CN106200385A - 一种免疫调节增益的单神经元pid调节方法 - Google Patents

一种免疫调节增益的单神经元pid调节方法 Download PDF

Info

Publication number
CN106200385A
CN106200385A CN201610770404.8A CN201610770404A CN106200385A CN 106200385 A CN106200385 A CN 106200385A CN 201610770404 A CN201610770404 A CN 201610770404A CN 106200385 A CN106200385 A CN 106200385A
Authority
CN
China
Prior art keywords
gain
kth
immunomodulating
std
neuron pid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610770404.8A
Other languages
English (en)
Other versions
CN106200385B (zh
Inventor
王林
郭亦文
高林
高海东
侯玉婷
王春利
李晓博
胡博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Xian Xire Control Technology Co Ltd
Original Assignee
Xian Xire Control Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Xire Control Technology Co Ltd filed Critical Xian Xire Control Technology Co Ltd
Priority to CN201610770404.8A priority Critical patent/CN106200385B/zh
Publication of CN106200385A publication Critical patent/CN106200385A/zh
Application granted granted Critical
Publication of CN106200385B publication Critical patent/CN106200385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种免疫调节增益的单神经元PID调节方法,该方法利用神经元自适应调节和免疫调节神经元增益相结合的特点,能够实现PID参数自适应调节,极大的简化了PID参数整定的工作量,提高了控制参数的精度和适应性,于传统的整定方法相比,该方法能使机组更加安全、经济、稳定运行。

Description

一种免疫调节增益的单神经元PID调节方法
技术领域:
本发明涉及燃煤机组协调控制领域PID参数整定方法,具体涉及一种免疫调节增益的单神经元PID调节方法。
背景技术:
我国以燃煤电站为主的电力供应格局在未来相当长的时间内不会发生根本性改变,而燃煤机组的协调优化控制一直以来是众多专家学者研究的重点问题。目前,协调优化控制手段还是以传统PID调节控制为主,而如何更快、更好的整定PID调节参数一直以来是一个重要的问题。
目前来说,PID整定的方法有很多,最传统的方法是齐格勒-道格拉斯整定方法,这种方法需要大量的阶跃扰动实验,并且整定的参数也并不是最优参数,而是较优参数。一个重要的方法之一就是参数自适应调节的神经元PID自整定,而传统的神经元PID自适应调节存在调节速度过快和搜索方向易受外界干扰等问题。
为有效的解决这一问题,必须选择一种合适有效的算法,并对其进行有针对性的改造,使这种自整定的方法一方面具有较强的自适应调节功能,另外一方面具有较强的稳定性。
发明内容:
本发明的目的在于针对现有PID整定技术的不足,提供了一种在线动态粒子群PID优化控制方法。
为达到上述目的,本发明采用如下的技术方案予以实现:
一种免疫调节增益的单神经元PID调节方法,包括以下步骤:
1)免疫调节增益单神经元PID调节器输入信号处理;
2)对权利要求1)中的输入信号进行免疫调节增益单神经元PID参数自调节计算;
3)对权利要求2)中的系统增益进行免疫调节机制计算。
本发明进一步的改进在于,步骤1)中,免疫调节增益单神经元PID调节器输入信号处理,如下:
假设r(k)为被控对象第k步计算设定值,y(k)为被控对象第k步计算被调量,e(k)为第k步计算控制偏差信号,其中,
e(k)=r(k)-y(k)
将e(k)进行两步处理,第一步为标准化,处理如下:
estd(k)=e(k)/D
其中estd(k)为第k步计算控制标准偏差信号,D为被控对象量程;
第二步进行输出信号处理,如下:
x1(k)=estd(k)-estd(k-1)
x2(k)=estd(k)
x3(k)=estd(k)-2estd(k-1)+estd(k-2)
其中estd(k-1),estd(k-2)分别为第k-1步和第k-2步的计算控制标准偏差信号,x1(k)、x2(k)和x3(k)分别为神经元PID调节器的比例信号,积分信号和微分信号。
本发明进一步的改进在于,步骤2)中,利用处理后的输入信号进行免疫调节增益单神经元PID参数自调节,如下:
免疫调节增益单神经元PID控制器的第k步计算输出为:
u(k)=u(k-1)+[Kp(k)·x1(k)+Ki(k)·x2(k)+Kd(k)·x3(k)]·K
其中u(k)和u(k-1)分别为第k步和第k-1步的神经元PID控制器输出,Kp(k),Ki(k),Kd(k)分别为第k步神经元PID调节器的比例,积分和微分系数,K为系统增益;定义第k步迭代更新变量值z(k),则,
z ( k ) = x 2 ( k ) + K i ( k ) / K p ( k ) · Σ i = 1 k x 2 ( k ) · T s + K d ( k ) / K p ( k ) · Σ i = 1 k x 3 ( k ) / T s
式中Ts为迭代更新的时间步长,将迭代更新变量进行双S型压缩,得,
y n ( k ) = 1 - e - z ( k ) 1 + e - z ( k )
其中yn(k)即为第k步计算得双S型函数,Kp(k),Ki(k),Kd(k)的参数自调节算法如下;
Kp(k)=Kp(k-1)+x1(k)·yn(k)·
(y(k)-2y(k-1)+y(k-2))/(u(k)-2u(k-1)+u(k-2))
K i ( k ) = K i ( k - 1 ) + x 2 ( k ) · ( 1 - y n ( k ) y n ( k ) ) / 2 · Σ m = 1 k x 2 ( k ) · T s ( y ( k ) - 2 y ( k - 1 ) + y ( k - 2 ) ) / ( u ( k ) - 2 u ( k - 1 ) + u ( k - 2 ) )
Kd(k)=Kd(k-1)+x2(k)·(1-yn(k)yn(k))/2·x1(k)/Ts·
(y(k)-2y(k-1)+y(k-2))/(u(k)-2u(k-1)+u(k-2))
其中Kp(k-1),Ki(k-1),Kd(k-1)分别为神经元PID第k-1步的比例,积分和微分系数,y(k),y(k-1),y(k-2)分别为第k,k-1,k-2步的被控对象被调量输出,u(k),u(k-1),u(k-2)分别为第k,k-1,k-2步的免疫调节增益单神经元PID控制器输出。
本发明进一步的改进在于,步骤3)中,系统增益K免疫调节机制如下:
K(k)=K0(1-ληf(a·etsd(k))
其中K(k)为第k步计算系统增益,K0为系统增益基值,λ为免疫值,η为免疫函数增益,a为免疫细胞调节作用常数,f()表示免疫函数,具体表达如下:
f ( x ) = 1 - 2 e x + e - x
其中,
其中e0,e1分别为误差阈值。
相对于现有技术,本发明提出首先根据阶跃扰动实验建立机组数学传递模型,其次利用粒子群算法建立动态例子群数据库和适应度函数评价表,再次根据机组实际运行数据和粒子群模型输出数据寻找最小适应度函数,根据最小适应度函数进行粒子群数据库更新,最后将更新完之后的粒子群数据传递到PID参数地址中,完成一次PID参数的在线优化。
附图说明:
图1为免疫调节增益神经元PID控制示意图。
图2为采用免疫调节单神经元PID方法前的机组负荷和主汽压力变化趋势图。
图3为采用免疫调节单神经元PID方法后的机组负荷和主汽压力变化趋势图。
具体实施方式:
以下结合附图和实施例对本发明作进一步的详细说明。
本发明提供的一种免疫调节增益的单神经元PID调节方法,包括以下步骤:
1、免疫调节增益单神经元PID调节器原理,本调节控制器分为三部分,即神经元参数自调节,神经元PID增益免疫调节和被控对象回路,其中神经元参数自调节主要包括偏差信号转换器,神经元学习算法和神经元输出,具体结构图形如图1所示,
2、神经元参数自调节,结合图1进行说明如下
在图中r(k)为第k步计算被控对象设定值,y(k)为第k步计算被控对象被调量,e(k)为控制偏差信号,其中,
e(k)=r(k)-y(k)
e(k)进入转换器中,进行两部处理,第一步为标准化,处理如下,
estd(k)=e(k)/D
其中estd(k)为处理后的第k步标准偏差信号,D为被控信号量程,
第二部进行输出信号处理,从转化器输出三组信号,分别为,
x1(k)=estd(k)-estd(k-1)
x2(k)=estd(k)
x3(k)=estd(k)-2estd(k-1)+estd(k-2)
其中estd(k-1),estd(k-2)分别为第k-1步和第k-2步的标准偏差信号,x1(k),x2(k)和x3(k)分别为神经元调节器的比例信号,积分信号和微分信号
则神经元PID控制器的输出为,
u(k)=u(k-1)+(Kp(k)·x1(k)+Ki(k)·x2(k)+Kd(k)·x3(k))·K
其中u(k)和u(k-1)分别为第k步和第k-1步的控制器输出,Kp(k),Ki(k),Kd(k)分别为第步神经元PID调节器的比例,积分和微分系数,K为系统增益
而Kp(k),Ki(k),Kd(k)的神经元学习算法如下,
定义每一步迭代的变量更新z(k),其计算如下,
z ( k ) = x 2 ( k ) + K i ( k ) / K p ( k ) · Σ i = 1 k x 2 ( k ) · T s + K d ( k ) / K p ( k ) · Σ i = 1 k x 3 ( k ) / T s
式中Ts为时间步长,将迭代更新变量进行双S型压缩,得,
y n ( k ) = 1 - e - z ( k ) 1 + e - z ( k )
则,Kp(k),Ki(k),Kd(k)的更新机制如下:
Kp(k)=Kp(k-1)+x1(k)·yn(k)·
(y(k)-2y(k-1)+y(k-2))/(u(k)-2u(k-1)+u(k-2))
K i ( k ) = K i ( k - 1 ) + x 2 ( k ) · ( 1 - y n ( k ) y n ( k ) ) / 2 · Σ m = 1 k x 2 ( k ) · T s ( y ( k ) - 2 y ( k - 1 ) + y ( k - 2 ) ) / ( u ( k ) - 2 u ( k - 1 ) + u ( k - 2 ) )
Kd(k)=Kd(k-1)+x2(k)·(1-yn(k)yn(k))/2·x1(k)/Ts·
(y(k)-2y(k-1)+y(k-2))/(u(k)-2u(k-1)+u(k-2))
其中Kp(k-1),Ki(k-1),Kd(k-1)分别为神经元PID第k-1步的比例,积分和微分增益,y(k),y(k-1),y(k-2)分别为第k,k-1,k-2步的被控对象输出,u(k),u(k-1),u(k-2)分别为第k,k-1,k-2步的PID控制器输出。
3、系统增益K免疫调节机制,其说明如下,
系统增益K按照下面的免疫机制变化,
K(k)=K0(1-ληf(a·etsd(k))
其中K(k)为第k步计算系统增益,K0为系统增益基值,λ为免疫值,η为免疫函数增益,a为免疫细胞调节作用常数,f()表示免疫函数,具体表达如下,
f ( x ) = 1 - 2 e x + e - x
其中,
其中e0,e1分别为误差阈值。
采用上述免疫调节前和调节后的机组负荷和主汽压力控制效果如图2和图3所示,采用免疫调节的单神经元PID方法在抑制超调效果上有很大优势。

Claims (4)

1.一种免疫调节增益的单神经元PID调节方法,其特征在于,包括以下步骤:
1)免疫调节增益单神经元PID调节器输入信号处理;
2)对权利要求1)中的输入信号进行免疫调节增益单神经元PID参数自调节计算;
3)对权利要求2)中的系统增益进行免疫调节机制计算。
2.根据权利要求1所述的一种免疫调节增益的单神经元PID调节方法,其特征在于,步骤1)中,免疫调节增益单神经元PID调节器输入信号处理,如下:
假设r(k)为被控对象第k步计算设定值,y(k)为被控对象第k步计算被调量,e(k)为第k步计算控制偏差信号,其中,
e(k)=r(k)-y(k)
将e(k)进行两步处理,第一步为标准化,处理如下:
estd(k)=e(k)/D
其中estd(k)为第k步计算控制标准偏差信号,D为被控对象量程;
第二步进行输出信号处理,如下:
x1(k)=estd(k)-estd(k-1)
x2(k)=estd(k)
x3(k)=estd(k)-2estd(k-1)+estd(k-2)
其中estd(k-1),estd(k-2)分别为第k-1步和第k-2步的计算控制标准偏差信号,x1(k)、x2(k)和x3(k)分别为神经元PID调节器的比例信号,积分信号和微分信号。
3.根据权利要求2所述的一种免疫调节增益的单神经元PID调节方法,其特征在于,步骤2)中,利用处理后的输入信号进行免疫调节增益单神经元PID参数自调节,如下:
免疫调节增益单神经元PID控制器的第k步计算输出为:
u(k)=u(k-1)+[Kp(k)·x1(k)+Ki(k)·x2(k)+Kd(k)·x3(k)]·K
其中u(k)和u(k-1)分别为第k步和第k-1步的神经元PID控制器输出,Kp(k),Ki(k),Kd(k)分别为第k步神经元PID调节器的比例,积分和微分系数,K为系统增益;定义第k步迭代更新变量值z(k),则,
z ( k ) = x 2 ( k ) + K i ( k ) / K p ( k ) · Σ i = 1 k x 2 ( k ) · T s + K d ( k ) / K p ( k ) · Σ i = 1 k x 3 ( k ) / T s
式中Ts为迭代更新的时间步长,将迭代更新变量进行双S型压缩,得,
y n ( k ) = 1 - e - z ( k ) 1 + e - z ( k )
其中yn(k)即为第k步计算得双S型函数,Kp(k),Ki(k),Kd(k)的参数自调节算法如下;
Kp(k)=Kp(k-1)+x1(k)·yn(k)·
(y(k)-2y(k-1)+y(k-2))/(u(k)-2u(k-1)+u(k-2))
K i ( k ) = K i ( k - 1 ) + x 2 ( k ) · ( 1 - y n ( k ) y n ( k ) ) / 2 · Σ m = 1 k x 2 ( k ) · T s ( y ( k ) - 2 y ( k - 1 ) + y ( k - 2 ) ) / ( u ( k ) - 2 u ( k - 1 ) + u ( k - 2 ) )
Kd(k)=Kd(k-1)+x2(k)·(1-yn(k)yn(k))/2·x1(k)/Ts·
(y(k)-2y(k-1)+y(k-2))/(u(k)-2u(k-1)+u(k-2))
其中Kp(k-1),Ki(k-1),Kd(k-1)分别为神经元PID第k-1步的比例,积分和微分系数,y(k),y(k-1),y(k-2)分别为第k,k-1,k-2步的被控对象被调量输出,u(k),u(k-1),u(k-2)分别为第k,k-1,k-2步的免疫调节增益单神经元PID控制器输出。
4.根据权利要求3所述的一种免疫调节增益的单神经元PID调节方法,其特征在于,步骤3)中,系统增益K免疫调节机制如下:
K(k)=K0(1-ληf(a·etsd(k))
其中K(k)为第k步计算系统增益,K0为系统增益基值,λ为免疫值,η为免疫函数增益,a为免疫细胞调节作用常数,f()表示免疫函数,具体表达如下:
f ( x ) = 1 - 2 e x + e - x
其中,
其中e0,e1分别为误差阈值。
CN201610770404.8A 2016-08-29 2016-08-29 一种免疫调节增益的单神经元pid调节方法 Active CN106200385B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610770404.8A CN106200385B (zh) 2016-08-29 2016-08-29 一种免疫调节增益的单神经元pid调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610770404.8A CN106200385B (zh) 2016-08-29 2016-08-29 一种免疫调节增益的单神经元pid调节方法

Publications (2)

Publication Number Publication Date
CN106200385A true CN106200385A (zh) 2016-12-07
CN106200385B CN106200385B (zh) 2019-07-30

Family

ID=58089629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610770404.8A Active CN106200385B (zh) 2016-08-29 2016-08-29 一种免疫调节增益的单神经元pid调节方法

Country Status (1)

Country Link
CN (1) CN106200385B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1672103A (zh) * 2002-07-30 2005-09-21 雅马哈发动机株式会社 基于具有离散限制软计算的非线性动态控制的系统和方法
CN1746797A (zh) * 2005-08-09 2006-03-15 东华大学 智能优化参数自整定控制方法
WO2008033800A2 (en) * 2006-09-14 2008-03-20 Honeywell International Inc. A system for gain scheduling control
CN101923318A (zh) * 2009-06-09 2010-12-22 上海电气集团股份有限公司 一种网络pid控制器制造方法
CN103645633A (zh) * 2013-12-25 2014-03-19 中国科学院自动化研究所 一种变换炉系统的炉温自学习控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1672103A (zh) * 2002-07-30 2005-09-21 雅马哈发动机株式会社 基于具有离散限制软计算的非线性动态控制的系统和方法
CN1746797A (zh) * 2005-08-09 2006-03-15 东华大学 智能优化参数自整定控制方法
WO2008033800A2 (en) * 2006-09-14 2008-03-20 Honeywell International Inc. A system for gain scheduling control
CN101923318A (zh) * 2009-06-09 2010-12-22 上海电气集团股份有限公司 一种网络pid控制器制造方法
CN103645633A (zh) * 2013-12-25 2014-03-19 中国科学院自动化研究所 一种变换炉系统的炉温自学习控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
冯烨等: "第四代篦冷机刮板速度控制器设计", 《机床与液压》 *
王伟等: "免疫调节增益的单神经元PID控制器", 《电机与控制学报》 *
王科等: "免疫单神经元PID控制在永磁交流伺服系统中的应用", 《西安交通大学学报》 *

Also Published As

Publication number Publication date
CN106200385B (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
CN101286044B (zh) 一种燃煤锅炉系统蒸汽温度混合建模方法
CN101950156B (zh) 一种自适应串级pid控制方法
CN105388764A (zh) 基于动态矩阵前馈预测的电液伺服pid控制方法及系统
CN100349076C (zh) 中药生产浓缩过程中蒸发速度的控制方法
CN106530118A (zh) 多区互联电力系统负荷频率的约束gpc优化控制方法
CN104696952A (zh) 一种基于模型在线辨识的流化床锅炉引风量控制方法
CN101504135B (zh) 锅炉-汽轮机单元的汽压均衡控制器
CN109143853A (zh) 一种石油炼化过程中分馏塔液位自适应控制方法
Alfaro et al. Analytical robust tuning of PI controllers for first-order-plus-dead-time processes
CN105182756A (zh) 一种基于模型参考自适应的新型内模补偿控制系统
CN106200385A (zh) 一种免疫调节增益的单神经元pid调节方法
CN102323750A (zh) 嵌入式非线性脉冲协同控制器
CN104566352B (zh) 带指令调节器的循环流化床锅炉一次风机控制方法及系统
Parks et al. Applications of adaptive control systems
CN108089442A (zh) 一种基于预测函数控制与模糊控制的pi控制器参数自整定方法
CN106647247B (zh) 一种适用于伺服控制器的控制算法
CN104155876A (zh) 一种pid控制器的分离实现方法
CN113110628A (zh) 基于pso的压水堆除氧器水位控制方法
Zheng et al. Double fuzzy pitch controller of wind turbine designed by genetic algorithm
CN113653589A (zh) 一种变参双幂趋近律的水轮机组微分预测滑模控制方法
Chen et al. Variable discourse of universe fuzzy-PID temperature control system for vacuum smelting based on PLC
CN104122878A (zh) 工业节能减排控制装置及控制方法
Bai et al. Fuzzy Adaptive PID Control of Indoor Temperature in VAV System
CN112947049B (zh) 一种针对滞后特性对象的火电机组控制方法、系统及介质
CN103439879A (zh) 一种基于校正基准量的增量式pid控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210528

Address after: 710032 No. 136 Xingqing Road, Beilin District, Xi'an City, Shaanxi Province

Patentee after: Xi'an Thermal Power Research Institute Co.,Ltd.

Patentee after: XI'AN TPRI THERMAL CONTROL TECHNOLOGY Co.,Ltd.

Address before: 710054 room 310, West 2nd floor, No.99 Yanxiang Road, Xi'an City, Shaanxi Province

Patentee before: XI'AN TPRI THERMAL CONTROL TECHNOLOGY Co.,Ltd.