位外法向量在水平面投影向量为旋转至的角度为α,α∈(-90°,90°),顺时针旋转取正值,逆时针旋转取负值;S与水平面的夹角为θ;S′为S在坐标轴y、z所在平面上的投影。
以剪应力τ沿x轴正方向为例,对潜在接触微元S进行受力分析。首先潜在接触微元S需满足以下条件:S面向剪切方向,同时θ∈(0°,90°]且α∈[0°,90°)(由于对称性不再讨论α∈(-90°,0°])。S面向剪切方向,即S的外法向量在水平面投影与y轴正方向夹角落在180°至360°。S与其投影面S′的面积分别为A、A′,二者关系见式1。
A′=cosαsinθA 式1
潜在接触微元S与剪切方向具有如下关系:S的单位外法向量在水平面投影向量的反向向量与剪切方向单位向量的夹角(DA)满足DA∈[0°,90°),当剪切方向沿x轴正方向(的方位角为90°)时α的分布情况如图3所示。
潜在接触微元S的受力分析如下:
平行于潜在接触微元S所在平面的剪切应力有两个,其一为平行于y轴正方向的剪应力τy=τsinα,其二为与x轴正方向成θ角度的剪切应力τx=τcosαcosθ-σsinθ;则平行于潜在接触微元S所在平面的剪切应力合力为垂直该平面的应力为σn=τcosαsinθ+σcosθ。设结构面强度服从库伦-纳维尔判据:(为S的摩擦角),可推导出由σ、α、θ表达的单位结构面S的抗剪强度计算式:f与下文g及h均表示一定函数关系。当α=0,则有即为著名的Patton公式。
σ视为已知常数,在某一剪切方向上,S的抗剪强度计算式可表达为:τ=g(α,θ),而A′=cosαsinθA,因此,针对面积为A的微元,α与θ确定是τ(或A′)确定的充分非必要条件。若忽略α,θ不同而A′相同的微元对整个岩体结构面的抗剪强度影响的差异,则α与θ确定是τ(或A′)确定的充分必要条件,即某一微元的抗剪强度τ,与该结构面在垂直于剪切方向的面上的投影面积A′存在一定函数关系,如τ=h(A′)。
针对第i个潜在接触微元,设第i个潜在接触微元的在垂直于剪切方向的面上的投影面积为A′i,则A′i不仅反映了结构面在剪切方向上的三维几何形态,更与结构面抗剪强度存在一定关系,因此,基于A′i表征的粗糙度评价参数能更好的服务抗剪强度估算模型。
综上所述,相比于现有技术,本发明的优点在于:本发明结合结构面剪切破坏机制,将结构面粗糙度评价指标与力学性质建立联系,基于结构面三维几何数据,提出了一个描述三维结构面粗糙程度的新参数,即粗糙度指标IPAP,并且详细描述了其计算方法,计算中所涉及的参数n、AiAn均可由岩体结构面三维几何模型获取;该指标的选取源于理论推导,具有一定理论依据,而非采用现有技术常用的通过统计分析获取评价结构面粗糙程度的参数、拟合经验公式,因此本发明设计的粗糙度指标IPAP结合了结构面剪切破坏机制、岩体结构面的三维几何信息与剪切方向,将结构面粗糙度评价指标与力学性质建立联系,考虑了岩体粗糙度的各向异性,不仅反映了结构面在剪切方向上的几何形态,更与结构面抗剪强度存在一定联系,能更好的服务抗剪强度估算模型,更好地反映结构面的实际情况。
附图说明
图1为本发明所述岩体结构面剖面图的简化模型图。
图2是本发明所述任意微元的空间几何分布及受力示意图。
图3为本发明所述剪切应力沿x轴正方向时α的分布示意图。
图4为本发明建立的岩体结构面三维几何模型网格化点云图。
图5为对网格化点云图进行三角剖分的模型图。
图6为本发明建立的结构面三角剖分模型图。
图7为各α取值区间内潜在接触结构面的IPAP(%)分布图。
图8为本发明所述岩体结构面粗糙度指标IPAP随剪切方向变化雷达图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。应当理解,本发明的实施例不应限于以下所述的示例性实施例,但应受权利要求书及其任何等同形式中阐述的限制的控制。
1)样本选取及数据采集:
重庆武隆铁矿乡境内,距离乡政府东南方向约1km,由于上覆岩体失稳发生破坏,从而导致大范围内有大尺寸结构面的出露,为本研究提供良好数据来源。所选岩体为深灰色中厚层灰岩,表面有部分植被发育,结构面类型属于层面,产状约为350°∠30°。岩体内部发现有大量生物碎屑化石,如贝类、介形虫、腕足、苔藓虫等,海相沉积,岩溶发育,岩体结构破碎,具有较大的孔隙率;本研究选用中国地质大学(武汉)教育部长江三峡库区地质灾害研究中心购置的加拿大Optech公司ILRIS-36D型三维激光扫描仪进行数据采集,扫描最大尺寸设定为2.18m×1.95m,扫描最小间距为0.01m,在此条件下岩体结构面离散为42924个坐标点的点云数据;
2)建立模型:
本实施例基于Matlab编程实现结构面几何模型建立及粗糙度指标的计算,结构面几何模型可由三维激光扫描获取的点云数据直接建立,也可根据点云数据插值求取网格化坐标对应的各点高程,从而建立结构面几何模型,本实施例采取后者方法建立结构面几何模型;
建立岩体结构面三维几何模型,①建立网格化点云图,基于三维激光扫描获取的结构面点云数据,利用Matlab中“griddata”函数的“v4”插值法,求取结构面网格化坐标点(x,y)对应的结构面高程(z),进而生成岩体结构面三维几何模型网格化点云图,如图4所示,网格化坐标采取x、y轴等间距,间距为D(图4中D取0.1m);②点云图的三角剖分,基于Delaunay三角剖分算法对上述点云图进行三角剖分,离散为一系列三角形的微元,如图5所示(图5中D为0.1m);③由此建立结构面三角剖分模型,如图6所示(图6中D为0.03m);
3)粗糙度指标的计算:
①在一系列三角形的微元中确定潜在接触微元,潜在接触微元满足下列条件,微元的单位外法向量为单位外法向量在水平面投影向量的反向向量与剪切方向单位向量的夹角DA满足DA∈[0°,90°),其中,微元单位外法向量的正方向由岩体的内部指向外部;
②计算岩体结构面所有潜在接触微元在垂直于剪切方向的面上的总投影面积Av,计算公式为
其中,为第i个潜在接触微元的单位外法向量,Ai为第i个潜在接触微元的面积,n为潜在接触微元的总数量;
③计算粗糙度指标IPAP,粗糙度指标IPAP即为描述岩体三维结构面粗糙程度的参数,其计算公式为
其中,An为整个岩体结构面的水平投影面积。
针对已建成的岩体结构面模型,基于本发明的一种岩体结构面三维粗糙度评价的新方法计算IPAP。如上所述,y轴、x轴正方向分别为方位角0°(360°)和90°方向。设置剪切方向从0°至360°(每间隔15°为一个工况)共24个工况。为揭示IPAP计算过程,针对各剪切方向的计算工况,研究不同α范围内(如图3所示)的潜在微元的IPAP分布情况。通过Matlab编程,计算24种工况下,α在-90°至90°每隔15°为一个区间范围,计算符合各α区间的潜在接触结构面的IPAP。由于篇幅限制,现将剪切方向从0°至315°(每隔45°为一个工况)共8个工况的计算结果列于图7。参见图7,计算结果表明,潜在接触结构面的IPAP在不同α取值区间的分布具有一定差异。
为研究IPAP的各向异性,进一步说明IPAP的合理性,本实施例将研究岩体结构面粗糙度指标IPAP随剪切方向变化趋势,为此依次计算24个工况对应的不同剪切方向下岩体结构面粗糙度指标IPAP,并根据计算结果绘制岩体结构面粗糙度指标IPAP随剪切方向变化雷达图,如图8所示,结果表明,以IPAP表征的岩体结构面粗糙度具有明显的各向异性。

Claims (2)

1.一种岩体结构面三维粗糙度评价方法,其特征在于,包括如下步骤:
(1)建立岩体结构面三维几何模型;
(2)基于Delaunay三角剖分算法将岩体结构面三维几何模型离散为一系列三角形的微元;
(3)在一系列三角形的微元中确定潜在接触微元,潜在接触微元满足下列条件,微元的单位外法向量为单位外法向量在水平面投影向量的反向向量与剪切方向单位向量的夹角DA满足DA∈[0°,90°),其中,微元单位外法向量的正方向由岩体的内部指向外部;
(4)计算岩体结构面所有潜在接触微元在垂直于剪切方向的面上的总投影面积Av,计算公式为
其中,为第i个潜在接触微元的单位外法向量,Ai为第i个潜在接触微元的面积,n为潜在接触微元的总数量;
(5)计算粗糙度指标IPAP,粗糙度指标IPAP即为描述岩体三维结构面粗糙程度的参数,其计算公式为
其中,Ah为整个岩体结构面的水平投影面积。
2.根据权利要求1所述的岩体结构面三维粗糙度评价方法,其特征在于:步骤(1)建立岩体结构面三维几何模型的具体内容为,利用三维激光扫描仪以一定分辨率扫描岩体结构面,获取结构面三维几何信息的点云数据,根据点云数据建立岩体结构面三维几何模型。
CN201610554491.3A 2016-07-14 2016-07-14 一种岩体结构面三维粗糙度评价方法 Active CN106227923B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610554491.3A CN106227923B (zh) 2016-07-14 2016-07-14 一种岩体结构面三维粗糙度评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610554491.3A CN106227923B (zh) 2016-07-14 2016-07-14 一种岩体结构面三维粗糙度评价方法

Publications (2)

Publication Number Publication Date
CN106227923A true CN106227923A (zh) 2016-12-14
CN106227923B CN106227923B (zh) 2018-02-27

Family

ID=57519871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610554491.3A Active CN106227923B (zh) 2016-07-14 2016-07-14 一种岩体结构面三维粗糙度评价方法

Country Status (1)

Country Link
CN (1) CN106227923B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106919538A (zh) * 2017-02-28 2017-07-04 武汉大学 一种岩基抗剪强度统计参数计算方法
CN107036905A (zh) * 2017-03-28 2017-08-11 中国地质大学(武汉) 一种岩体结构面二维粗糙度评价方法及系统
CN107449378A (zh) * 2017-07-21 2017-12-08 辽宁科技大学 一种基于三维图像的岩石表面粗糙程度测试及计算方法
CN107655459A (zh) * 2017-09-07 2018-02-02 南京理工大学 一种野外岩石结构面粗糙度的量测及计算方法
CN108038881A (zh) * 2018-01-11 2018-05-15 山东科技大学 一种利用平行光评价岩石结构面起伏程度的计算方法
CN108052790A (zh) * 2017-12-01 2018-05-18 武汉大学 一种大尺度基岩宏观抗剪强度的理论计算方法
CN108445188A (zh) * 2018-04-16 2018-08-24 浙江大学 基于中智区间函数的岩体结构面粗糙度系数尺寸效应下边坡稳定性表达方法
CN108647408A (zh) * 2018-04-16 2018-10-12 大连理工大学 一种新型岩石节理双阶粗糙度定量分析方法
CN108896004A (zh) * 2018-08-01 2018-11-27 刘敬寿 一种裂缝面粗糙度各向异性表征方法
CN109238875A (zh) * 2018-09-10 2019-01-18 湖南大学 一种基于半规则锯齿的桩岩界面研究的室内剪切试验方法
CN109493380A (zh) * 2017-09-11 2019-03-19 重庆大学 一种岩石节理面抗剪试验中不规则剪切面面积的计算方法
CN109509184A (zh) * 2018-11-07 2019-03-22 绍兴文理学院 基于全覆盖取样的结构面三维粗糙度系数确定方法
CN110362857A (zh) * 2019-06-04 2019-10-22 绍兴文理学院 岩石结构面各向异性分布特征的理论模型解析方法
CN110443844A (zh) * 2019-06-25 2019-11-12 中国地质大学(武汉) 一种基于钻孔图像的岩体结构面几何信息提取方法
CN110532669A (zh) * 2019-08-26 2019-12-03 西安建筑科技大学 一种用于机械结合面接触刚度建模的方法
CN110889246A (zh) * 2019-10-28 2020-03-17 绍兴文理学院 结构面抗剪区域的确定方法
CN111027016A (zh) * 2019-11-08 2020-04-17 宁波大学 一种基于编网算法的岩体结构面优势产状聚类分析方法
CN112414327A (zh) * 2020-11-17 2021-02-26 中国三峡建设管理有限公司 一种手持式混凝土粗糙度三维检测装置及方法
CN115587443A (zh) * 2022-10-14 2023-01-10 北京建筑大学 岩石节理面粗糙度的确定方法、装置、电子设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060102810A (ko) * 2005-03-25 2006-09-28 한국지질자원연구원 절리면 거칠기 측정 장치
CN101042320A (zh) * 2007-04-30 2007-09-26 浙江建设职业技术学院 岩体结构面潜在滑移方向抗剪强度确定方法
JP2007303855A (ja) * 2006-05-09 2007-11-22 System Box Japan株式会社 地球情報分析システム
CN102819631A (zh) * 2012-07-18 2012-12-12 北京中科辅龙科技股份有限公司 一种三维地质勘察分析和交互方法
US20130222787A1 (en) * 2012-02-23 2013-08-29 Canon Kabushiki Kaisha Roughness evaluating apparatus, and object evaluating apparatus and roughness evaluating method using the same
CN103759677A (zh) * 2014-01-27 2014-04-30 东北大学 基于三角面积比法度量岩体结构面三维粗糙度的方法
CN104613864A (zh) * 2015-02-15 2015-05-13 湖南科技大学 一种岩体结构面起伏度测量仪及其测量方法
CN105758361A (zh) * 2016-02-01 2016-07-13 绍兴文理学院 一种结构面粗糙度系数各向异性定量评价方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060102810A (ko) * 2005-03-25 2006-09-28 한국지질자원연구원 절리면 거칠기 측정 장치
JP2007303855A (ja) * 2006-05-09 2007-11-22 System Box Japan株式会社 地球情報分析システム
CN101042320A (zh) * 2007-04-30 2007-09-26 浙江建设职业技术学院 岩体结构面潜在滑移方向抗剪强度确定方法
US20130222787A1 (en) * 2012-02-23 2013-08-29 Canon Kabushiki Kaisha Roughness evaluating apparatus, and object evaluating apparatus and roughness evaluating method using the same
CN102819631A (zh) * 2012-07-18 2012-12-12 北京中科辅龙科技股份有限公司 一种三维地质勘察分析和交互方法
CN103759677A (zh) * 2014-01-27 2014-04-30 东北大学 基于三角面积比法度量岩体结构面三维粗糙度的方法
CN104613864A (zh) * 2015-02-15 2015-05-13 湖南科技大学 一种岩体结构面起伏度测量仪及其测量方法
CN105758361A (zh) * 2016-02-01 2016-07-13 绍兴文理学院 一种结构面粗糙度系数各向异性定量评价方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
G GRASSELLI 等: "Quantitative three-dimensional description of a rough surface and parameter evolution with shearing", 《INTERNATIONAL JOURNAL OF ROCK MECHANICS & MINING SCIENCES》 *
GUANGCHENG ZHANG 等: "A new method estimating the 2D Joint Roughness Coefficient for discontinuity surfaces in rock masses", 《INTERNATIONAL JOURNAL OF ROCK MECHANICS & MINING SCIENCES》 *
HUIMING TANG 等: "Study on Estimation Method of Rock Mass Discontinuity Shear Strength Based on Three-Dimensional Laser Scanning and Image Technique", 《JOURNAL OF EARTH SCIENCE》 *
JUNG-WOOK PARK 等: "Numerical method for the determination of contact areas of a rock joint under normal and shear loads", 《INTERNATIONAL JOURNAL OF ROCK MECHANICS & MINING SCIENCES》 *
葛云峰 等: "天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究", 《岩石工程学报》 *
葛云峰 等: "岩体结构面三维粗糙度系数表征新方法", 《岩石力学与工程学报》 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106919538A (zh) * 2017-02-28 2017-07-04 武汉大学 一种岩基抗剪强度统计参数计算方法
CN106919538B (zh) * 2017-02-28 2019-04-09 武汉大学 一种岩基抗剪强度统计参数计算方法
CN107036905A (zh) * 2017-03-28 2017-08-11 中国地质大学(武汉) 一种岩体结构面二维粗糙度评价方法及系统
CN107036905B (zh) * 2017-03-28 2019-07-23 中国地质大学(武汉) 一种岩体结构面二维粗糙度评价方法及系统
CN107449378A (zh) * 2017-07-21 2017-12-08 辽宁科技大学 一种基于三维图像的岩石表面粗糙程度测试及计算方法
CN107449378B (zh) * 2017-07-21 2019-08-20 辽宁科技大学 一种基于三维图像的岩石表面粗糙程度测试及计算方法
CN107655459A (zh) * 2017-09-07 2018-02-02 南京理工大学 一种野外岩石结构面粗糙度的量测及计算方法
CN109493380A (zh) * 2017-09-11 2019-03-19 重庆大学 一种岩石节理面抗剪试验中不规则剪切面面积的计算方法
CN108052790A (zh) * 2017-12-01 2018-05-18 武汉大学 一种大尺度基岩宏观抗剪强度的理论计算方法
CN108052790B (zh) * 2017-12-01 2019-05-24 武汉大学 一种大尺度基岩宏观抗剪强度的理论计算方法
CN108038881A (zh) * 2018-01-11 2018-05-15 山东科技大学 一种利用平行光评价岩石结构面起伏程度的计算方法
WO2019136870A1 (zh) * 2018-01-11 2019-07-18 山东科技大学 一种利用平行光评价岩石结构面起伏程度的计算方法
CN108647408A (zh) * 2018-04-16 2018-10-12 大连理工大学 一种新型岩石节理双阶粗糙度定量分析方法
CN108445188A (zh) * 2018-04-16 2018-08-24 浙江大学 基于中智区间函数的岩体结构面粗糙度系数尺寸效应下边坡稳定性表达方法
CN108896004A (zh) * 2018-08-01 2018-11-27 刘敬寿 一种裂缝面粗糙度各向异性表征方法
CN108896004B (zh) * 2018-08-01 2020-03-20 中国石油大学(华东) 一种裂缝面粗糙度各向异性表征方法
CN109238875B (zh) * 2018-09-10 2020-10-02 湖南大学 一种基于半规则锯齿的桩岩界面研究的室内剪切试验方法
CN109238875A (zh) * 2018-09-10 2019-01-18 湖南大学 一种基于半规则锯齿的桩岩界面研究的室内剪切试验方法
CN109509184A (zh) * 2018-11-07 2019-03-22 绍兴文理学院 基于全覆盖取样的结构面三维粗糙度系数确定方法
CN110362857A (zh) * 2019-06-04 2019-10-22 绍兴文理学院 岩石结构面各向异性分布特征的理论模型解析方法
CN110362857B (zh) * 2019-06-04 2023-05-16 绍兴文理学院 岩石结构面各向异性分布特征的理论模型解析方法
CN110443844A (zh) * 2019-06-25 2019-11-12 中国地质大学(武汉) 一种基于钻孔图像的岩体结构面几何信息提取方法
CN110443844B (zh) * 2019-06-25 2021-10-15 中国地质大学(武汉) 一种基于钻孔图像的岩体结构面几何信息提取方法
CN110532669A (zh) * 2019-08-26 2019-12-03 西安建筑科技大学 一种用于机械结合面接触刚度建模的方法
CN110532669B (zh) * 2019-08-26 2022-09-13 西安建筑科技大学 一种用于机械结合面接触刚度建模的方法
CN110889246A (zh) * 2019-10-28 2020-03-17 绍兴文理学院 结构面抗剪区域的确定方法
CN110889246B (zh) * 2019-10-28 2023-06-27 绍兴文理学院 结构面抗剪区域的确定方法
CN111027016A (zh) * 2019-11-08 2020-04-17 宁波大学 一种基于编网算法的岩体结构面优势产状聚类分析方法
CN111027016B (zh) * 2019-11-08 2023-05-12 宁波大学 一种基于编网算法的岩体结构面优势产状聚类分析方法
CN112414327A (zh) * 2020-11-17 2021-02-26 中国三峡建设管理有限公司 一种手持式混凝土粗糙度三维检测装置及方法
CN112414327B (zh) * 2020-11-17 2022-08-09 中国三峡建设管理有限公司 一种手持式混凝土粗糙度三维检测装置及方法
CN115587443A (zh) * 2022-10-14 2023-01-10 北京建筑大学 岩石节理面粗糙度的确定方法、装置、电子设备及介质
CN115587443B (zh) * 2022-10-14 2024-03-26 北京建筑大学 岩石节理面粗糙度的确定方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN106227923B (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
CN106227923A (zh) 一种岩体结构面三维粗糙度评价方法
Caumon et al. Surface-based 3D modeling of geological structures
US10114134B2 (en) Systems and methods for generating a geological model honoring horizons and faults
EP2869096B1 (en) Systems and methods of multi-scale meshing for geologic time modeling
CN103759677B (zh) 基于三角面积比法度量岩体结构面三维粗糙度的方法
CN102622479B (zh) 一种基于三维草图的逆向工程cad建模方法
CN105136054A (zh) 基于地面三维激光扫描的构筑物精细变形监测方法及系统
Zhang et al. A modified method of discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces
CN110276732A (zh) 一种顾及地形特征线要素的山区点云空洞修复方法
Lai et al. Surface roughness of rock faces through the curvature of triangulated meshes
CN107945264A (zh) 路基三维建模方法
Seers et al. Probabilistic constraints on structural lineament best fit plane precision obtained through numerical analysis
CN104809756A (zh) 基于X-ray CT图像的沥青混合料空隙空间结构重构方法
Zhan et al. Computational framework for obtaining volumetric fracture intensity from 3D fracture network models using Delaunay triangulations
CN105931297A (zh) 三维地质表面模型中的数据处理方法
CN104121864B (zh) 一种岩石错动裂缝面的间隙评价方法
Zhang et al. 3D Visualization of Landslide Based on Close-Range Photogrammetry.
Xiao et al. Visualisation of the characteristics of mining subsidence with the consideration of topography: a case study in China
Lelièver et al. Geophysical inversion for contact surfaces
CN105737802B (zh) 基于体感摄影技术的堆积剖面空间结构信息分析方法
Yalçın et al. GPU algorithms for diamond-based multiresolution terrain processing
Gao et al. Visual research and determination of structural plane and free face of rock slopes
Ding et al. A fast volume measurement method for obtaining point cloud data from bulk stockpiles
Lai Using geometric computation for characterizing and visualizing geological structures
CN105913491A (zh) 三维地质表面模型中的网格化数据处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant