CN106206749A - 一种具有不饱和特性的肖特基晶体管及其制备方法 - Google Patents

一种具有不饱和特性的肖特基晶体管及其制备方法 Download PDF

Info

Publication number
CN106206749A
CN106206749A CN201610847794.4A CN201610847794A CN106206749A CN 106206749 A CN106206749 A CN 106206749A CN 201610847794 A CN201610847794 A CN 201610847794A CN 106206749 A CN106206749 A CN 106206749A
Authority
CN
China
Prior art keywords
doping
high resistant
schottky
source electrode
epi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610847794.4A
Other languages
English (en)
Inventor
杨建红
陈健
肖彤
庞正鹏
王欣
谌文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN201610847794.4A priority Critical patent/CN106206749A/zh
Publication of CN106206749A publication Critical patent/CN106206749A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • H01L29/66901Unipolar field-effect transistors with a PN junction gate, i.e. JFET with a PN homojunction gate
    • H01L29/66909Vertical transistors, e.g. tecnetrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/806Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with Schottky drain or source contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors

Abstract

本发明公开一种具有不饱和特性的肖特基晶体管及其制备方法。本发明的器件由漏极以及设置于漏极上的N+掺杂的低阻单晶衬底,位于N+掺杂的低阻单晶衬底上的N掺杂的高阻外延层、位于N掺杂的高阻外延层表面的两个P+掺杂的界面栅区,两个分别位于P+掺杂的界面栅区上的栅电极,和两个栅电极之间位于N掺杂高阻外延层表面的源电极构成。本器件是一种单极性工作模式的器件,且具有不饱和的类三极管的I‑V特性,器件的失真度小,抗干扰性能好,对于静电感应晶体管的简化和肖特基二极管的改进具有重要的意义。

Description

一种具有不饱和特性的肖特基晶体管及其制备方法
技术领域
本发明属于电子元器件技术领域,具体地说是一种具有不饱和特性的肖特基晶体管及其制备方法。
背景技术
随着信息产业的发展,人们对于晶体管的性能要求越来越高,就拿市场上主要应用的晶体管:场效应晶体管和晶体三极管而言,场效应晶体管具有许多的寄生效应,比如说栅诱导泄漏电流(GIDL)和漏致势垒降低效应(DIBL)等,而晶体三极管是双极性器件,工作速度比较慢,并且场效应晶体管和晶体三极管的电流—电压特性曲线都表现出饱和的特性,因此,当器件应用到放大电路中时,一旦输出端超出器件的信息承载范围,电路就会发生信号失真。
发明内容
本发明提供一种具有不饱和特性的肖特基晶体管及其制备方法,通过利用金属半导体肖特基结产生,具有开关频率高、散热性能好、噪声小等优点。
为实现上述目的,本发明所述的一种具有不饱和特性的肖特基晶体管,其特征在于:由漏极以及设置于漏极上的N+掺杂的低阻单晶衬底,位于N+掺杂的低阻单晶衬底上的N-掺杂的高阻外延层、位于N-掺杂的高阻外延层表面的两个P+掺杂的界面栅区,两个分别位于P+掺杂的界面栅区上的栅电极,和两个栅电极之间位于N-掺杂高阻外延层表面的源电极构成。
所述源极处设置于两个栅电极之间的中央位置。
所述N-掺杂的高阻外延层表面与P+掺杂的界面栅区之间形成pn结,N-掺杂的高阻外延层表面与源电极之间形成肖特基结。
所述N+掺杂的低阻单晶衬底为N+型低阻单晶硅切片。
本发明所述一种具有不饱和特性的肖特基晶体管的制备方法,实现步骤如下:
(1)采用N+型低阻单晶硅切片作为衬底材料,在该衬底片上生长一层N-掺杂的高阻外延层,在N-掺杂的高阻外延层上制作肖特基晶体管,其中肖特基晶体管是在N-掺杂的高阻外延层的基础上采用离子注入的方法掺杂形成栅区;在N-掺杂的高阻外延层的基础上采用淀积金属形成金半肖特基接触的方法形成源极处;
(2)先将与N-掺杂的高阻外延层沟道形成肖特基接触的金属蒸镀在源极处形成源电极,再将与栅区形成良好欧姆接触的金属蒸镀在N-掺杂的高阻外延层的栅区形成栅电极。
所述源电极与栅电极采用分别蒸镀的方法制备。
N-掺杂的高阻外延层表面与P+掺杂的界面栅区之间形成pn结接触,N-掺杂的高阻外延层表面与源电极之间形成肖特基结。当肖特基结两端加上正向偏压时,肖特基结层变窄,其内阻变小;反之,若在肖特基结两端加上反向偏压时,肖特基结则变宽,其内阻变大。
本发明所述一种具有不饱和特性的肖特基晶体管及其制备方法,其有益效果在于:本器件是一种单极性工作模式的器件,且具有不饱和的类三极管的I-V特性,器件的失真度小,抗干扰性能好,对于静电感应晶体管(SIT)的简化和肖特基二极管的改进具有重要的意义,且本发明通过利用金属半导体肖特基结产生,具有单向导电的整流特性、开关频率高、散热性能好、噪声小等优点;①不同金属与不同种类的半导体接触时,具有不同的肖特基势垒高度;②势垒高度随外加电压变化,当金属接正电压时,势垒降低,载流子容易通过;反之势垒升高,载流子不易通过;③肖特基结的电流-电压曲线的正向开启电压较低,正向曲线的斜率较陡,反向击穿电压较低。
附图说明
图1为本发明的肖特基晶体管的剖面结构示意图;
图2为本发明器件工作时所接的电路图;
图3为本发明的肖特基晶体管的特性曲线图。
具体实施方式
实施例1
一种具有不饱和特性的肖特基晶体管,由漏极以及设置于漏极上的N+掺杂的低阻单晶衬底,位于N+掺杂的低阻单晶衬底上的N-掺杂的高阻外延层、位于N-掺杂的高阻外延层表面的两个P+掺杂的界面栅区,两个分别位于P+掺杂的界面栅区上的栅电极,和设置于两个栅电极之间中央位置位于N-掺杂高阻外延层表面的源电极构成;N-掺杂的高阻外延层表面与P+掺杂的界面栅区之间形成pn结接触,N-掺杂的高阻外延层表面与源电极之间形成肖特基结;N+掺杂的低阻单晶衬底为N+型低阻单晶硅切片;所述肖特基晶体管器件的总宽度为9μm,栅区为P型掺杂,掺杂浓度为1.0×1019cm-3,结深为4.0μm,栅区宽度为0.75μm,N-掺杂的高阻外延层的掺杂浓度为1.0×1013cm-3,N+掺杂的低阻单晶衬底的掺杂浓度为1.0×1017cm-3,厚度为2.0μm。
本发明所述一种具有不饱和特性的肖特基晶体管的制备方法,实现步骤如下:
(1)采用N+型低阻单晶硅切片作为衬底材料,在该衬底片上生长一层掺杂浓度为1.0×1013cm-3的N-掺杂的高阻外延层,在N-掺杂的高阻外延层上制作肖特基晶体管,其中肖特基晶体管是在N-掺杂的高阻外延层的基础上采用离子注入的方法掺杂形成栅区;在N-掺杂的高阻外延层的基础上采用淀积金属形成金半肖特基接触的方法形成源极处;
(2)先将与N-掺杂的高阻外延层沟道形成肖特基接触的金属蒸镀在源极处形成源电极,再将与栅区形成良好欧姆接触的金属蒸镀在N-掺杂的高阻外延层的栅区形成栅电极。
工作时,N-掺杂的高阻外延层表面与P+掺杂的界面栅区之间形成pn结,N-掺杂的高阻外延层表面与源电极之间形成肖特基结。器件工作时,肖特基晶体管器件的源电极接地,栅极接负偏压,漏极接正偏压,如图2所示。按照图2中的接法,得到器件的I-V特性曲线如图3所示。由图2、图3可知:该肖特基晶体管在源极接地,栅极接负偏压时,晶体管的沟道会被夹断,产生沟道势垒,进而出现不饱和的类三极管的I-V特性。

Claims (6)

1.一种具有不饱和特性的肖特基晶体管,其特征在于:由漏极以及设置于漏极上的N+掺杂的低阻单晶衬底,位于N+掺杂的低阻单晶衬底上的N-掺杂的高阻外延层、位于N-掺杂的高阻外延层表面的两个P+掺杂的界面栅区,两个分别位于P+掺杂的界面栅区上的栅电极,和两个栅电极之间位于N-掺杂高阻外延层表面的源电极构成。
2.如权利要求1所述一种具有不饱和特性的肖特基晶体管,其特征在于:所述源极处设置于两个栅电极之间的中央位置。
3.如权利要求1所述一种具有不饱和特性的肖特基晶体管,其特征在于:所述N-掺杂的高阻外延层表面与P+掺杂的界面栅区之间形成pn结,N-掺杂的高阻外延层表面与源电极之间形成肖特基结。
4.如权利要求2所述一种具有不饱和特性的肖特基晶体管,其特征在于:所述N+掺杂的低阻单晶衬底为N+型低阻单晶硅切片。
5.一种具有不饱和特性的肖特基晶体管的制备方法,其特征在于:实现步骤如下:
(1)采用N+型低阻单晶硅切片作为衬底材料,在该衬底片上生长一层N-掺杂的高阻外延层,在N-掺杂的高阻外延层上制作肖特基晶体管,其中肖特基晶体管是在N-掺杂的高阻外延层的基础上采用离子注入的方法掺杂形成栅区;在N-掺杂的高阻外延层的基础上采用淀积金属形成金半肖特基接触的方法形成源极处;
(2)先将与N-掺杂的高阻外延层沟道形成肖特基接触的金属蒸镀在源极处形成源电极,再将与栅区形成良好欧姆接触的金属蒸镀在N-掺杂的高阻外延层的栅区形成栅电极。
6.如权利要求5所述一种具有不饱和特性的肖特基晶体管的制备方法,其特征在于:所述源电极与栅电极采用分别蒸镀的方法制备。
CN201610847794.4A 2016-09-23 2016-09-23 一种具有不饱和特性的肖特基晶体管及其制备方法 Pending CN106206749A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610847794.4A CN106206749A (zh) 2016-09-23 2016-09-23 一种具有不饱和特性的肖特基晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610847794.4A CN106206749A (zh) 2016-09-23 2016-09-23 一种具有不饱和特性的肖特基晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN106206749A true CN106206749A (zh) 2016-12-07

Family

ID=58067530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610847794.4A Pending CN106206749A (zh) 2016-09-23 2016-09-23 一种具有不饱和特性的肖特基晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN106206749A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735798A (zh) * 2018-04-02 2018-11-02 上海芯研亮投资咨询有限公司 具有低起始电压的SiC FET组件及其制造方法
CN108878517A (zh) * 2018-06-28 2018-11-23 济南大学 肖特基结导通型金属氧化物半导体场效应管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313482B1 (en) * 1999-05-17 2001-11-06 North Carolina State University Silicon carbide power devices having trench-based silicon carbide charge coupling regions therein
US20070120204A1 (en) * 2004-01-21 2007-05-31 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof
CN104810395A (zh) * 2015-04-16 2015-07-29 兰州大学 一种表面栅型静电感应晶体管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313482B1 (en) * 1999-05-17 2001-11-06 North Carolina State University Silicon carbide power devices having trench-based silicon carbide charge coupling regions therein
US20070120204A1 (en) * 2004-01-21 2007-05-31 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof
CN104810395A (zh) * 2015-04-16 2015-07-29 兰州大学 一种表面栅型静电感应晶体管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735798A (zh) * 2018-04-02 2018-11-02 上海芯研亮投资咨询有限公司 具有低起始电压的SiC FET组件及其制造方法
CN108878517A (zh) * 2018-06-28 2018-11-23 济南大学 肖特基结导通型金属氧化物半导体场效应管

Similar Documents

Publication Publication Date Title
CN102903746B (zh) 一种大电流密度的横向超薄绝缘栅双极型晶体管
CN109075214A (zh) 沟槽mos型肖特基二极管
US8736013B2 (en) Schottky diode with opposite-polarity schottky diode field guard ring
CN100590850C (zh) 全自对准条型栅功率垂直双扩散场效应晶体管的制作方法
US9368650B1 (en) SiC junction barrier controlled schottky rectifier
CN110352498A (zh) 沟槽mos型肖特基二极管
CN101540283A (zh) 场限环结构的4H-SiC PiN/肖特基二极管制作方法
CN108649068B (zh) Rc-igbt器件及其制备方法
CN104779289A (zh) 半导体装置
CN103337498A (zh) 一种bcd半导体器件及其制造方法
CN102130153B (zh) 绝缘体上硅的n型横向绝缘栅双极晶体管及其制备方法
CN109166917A (zh) 一种平面型绝缘栅双极晶体管及其制备方法
CN108231911A (zh) 基于渐变漂移区的耐高压GaN基JBS二极管及其制作方法
CN106206749A (zh) 一种具有不饱和特性的肖特基晶体管及其制备方法
CN108010964B (zh) 一种igbt器件及制造方法
CN103337523B (zh) 一种斜沟槽超势垒整流器件及其制造方法
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
CN112993007A (zh) 超结结构及超结器件
CN109904225A (zh) 一种高可靠性igbt及其制造方法
CN210325811U (zh) 一种碳化硅异质结二极管功率器件
KR20190124894A (ko) 반도체 소자 및 그 제조 방법
CN110534582B (zh) 一种具有复合结构的快恢复二极管及其制造方法
CN113782586A (zh) 一种多通道超结igbt器件
Lee et al. 1200 V 4H-SiC BJTs with a common emitter current gain of 60 and low on-resistance
CN102931216B (zh) 集成有肖特基二极管的绝缘栅双极晶体管结构及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207