WO2019136870A1 - 一种利用平行光评价岩石结构面起伏程度的计算方法 - Google Patents

一种利用平行光评价岩石结构面起伏程度的计算方法 Download PDF

Info

Publication number
WO2019136870A1
WO2019136870A1 PCT/CN2018/083149 CN2018083149W WO2019136870A1 WO 2019136870 A1 WO2019136870 A1 WO 2019136870A1 CN 2018083149 W CN2018083149 W CN 2018083149W WO 2019136870 A1 WO2019136870 A1 WO 2019136870A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
degrees
rock
area
degree
Prior art date
Application number
PCT/CN2018/083149
Other languages
English (en)
French (fr)
Inventor
乔卫国
宋伟杰
常璐媛
杨旭旭
宋雪梅
林登阁
李彦志
张帅
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2019136870A1 publication Critical patent/WO2019136870A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts

Definitions

  • the invention belongs to the field of geotechnical engineering, and particularly relates to a calculation method for evaluating the degree of fluctuation of rock structure surface by using parallel light.
  • the evaluation method of the degree of undulation of rock mass structure is based on the two-dimensional section of the structural plane, which cannot reflect the three-dimensional characteristics of the structural surface roughness coefficient.
  • the three-dimensional evaluation method most of the structural surface undulation angles cannot be reflected. The nature of the opposite sex. Therefore, it is necessary to evaluate the calculation method of rock structure surface roughness based on three-dimensional and anisotropy, which can lay a foundation for further establishment of deep well micro-fracture roughness evaluation method, seepage model and micro-crack grouting theory.
  • the present invention proposes a calculation method for evaluating the degree of fluctuation of rock structure surface by using parallel light, which is reasonable in design, overcomes the deficiencies of the prior art, and has good effects.
  • a calculation method for evaluating the degree of fluctuation of rock structure surface by using parallel light comprising the following steps:
  • Step 1 Establish a three-dimensional model of the surface of the structural surface
  • the three-dimensional laser scanner is used to scan the rock surface, and the three-dimensional coordinate data of the surface of the structure surface is obtained. Then the three-dimensional drawing software is used for secondary processing, and finally a three-dimensional model of regular cuboid or cube rock structure surface is obtained.
  • Step 2 Discretize the 3D model
  • the three-dimensional model is divided and discrete by the smallest unit to obtain a plurality of tiny cuboid units;
  • Step 3 Simulate the forward light source
  • Step 4 Simulate the reverse light source
  • Step 5 Obtain a simulated grayscale image of the light source
  • the images of the rock surface under the illumination of the parallel light source are obtained, which are 0 degree forward light source simulation image, 90 degree forward light source simulation image, 0 degree reverse light source simulation image, and 90 degree reverse light source simulation image. ;
  • Step 6 Statistics of gray scale and area
  • Step 7 Convert grayscale and angle
  • Step 8 extract valid feature feature parameters
  • Step 9 Analyze and integrate the effective topographical parameters in the forward source simulation
  • Step 10 Analyze and integrate the effective topographical parameters in the simulation of the reverse light source
  • Step 11 Determine the total area of the rock structural surface
  • Step 12 Obtain a statistical model of the probability distribution of the rock structure surface relief angle.
  • the light source simulation technique is used to generate light and shadow on the surface of the rock sample, and the light source is disposed at the beginning end of the rock structure surface so that the illumination direction is consistent with the direction thereof; to ensure the consistency of the light intensity in each direction,
  • the light source type uses parallel light, and the angle between the parallel light and the rock structure surface is set to 0 degrees and 90 degrees.
  • the light source is disposed at the beginning end of the reverse rock structure surface, and the light source type adopts parallel light, and the angle between the parallel light and the rock structure surface is set to 0 degrees and 90 degrees.
  • step 6 the discrete images after being irradiated by the positive and negative light sources are integrated into a complete image, and the gray scale statistics are performed on the four image surfaces by using Matlab to obtain the gray of each smallest unit of the rock structural surface. The degree value and its corresponding area are superimposed on the area of the same gray value, and finally the gray value and the area statistics of the four sets of rock structure surfaces are obtained.
  • a flat rock plane is simulated, and parallel light with an angle of 0 to 180 degrees is arranged to be irradiated, and the gradient is 1 degree, and a total of 181 conditions are set to obtain gray at different angles.
  • the degree value converts the gray value and the area of the rock structure surface into the angle and its area statistics.
  • an area statistic of an angle of 90 degrees to 179 degrees is extracted in the 0 degree forward source analog image, and an area statistic of an angle of 180 degrees is extracted in the 90 degree forward source analog image;
  • the area statistics of the angle of 90 degrees to 179 degrees were extracted from the simulated image of the 0 degree reverse source, and the area statistics of the angle of 180 degrees were extracted from the simulated image of the 90 degree reverse source.
  • the angle between the parallel light and the rock structure surface is set to 0 degrees, and the area illuminated by the parallel light is an undulation angle against the rock seepage area, and the angle of the partial undulation angle is greater than 0 degrees.
  • the parallel light illumination angle analysis so the area of the image is extracted from 90 degrees to 179 degrees, the angle is 90 degrees, the undulation angle is 90 degrees, the angle is 91 degrees, the undulation angle is 89. Degree, and so on, the angle of 179 degrees indicates that the undulation angle is 1 degree; in the forward source simulation, the angle between the parallel light and the rock structure surface is set to 90 degrees, and the area illuminated by the parallel light is the entire rock structure surface.
  • the area with a partial undulation angle of 0 degree is more convenient, and the angle of the parallel light illumination is analyzed. Therefore, the area where the angle is 90 degrees in the image is extracted, and the angle is 90 degrees, indicating that the undulation angle is 0 degree, and finally the obtained is obtained.
  • the undulation angle against rock seepage is an area statistic from 0 to 90 degrees.
  • the angle between the parallel light and the rock structure surface is set to 0 degrees, and the area illuminated by the parallel light is an undulation angle that promotes the seepage area of the rock, and the angle of the undulation angle is greater than 0 degrees and less than or equal to 90 degrees, the angle of the parallel light illumination analysis, so the area of the image is extracted from 90 degrees to 179 degrees, the angle of 90 degrees means that the angle of undulation is 90 degrees, the angle of 91 degrees means that the angle of undulation is 89 degrees And so on, the angle of 179 degrees indicates that the undulation angle is 1 degree; in the reverse source simulation, the angle between the parallel light and the rock structure surface is set to 90 degrees, and the area illuminated by the parallel light is the entire rock structure surface, and the part is undulating.
  • the area with an angular angle of 0 degree is more convenient.
  • the angle of the parallel light illumination is analyzed. Therefore, the area where the angle is 90 degrees is extracted, and the angle is 90 degrees, indicating that the undulation angle is 0 degree. Finally, the promotion rock is obtained.
  • the undulation angle of the seepage is an area statistic of the region from 0 degrees to 90 degrees.
  • the area of the undulation angle against the rock seepage is between 0 and 90 degrees and the area of the undulation angle of the rock seepage is increased from 1 degree to 90 degrees, due to the 0 degree undulation angle and promotion of resisting rock seepage.
  • the 0 degree undulation angle of the rock seepage is consistent, so it is only counted once, and the statistics are not repeated, and the total area of the rock structural plane is obtained.
  • the undulation angle against the rock seepage is set to be positive
  • the undulation angle for promoting the rock seepage is set to be negative
  • the area of the area where the undulation angle of the rock seepage is resisted and promoted is 0 to 90 degrees, respectively.
  • the invention scans the structural plane of the rock mass by using a three-dimensional laser scanner to obtain a three-dimensional model of the rock mass structural surface; discretizes the three-dimensional model of the structural surface surface, and discretizes the parallel light source for each discrete region and counts the gray of different regions. And the area, the discrete results are superimposed to obtain the undulation angle and area statistics of the entire surface of the structural surface.
  • This calculation method lays a foundation for further study of the three-dimensional shear mechanical properties and seepage characteristics of the rock structural surface, mainly considering the structural surface relief angle. Based on the orientation and anisotropy, the degree of fluctuation of the rock structural plane can be obtained efficiently and accurately.
  • Figure 1 is a rough sandstone test block and a partial enlarged view.
  • Figure 2 shows a thin sandstone test block and a partial enlarged view.
  • Figure 3 is a schematic diagram of a three-dimensional model of a coarse sandstone structure.
  • Figure 4 is a schematic diagram of a three-dimensional model of a fine sandstone structure.
  • Figure 5 is a model discrete dissection diagram.
  • Figure 6 is a partial enlarged view of the discrete model.
  • Fig. 7 is a schematic diagram showing the simulation of the forward light source when the angle between the parallel light and the rock structure is 0 degree.
  • Fig. 8 is a schematic diagram showing the simulation of the forward light source when the angle between the parallel light and the rock structure is 90 degrees.
  • Fig. 9 is a schematic diagram showing the simulation of the reverse light source when the angle between the parallel light and the rock structure is 0 degree.
  • Fig. 10 is a schematic diagram showing the simulation of the reverse light source when the angle between the parallel light and the rock structure is 90 degrees.
  • Figure 11 is a schematic diagram of the integration of discrete images into a complete image.
  • Fig. 12 is a schematic diagram showing a gray value image corresponding to the angle between the parallel light and the rock structural surface.
  • Fig. 13 is a schematic diagram showing the statistical model of the probability distribution of the undulation angle of the coarse sandstone structure.
  • Fig. 14 is a schematic diagram showing the statistical model of the probability distribution of the undulation angle of the fine sandstone structure.
  • Figure 15 is a flow chart showing a method for calculating the degree of fluctuation of rock structure surface using parallel light.
  • a calculation method for evaluating the degree of fluctuation of rock structure surface by using parallel light the flow of which is shown in FIG. 15 , and specifically includes the following steps:
  • the small unit is divided and discrete to obtain a plurality of tiny cuboid units, as shown in FIG. 5, and a partial enlargement thereof is shown in FIG. 6.
  • the light source simulation technique is used to generate light and shadow on the surface of the discrete rock sample.
  • the light source is disposed at the beginning end of the seepage of the rock structure surface, so that the illumination direction is consistent with its direction.
  • the source type uses parallel light.
  • the angle between the parallel light and the rock structure surface is set to 0 degrees and 90 degrees, as shown in Figures 7 and 8.
  • the light source is disposed at the initial end of the seepage flow of the reverse rock structure surface such that the illumination direction coincides with the direction.
  • the source type uses parallel light.
  • the angle between the parallel light and the rock structure surface is set to 0 degrees and 90 degrees, as shown in Fig. 9 and Fig. 10.
  • the images of the rock surface under the illumination of the parallel light source are obtained, which are 0 degree forward light source simulation image, 90 degree forward light source simulation image, 0 degree reverse light source simulation image, and 90 degree reverse light source simulation image. .
  • the discrete images illuminated by the over-positive and reverse-sources are integrated into a complete image, as shown in FIG.
  • the gray scale statistics of the four image surfaces are respectively performed by Matlab, and the gray value and corresponding area of each smallest unit of the rock structure surface are obtained. The area of the same gray value is superimposed on its area. Finally, the gray values and area statistics of the four sets of rock structural planes are obtained.
  • the area statistics of the angle of 90 degrees to 179 degrees are extracted from the 0 degree forward source simulation image, and the area statistics of the angle of 180 degrees are extracted in the 90 degree forward source simulation image; the image is extracted from the 0 degree inverse source simulation image.
  • the area angle is from 90 degrees to 179 degrees, and the area statistics of the angle of 180 degrees are extracted in the 90 degree reverse source analog image.
  • the angle between the parallel light and the rock structure surface is set to 0 degrees, and the area illuminated by the parallel light is the undulation angle against the rock seepage area.
  • the angle of the undulation angle is greater than 0 degrees and less than or equal to 90 degrees, and the parallel light is irradiated.
  • Angle analysis so the area of the image is extracted from 90 degrees to 179 degrees, the angle of 90 degrees means that the angle of undulation is 90 degrees, the angle of 91 degrees means that the angle of undulation is 89 degrees, and so on, the angle The undulation angle is 1 degree for 179 degrees.
  • the angle between the parallel light and the rock structure surface is set to 90 degrees, and the area illuminated by the parallel light is the entire rock structure surface.
  • the angle between the parallel light and the rock structure is set to 0 degree.
  • the area illuminated by the parallel light is the undulation angle of the rock seepage area.
  • the angle of the undulation angle is greater than 0 degrees and less than or equal to 90 degrees.
  • the angle of 90 degrees means that the angle of undulation is 90 degrees
  • the angle of 91 degrees means that the angle of undulation is 89 degrees
  • the angle is 179 degrees indicates that the undulation angle is 1 degree.
  • the angle between the parallel light and the rock structure surface is set to 90 degrees
  • the area illuminated by the parallel light is the entire rock structure surface.
  • the area of the undulation angle of 0 to 90 degrees against rock seepage and the area of the undulation angle of 1 to 90 degrees of rock seepage are superimposed, and the 0 degree undulation angle resisting rock seepage and the 0 degree undulation angle promoting rock seepage are Consistent, so only count once, do not repeat statistics, and then obtain the total area of the rock structural surface.
  • the undulation angle against the seepage of the rock is set to be positive, and the undulation angle of the rock seepage is set to be negative.
  • the area statistics of the area where the undulation angle of the rock seepage is 0 to 90 degrees is divided by the total area of the rock structural plane. And merge the two into the same coordinate system, the abscissa is the undulation angle, the ordinate is greater than or equal to the ratio of the sum of the angular area to the total area of the rock structural surface, and finally obtain the statistical model of the probability distribution of the undulation angle of the coarse sandstone and fine sandstone structure. As shown in Figures 13 and 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Architecture (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种利用平行光评价岩石结构面起伏程度的计算方法,属于岩土工程领域,通过三维激光扫描仪对岩体结构面进行扫描,获得岩体结构面三维模型,对结构面表面三维模型进行离散,离散后针对每个离散区域进行平行光源照射并统计不同区域的灰度及面积,进行灰度与角度转换,提取有效形貌特征参数,对正向光源模拟中有效形貌特征参数进行分析与整合,对逆向光源模拟中有效形貌特征参数进行分析与整合,确定岩石结构面总面积,获得岩石结构面起伏角概率分布统计模型。

Description

一种利用平行光评价岩石结构面起伏程度的计算方法 技术领域
本发明属于岩土工程领域,具体涉及一种利用平行光评价岩石结构面起伏程度的计算方法。
背景技术
工程岩体中内部往往存在节理、裂隙、断层等不连续面,这些不连续面破坏了岩体的完整性,控制着岩体的强度、变形及渗透等特性,进而影响岩体工程的稳定与安全。粗糙度是影响结构面的力学特性的重要因素,而天然岩石结构面的表面形态具有一定的随机性与复杂性,因此,如何有效描述结构面的起伏程度是研究岩体结构面粗糙度及力学特性的基础。
目前对岩体结构面起伏程度的评价方法,一部分是基于结构面的二维剖面提出的,不能体现结构面粗糙度系数的三维特性;而对于三维的评价方法,大多无法反映结构面起伏角各向异性的性质。因此,提出一种基于三维及各向异性评价岩石结构面起伏程度的计算方法十分必要,可为进一步建立深井微裂隙粗糙度评价方法、渗流模型和微裂隙注浆堵水理论奠定基础。
发明内容
针对现有技术中存在的上述技术问题,本发明提出了一种利用平行光评价岩石结构面起伏程度的计算方法,设计合理,克服了现有技术的不足,具有良好的效果。
为了实现上述目的,本发明采用如下技术方案:
一种利用平行光评价岩石结构面起伏程度的计算方法,包括如下步骤:
步骤1:建立结构面表面三维模型;
采用三维激光扫描仪对岩石结构面进行扫描,获取结构面表面三维坐标数据后,利用三维绘图软件进行二次处理,最终获得规则的长方体或正方体岩石结构面三维模型;
步骤2:对三维模型进行离散;
沿平行于三维模型的任意一边,以最小单元对三维模型进行剖分、离散,获得若干微小长方体单元;
步骤3:模拟正向光源;
步骤4:模拟逆向光源;
步骤5:获取光源模拟灰度图像;
通过正、逆向光源模拟,获取岩石结构面在平行光源照射下的图像,分别为0度正向光源模拟图像、90度正向光源模拟图像、0度逆向光源模拟图像、90度逆向光源模拟图像;
步骤6:统计灰度及面积;
步骤7:对灰度与角度进行转换;
步骤8:提取有效形貌特征参数;
步骤9:对正向光源模拟中有效形貌特征参数进行分析与整合;
步骤10:对逆向光源模拟中有效形貌特征参数进行分析与整合;
步骤11:确定岩石结构面总面积;
步骤12:获得岩石结构面起伏角概率分布统计模型。
优选地,在步骤3中,利用光源模拟技术在岩样表面生成光亮和阴影,光源设置于岩石结构面渗流起始一端,使得照射方向与其方向一致;为保证各个方向上光照强度的一致性,光源类型采用平行光,平行光与岩石结构面夹角设置为0度和90度。
优选地,在步骤4中,光源设置于逆向岩石结构面渗流起始一端,光源类型采用平行光,平行光与岩石结构面夹角设置为0度和90度。
优选地,在步骤6中,将经过正、逆向光源照射后的离散图像整合成完整图像,采用Matlab分别对其四个图像表面进行灰度统计,获取岩石结构面每一最小单元所具备的灰度值及其对应的面积,针对相同灰度值的区域,将其面积进行叠加,最终获得4组岩石结构面所具备的灰度值及其面积统计。
优选地,在步骤7中,模拟一个平整的岩石平面,设置与平面夹角为0度至180度的平行光进行照射,梯度为1度,共设置181种情况,获取不同夹角下的灰度值,进而将岩石结构面所具备的灰度值及其面积统计转换为夹角及其面积统计。
优选地,在步骤8中,在0度正向光源模拟图像中提取夹角为90度至179度的面积统计,在90度正向光源模拟图像中提取夹角为180度的面积统计;在0度逆向光源模拟图像中提取夹角为90度至179度的面积统计,在90度逆向光源模拟图像中提取夹角为180度的面积统计。
优选地,在步骤9中,正向光源模拟中,平行光与岩石结构面夹角设置为0度,平行光照射的区域为抵抗岩石渗流区域的起伏角,该部分起伏角角度大于0度小于等于90度,对平行光照射角度分析,故提取该图像中夹角为90度至179度的面积统计,夹角为90度表示起伏角为90度,夹角为91度表示起伏角为89度,以此类推,夹角为179度表示起伏角为1度;正向光源模拟中,平行光与岩石结构面夹角设置为90度,平行光照射的区域为整个岩石结构面,统计该部分起伏角角度为0度的区域更为便捷,对平行光照射角度分析,故提取该图像中夹角为90度面积统计,夹角为90度表示起伏角为0度的区域,最终获取了抵抗岩石渗流的起伏角为0度至90度区域的面积统计。
优选地,在步骤10中,逆向光源模拟中,平行光与岩石结构面夹角设置为0度,平行光 照射的区域为促进岩石渗流区域的起伏角,该部分起伏角角度大于0度小于等于90度,对平行光照射角度分析,故提取该图像中夹角为90度至179度的面积统计,夹角为90度表示起伏角为90度,夹角为91度表示起伏角为89度,以此类推,夹角为179度表示起伏角为1度;逆向光源模拟中,平行光与岩石结构面夹角设置为90度,平行光照射的区域为整个岩石结构面,统计该部分起伏角角度为0度的区域更为便捷,对平行光照射角度分析,故提取该图像中夹角为90度面积统计,夹角为90度表示起伏角为0度的区域,最终获取了促进岩石渗流的起伏角为0度至90度区域的面积统计。
优选地,在步骤11中,将抵抗岩石渗流的起伏角0度至90度区域及促进岩石渗流的起伏角1度至90度区域的面积进行叠加,因抵抗岩石渗流的0度起伏角和促进岩石渗流的0度起伏角是一致的,故只统计一次,不重复统计,进而获得岩石结构面的总面积。
优选地,在步骤12中,抵抗岩石渗流的起伏角设置为正,促进岩石渗流的起伏角设置为负,然后,将抵抗、促进岩石渗流的起伏角为0度至90度区域的面积统计分别除以岩石结构面的总面积,并将两者合并至同一坐标系,横坐标为起伏角,纵坐标为大于等于该角度面积总和与岩石结构面总面积的比例,最终获得岩石结构面起伏角概率分布统计模型。
本发明所带来的有益技术效果:
本发明通过三维激光扫描仪对岩体结构面进行扫描,获得岩体结构面三维模型;对结构面表面三维模型进行离散,离散后针对每个离散区域进行平行光源照射并统计不同区域的灰度及面积,将离散结果叠加得到结构面表面整个区域的起伏角度及面积统计,该计算方法为进一步研究岩石结构面的三维剪切力学特性及渗流特性奠定了基础,主要是在考虑结构面起伏角的方向及各向异性的基础上,可高效、精确地获取岩石结构面的起伏程度。
附图说明
图1为粗砂岩试块及局部放大图。
图2为细砂岩试块及局部放大图。
图3为粗砂岩结构面三维模型示意图。
图4为细砂岩结构面三维模型示意图。
图5为模型离散剖分图。
图6为离散模型局部放大图。
图7为平行光与岩石结构面夹角为0度时的正向光源模拟示意图。
图8为平行光与岩石结构面夹角为90度时的正向光源模拟示意图。
图9为平行光与岩石结构面夹角为0度时的逆向光源模拟示意图。
图10为平行光与岩石结构面夹角为90度时的逆向光源模拟示意图。
图11为离散图像整合成完整图像示意图。
图12为平行光与岩石结构面的夹角对应的灰度值图像示意图。
图13为粗砂岩结构面起伏角概率分布统计模型示意图。
图14为细砂岩结构面起伏角概率分布统计模型示意图。
图15为一种利用平行光评价岩石结构面起伏程度的计算方法的流程图。
具体实施方式
下面结合附图以及具体实施方式对本发明作进一步详细说明:
一种利用平行光评价岩石结构面起伏程度的计算方法,其流程如图15所示,具体包括如下步骤:
1、建立结构面表面三维模型
获取粗砂岩、细砂岩试块,如图1、图2所示。采用三维激光扫描仪对粗砂岩、细砂岩结构面进行扫描,扫描精度为0.4mm,获取结构面表面三维坐标数据后,利用三维绘图软件进行二次处理,最终获得粗砂岩、细砂岩结构面三维模型如图3、图4所示。
2、对结构面表面三维模型进行离散
沿平行于三维模型的任意一边,以最小单元进行剖分、离散,获得若干微小长方体单元,如图5所示,其局部放大如图6所示。
3、模拟正向光源
利用光源模拟技术在离散的岩样表面生成光亮和阴影,光源设置于岩石结构面渗流起始一端,使得照射方向与其方向一致。为保证各个方向上光照强度的一致性,光源类型采用平行光。平行光与岩石结构面夹角设置为0度和90度,如图7、图8所示。
4、模拟逆向光源
光源设置于逆向岩石结构面渗流起始一端,使得照射方向与其方向一致。为保证各个方向上光照强度的一致性,光源类型采用平行光。平行光与岩石结构面夹角设置为0度和90度,如图9、图10所示。
5、获取光源模拟灰度图像
通过正、逆向光源模拟,获取岩石结构面在平行光源照射下的图像,分别为0度正向光源模拟图像、90度正向光源模拟图像、0度逆向光源模拟图像、90度逆向光源模拟图像。
6、统计灰度及面积
将过正、逆向光源照射后的离散图像整合成完整图像,如图11所示。采用Matlab分别对其四个图像表面进行灰度统计,获取岩石结构面每一最小单元所具备的灰度值及其对应的面积。针对相同灰度值的区域,将其面积进行叠加。最终获得4组岩石结构面所具备的灰度 值及其面积统计。
7、对灰度与角度进行转换
模拟一个平整的岩石平面,设置与平面夹角为0度至180度的平行光进行照射,梯度为1度,共设置91种情况。获取不同夹角下的灰度值,如图12所示。进而将岩石结构面所具备的灰度值及其面积统计转换为夹角及其面积统计。
8、提取有效形貌特征参数
在0度正向光源模拟图像中提取夹角为90度至179度的面积统计,在90度正向光源模拟图像中提取夹角为180度的面积统计;在0度逆向光源模拟图像中提取夹角为90度至179度的面积统计,在90度逆向光源模拟图像中提取夹角为180度的面积统计。
9、对正向光源模拟中有效形貌特征参数进行分析与整合。
正向光源模拟中,平行光与岩石结构面夹角设置为0度,平行光照射的区域为抵抗岩石渗流区域的起伏角,该部分起伏角角度大于0度小于等于90度,对平行光照射角度分析,故提取该图像中夹角为90度至179度的面积统计,夹角为90度表示起伏角为90度,夹角为91度表示起伏角为89度,以此类推,夹角为179度表示起伏角为1度。正向光源模拟中,平行光与岩石结构面夹角设置为90度,平行光照射的区域为整个岩石结构面,统计该部分起伏角角度为0度的区域更为便捷,对平行光照射角度分析,故提取该图像中夹角为90度面积统计,夹角为90度表示起伏角为0度的区域。最终获取了抵抗岩石渗流的起伏角为0度至90度区域的面积统计。
10、对逆向光源模拟中有效形貌特征参数进行分析与整合
逆向光源模拟中,平行光与岩石结构面夹角设置为0度,平行光照射的区域为促进岩石渗流区域的起伏角,该部分起伏角角度大于0度小于等于90度,对平行光照射角度分析,故提取该图像中夹角为90度至179度的面积统计,夹角为90度表示起伏角为90度,夹角为91度表示起伏角为89度,以此类推,夹角为179度表示起伏角为1度。逆向光源模拟中,平行光与岩石结构面夹角设置为90度,平行光照射的区域为整个岩石结构面,统计该部分起伏角角度为0度的区域更为便捷,对平行光照射角度分析,故提取该图像中夹角为90度面积统计,夹角为90度表示起伏角为0度的区域。最终获取了促进岩石渗流的起伏角为0度至90度区域的面积统计。
11、确定岩石结构面总面积
将抵抗岩石渗流的起伏角0度至90度区域及促进岩石渗流的起伏角1度至90度区域的面积进行叠加,因抵抗岩石渗流的0度起伏角和促进岩石渗流的0度起伏角是一致的,故只统计一次,不重复统计,进而获得岩石结构面的总面积。
12、获得岩石结构面起伏角概率分布统计模型
抵抗岩石渗流的起伏角设置为正,促进岩石渗流的起伏角设置为负,然后,将抵抗、促进岩石渗流的起伏角为0度至90度区域的面积统计分别除以岩石结构面的总面积,并将两者合并至同一坐标系,横坐标为起伏角,纵坐标为大于等于该角度面积总和与岩石结构面总面积的比例,最终获得粗砂岩、细砂岩结构面起伏角概率分布统计模型如图13、14所示。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 一种利用平行光评价岩石结构面起伏程度的计算方法,其特征在于:包括如下步骤:
    步骤1:建立结构面表面三维模型;
    采用三维激光扫描仪对岩石结构面进行扫描,获取结构面表面三维坐标数据后,利用三维绘图软件进行二次处理,最终获得规则的长方体或正方体岩石结构面三维模型;
    步骤2:对三维模型进行离散;
    沿平行于三维模型的任意一边,以最小单元对三维模型进行剖分、离散,获得若干微小长方体单元;
    步骤3:模拟正向光源;
    步骤4:模拟逆向光源;
    步骤5:获取光源模拟灰度图像;
    通过正、逆向光源模拟,获取岩石结构面在平行光源照射下的图像,分别为0度正向光源模拟图像、90度正向光源模拟图像、0度逆向光源模拟图像、90度逆向光源模拟图像;
    步骤6:统计灰度及面积;
    步骤7:对灰度与角度进行转换;
    步骤8:提取有效形貌特征参数;
    步骤9:对正向光源模拟中有效形貌特征参数进行分析与整合;
    步骤10:对逆向光源模拟中有效形貌特征参数进行分析与整合;
    步骤11:确定岩石结构面总面积;
    步骤12:获得岩石结构面起伏角概率分布统计模型。
  2. 根据权利要求1所述的利用平行光评价岩石结构面起伏程度的计算方法,其特征在于:在步骤3中,利用光源模拟技术在岩样表面生成光亮和阴影,光源设置于岩石结构面渗流起始一端,使得照射方向与其方向一致;为保证各个方向上光照强度的一致性,光源类型采用平行光,平行光与岩石结构面夹角设置为0度和90度。
  3. 根据权利要求1所述的利用平行光评价岩石结构面起伏程度的计算方法,其特征在于:在步骤4中,光源设置于逆向岩石结构面渗流起始一端,光源类型采用平行光,平行光与岩石结构面夹角设置为0度和90度。
  4. 根据权利要求1所述的利用平行光评价岩石结构面起伏程度的计算方法,其特征在于:在步骤6中,将经过正、逆向光源照射后的离散图像整合成完整图像,采用Matlab分别对其四个图像表面进行灰度统计,获取岩石结构面每一最小单元所具备的灰度值及其对应的面积,针对相同灰度值的区域,将其面积进行叠加,最终获得4组岩石结构面所具备的灰度值及其面积统计。
  5. 根据权利要求1所述的利用平行光评价岩石结构面起伏程度的计算方法,其特征在于:在步骤7中,模拟一个平整的岩石平面,设置与平面夹角为0度至180度的平行光进行照射,梯度为1度,共设置181种情况,获取不同夹角下的灰度值,进而将岩石结构面所具备的灰度值及其面积统计转换为夹角及其面积统计。
  6. 根据权利要求1所述的利用平行光评价岩石结构面起伏程度的计算方法,其特征在于:在步骤8中,在0度正向光源模拟图像中提取夹角为90度至179度的面积统计,在90度正向光源模拟图像中提取夹角为180度的面积统计;在0度逆向光源模拟图像中提取夹角为90度至179度的面积统计,在90度逆向光源模拟图像中提取夹角为180度的面积统计。
  7. 根据权利要求1所述的利用平行光评价岩石结构面起伏程度的计算方法,其特征在于:在步骤9中,正向光源模拟中,平行光与岩石结构面夹角设置为0度,平行光照射的区域为抵抗岩石渗流区域的起伏角,该部分起伏角角度大于0度小于等于90度,对平行光照射角度分析,故提取该图像中夹角为90度至179度的面积统计,夹角为90度表示起伏角为90度,夹角为91度表示起伏角为89度,以此类推,夹角为179度表示起伏角为1度;正向光源模拟中,平行光与岩石结构面夹角设置为90度,平行光照射的区域为整个岩石结构面,统计该部分起伏角角度为0度的区域更为便捷,对平行光照射角度分析,故提取该图像中夹角为90度面积统计,夹角为90度表示起伏角为0度的区域,最终获取了抵抗岩石渗流的起伏角为0度至90度区域的面积统计。
  8. 根据权利要求1所述的利用平行光评价岩石结构面起伏程度的计算方法,其特征在于:在步骤10中,逆向光源模拟中,平行光与岩石结构面夹角设置为0度,平行光照射的区域为促进岩石渗流区域的起伏角,该部分起伏角角度大于0度小于等于90度,对平行光照射角度分析,故提取该图像中夹角为90度至179度的面积统计,夹角为90度表示起伏角为90度,夹角为91度表示起伏角为89度,以此类推,夹角为179度表示起伏角为1度;逆向光源模拟中,平行光与岩石结构面夹角设置为90度,平行光照射的区域为整个岩石结构面,统计该部分起伏角角度为0度的区域更为便捷,对平行光照射角度分析,故提取该图像中夹角为90度面积统计,夹角为90度表示起伏角为0度的区域,最终获取了促进岩石渗流的起伏角为0度至90度区域的面积统计。
  9. 根据权利要求1所述的利用平行光评价岩石结构面起伏程度的计算方法,其特征在于:在步骤11中,将抵抗岩石渗流的起伏角0度至90度区域及促进岩石渗流的起伏角1度至90度区域的面积进行叠加,因抵抗岩石渗流的0度起伏角和促进岩石渗流的0度起伏角是一致的,故只统计一次,不重复统计,进而获得岩石结构面的总面积。
  10. 根据权利要求1所述的利用平行光评价岩石结构面起伏程度的计算方法,其特征在 于:在步骤12中,抵抗岩石渗流的起伏角设置为正,促进岩石渗流的起伏角设置为负,然后,将抵抗、促进岩石渗流的起伏角为0度至90度区域的面积统计分别除以岩石结构面的总面积,并将两者合并至同一坐标系,横坐标为起伏角,纵坐标为大于等于该角度面积总和与岩石结构面总面积的比例,最终获得岩石结构面起伏角概率分布统计模型。
PCT/CN2018/083149 2018-01-11 2018-04-16 一种利用平行光评价岩石结构面起伏程度的计算方法 WO2019136870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810024809.6A CN108038881B (zh) 2018-01-11 2018-01-11 一种利用平行光评价岩石结构面起伏程度的计算方法
CN201810024809.6 2018-01-11

Publications (1)

Publication Number Publication Date
WO2019136870A1 true WO2019136870A1 (zh) 2019-07-18

Family

ID=62099094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083149 WO2019136870A1 (zh) 2018-01-11 2018-04-16 一种利用平行光评价岩石结构面起伏程度的计算方法

Country Status (2)

Country Link
CN (1) CN108038881B (zh)
WO (1) WO2019136870A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112508766A (zh) * 2020-06-16 2021-03-16 湖北工业大学 一种基于点云和gpu技术的岩体结构面智能解译方法
CN114076979A (zh) * 2020-08-17 2022-02-22 中国石油化工股份有限公司 近地表等效速度建模方法、装置、电子设备及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109612914A (zh) * 2018-12-05 2019-04-12 中国地质大学(北京) 一种碳酸盐岩溶蚀过程可视化定量和定性评价方法
CN110702536B (zh) * 2019-10-25 2022-04-19 安徽建筑大学 一种岩体结构面剪切破坏表面形态演化规律研究方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214803A1 (en) * 2007-09-12 2009-08-27 Huber Marketing Group, Llc Artificial Stone
CN103926129A (zh) * 2014-05-04 2014-07-16 中南大学 一种用人工岩石材料复制节理起伏度及实验方法
CN106227923A (zh) * 2016-07-14 2016-12-14 中国地质大学(武汉) 一种岩体结构面三维粗糙度评价方法
CN106546189A (zh) * 2016-11-14 2017-03-29 绍兴文理学院 一种系列尺寸岩体结构面起伏幅度各向异性的评价方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2223156T3 (es) * 1999-06-03 2005-02-16 Jason Geosystems B.V. Metodo de determinacion de cambios espaciales en la estratigrafia de la estructura del subsuelo, litologia y contenido de fluidos y de reduccion del ruido sismico.
US8311788B2 (en) * 2009-07-01 2012-11-13 Schlumberger Technology Corporation Method to quantify discrete pore shapes, volumes, and surface areas using confocal profilometry
CN105466790B (zh) * 2015-11-10 2017-12-29 内蒙古科技大学 一种各向异性特征的岩石结构面剪切强度评估方法
CN107036905B (zh) * 2017-03-28 2019-07-23 中国地质大学(武汉) 一种岩体结构面二维粗糙度评价方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214803A1 (en) * 2007-09-12 2009-08-27 Huber Marketing Group, Llc Artificial Stone
CN103926129A (zh) * 2014-05-04 2014-07-16 中南大学 一种用人工岩石材料复制节理起伏度及实验方法
CN106227923A (zh) * 2016-07-14 2016-12-14 中国地质大学(武汉) 一种岩体结构面三维粗糙度评价方法
CN106546189A (zh) * 2016-11-14 2017-03-29 绍兴文理学院 一种系列尺寸岩体结构面起伏幅度各向异性的评价方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, SHIJIANG: "Characterization of 3-D Rock Discontinuities Roughness based on Digital Image Processing Technique and its Application", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY 1, 15 July 2017 (2017-07-15), ISSN: 1674-022X *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112508766A (zh) * 2020-06-16 2021-03-16 湖北工业大学 一种基于点云和gpu技术的岩体结构面智能解译方法
CN112508766B (zh) * 2020-06-16 2022-04-26 湖北工业大学 一种基于点云和gpu技术的岩体结构面智能解译方法
CN114076979A (zh) * 2020-08-17 2022-02-22 中国石油化工股份有限公司 近地表等效速度建模方法、装置、电子设备及介质
CN114076979B (zh) * 2020-08-17 2024-05-07 中国石油化工股份有限公司 近地表等效速度建模方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN108038881B (zh) 2018-12-18
CN108038881A (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2019136870A1 (zh) 一种利用平行光评价岩石结构面起伏程度的计算方法
Zhou et al. Three-dimensional sphericity, roundness and fractal dimension of sand particles
CN107762559B (zh) 一种用于评价隧道超欠挖情况的方法及系统
Tang et al. Study on estimation method of rock mass discontinuity shear strength based on three-dimensional laser scanning and image technique
CN104834806A (zh) 结构面粗糙度系数尺寸效应取样代表性评价方法
CN110415167B (zh) 一种基于数字图像技术的粗糙面裂隙生成方法及试验系统
CN110409369B (zh) 边坡开挖数字化施工与质量控制方法
Lanaro et al. 3-D-laser measurements and representation of roughness of rock fractures
Liu et al. Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory
CN113587835A (zh) 一种利用三维激光扫描技术进行桥梁工程质量验收的方法
CN103759676A (zh) 一种工件表面粗糙度非接触式的检测方法
CN105466790A (zh) 一种各向异性特征的岩石结构面剪切强度评估方法
CN106447776A (zh) 基于3d打印制作的复杂裂隙岩体物理模型及建模方法
CN107203670A (zh) 一种粗糙随机型离散节理网络模型构建方法
CN106482674B (zh) 基于中智数函数的结构面粗糙度尺寸效应的近似表达方法
CN106769276B (zh) 基于Dice相似度量的三维结构面代表性试样选取方法
CN104833333A (zh) 结构面粗糙度系数尺寸效应试样表征单元确定方法
CN106202707B (zh) 一种基于灰色置信区间的结构应力-强度干涉模型集合可靠性分析方法
Ge et al. Estimation of the appropriate sampling interval for rock joints roughness using laser scanning
CN113570722A (zh) 一种围岩裂缝信息提取及完整性系数快速测定方法
CN107507168A (zh) 一种用于岩体节理裂隙模型检验的迹线图相似度判别方法
CN111779477B (zh) 一种基于分形理论的水力裂缝复杂度动态评价方法
CN109543236A (zh) 基于变异系数级比分析的岩体结构面粗糙度统计样本数确定方法
CN107239629B (zh) 一种岩石结构面实验室合理尺寸确定的分形维数分析方法
CN106524998A (zh) 基于三维激光扫描技术测量隧道线状出露结构面的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900012

Country of ref document: EP

Kind code of ref document: A1