CN106180694A - 石墨烯/奈米碳管复合结构及其制作方法 - Google Patents

石墨烯/奈米碳管复合结构及其制作方法 Download PDF

Info

Publication number
CN106180694A
CN106180694A CN201510263947.6A CN201510263947A CN106180694A CN 106180694 A CN106180694 A CN 106180694A CN 201510263947 A CN201510263947 A CN 201510263947A CN 106180694 A CN106180694 A CN 106180694A
Authority
CN
China
Prior art keywords
graphene
carbon nanotube
graphene film
carbon
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510263947.6A
Other languages
English (en)
Other versions
CN106180694B (zh
Inventor
吴以舜
谢承佑
彭晟书
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Ensemble Technology Co Ltd (limited Partnership)
Original Assignee
Enerage Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerage Inc filed Critical Enerage Inc
Publication of CN106180694A publication Critical patent/CN106180694A/zh
Application granted granted Critical
Publication of CN106180694B publication Critical patent/CN106180694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Combustion & Propulsion (AREA)

Abstract

本发明是一种石墨烯/奈米碳管复合结构及其制作方法,其中石墨烯/奈米碳管复合结构包括多个石墨烯片以及多个奈米碳管,每个奈米碳管的轴向垂直于石墨烯片的平面方向,而石墨烯/奈米碳管复合结构的制作方法包括石墨烯片准备步骤、化学沉淀步骤、还原步骤以及奈米碳管成长步骤,且化学沉淀步骤及还原步骤可在石墨烯片上析出金属颗粒,并进一步在奈米碳管成长步骤中藉热处理以成长奈米碳管。因此,本发明的石墨烯片与奈米碳管能形成三维结构,且石墨烯片之间藉由奈米碳管形成的立体障碍有效分离而不易团聚。

Description

石墨烯/奈米碳管复合结构及其制作方法
技术领域
本发明有关于一种石墨烯/奈米碳管复合结构及其制作方法,是结合两种不同维度的材料的奈米碳管与石墨烯,且奈米碳管的轴向是垂直于石墨烯片的平面方向而形成三维复合结构,并藉由奈米碳管形成的立体障碍以有效分离个别的石墨烯以避免再团聚,而奈米碳管优异的性质更能进一步强化石墨烯在应用上的表现。
背景技术
自从2004年英国曼彻斯特大学Andre Geim与Konstantin Novoselov成功教示利用胶带剥离石墨的剥离(defoliation)方式而制作单层石墨,又称为石墨烯(graphene),并因而获得2010年的诺贝尔物理奖以来,相关产业界即不断试图将石墨烯的优异性能应用于不同的领域。具体而言,石墨烯是一种由单层碳原子以石墨键(sp2)紧密堆积成二维蜂窝状的晶格结构,且由于石墨烯的化学键为石墨键,是属于共价键与金属键的复合键,所以具有非常优异的导热性、导电性。在常温下石墨烯其电子迁移率比奈米碳管或硅晶体还高,同时电阻率更低于铜、银,已是目前世界上电阻率最小的材料。
此外,石墨烯仪具有一个碳原子的厚度,约0.335nm,机械强度可远高于钢铁百倍,而比重却仅约钢铁的四分之一,是目前世界上最薄也是最坚硬的材料,尤其是热传导系数高于奈米碳管与金刚石,且理论值可高达5300W/mK,是极佳的散热材料。
传统上,石墨烯的制备方法可分为剥离石墨法、直接生长法与奈米碳管转换法三大类,其中剥离石墨法可制得石墨烯粉体,适合应用于量产制程,主要为使用氧化还原反应方式,先将石墨材料氧化,形成石墨氧化物,再进行分离、还原处理以得到石墨烯。
因此,在许多领域的应用上,希望可以藉由无论是物理或化学的方式进行改质石墨烯,使石墨烯更易于控制,进一步分散与减少再堆叠的产生,而利用立体障碍(Spacer)来达到隔开各片石墨烯,也是其中一个分散的手段。
石墨烯与奈米碳管在透明电极的应用皆有可挠性高、反射率低的优点,是目前做为软性电子材料的首选。同时,石墨烯的热学性质十分优异,在热能管理的应用上也吸引许多研究者的瞩目,若能有效分散石墨烯并导入制作成均热或散热单元,将有助整体系统的导热与散热,进而提升电子元件的效能。然而,石墨烯分散液的制备较奈米碳管分散液困难许多,因为石墨烯与一般粉体不同,具有相对于一般奈米粉体更高的比表面积,本质上在混合上或制程中非常容易聚集堆叠,使得应用性质受限。因此,石墨烯在应用上的主要技术困难点是在于不容易得到高均匀性且单层的石墨烯薄膜,同时很难在石墨烯片彼此保持接触导通时,避免石墨烯薄片之间彼此不均匀地堆叠。
在现有的技术中,可藉由混合入不同维度的材料作为立体障碍,直接隔开每一片石墨烯片,而常见的有奈米球体颗粒、奈米碳管或金属奈米线。在立体障碍与石墨烯粉体进行均匀混合后,即可减少石墨烯再堆叠发生的可能,但进一步应用在各个不同领域时,就会有许多附加的限制,在导电应用的要求,奈米金属颗粒等良导体将更适于立体障碍的材料选用。
在美国专利第8315039 B2号揭露一种应用在超级电容的改质石墨烯片,其中改质石墨烯片是结合金属盐类及石墨烯片而形成,且金属盐类是使用金属的氧化物、碳化物或氮化物等等。此外,在石墨烯的表面上进一步形成隆起状,作为间隔物,使得改质石墨烯片的比表面积可高达500~1800m2/g。并可进一步官能基化,使得质石墨烯片能制作出最高可达到298F/g的超级电容。这种改质石墨烯片虽然可具有很高的比电容率,不过,石墨烯片彼此之间的实体接触受到金属盐类的干涉,将使导电与导热的性质受到影响。
在美国专利号20140030590 A1号揭露一种用于储能装置的石墨烯电极,立体障碍与石墨烯片利用无溶剂制程混合,以改善振实密度,提高整体储能容量。其中立体障碍材料具胶联的应用考量,选用树脂、橡胶或其他弹性体,其直径不超过1μm,混合比例从0.2%到20%。立体障碍可避免石墨烯片再堆叠,也可在热辅助固化制作极片时,更有效地将树脂均匀的覆盖在石墨烯片表面。但立体障碍颗粒藉由固相混合在石墨烯片的分散并不理想,且狭小的石墨烯片堆叠缝隙将限制适宜的颗粒大小。
因此,需要一种石墨烯/奈米碳管复合结构以及一种石墨烯/奈米碳管复合结构的制作方法,利用直接成长并垂直于石墨烯平面的奈米碳管可以有效区隔各个石墨烯片,同时有利于兼顾导热性质与导电网络的建构,藉以解决上述现有技术的问题。
发明内容
本发明的主要目的在于提供一种石墨烯/奈米碳管复合结构及其制作方法,其中石墨烯/奈米碳管复合结构包括多个石墨烯片以及多个奈米碳管,每个奈米碳管的轴向垂直于石墨烯片的平面方向。其中,石墨烯片的厚度是1nm至50nm,平面横向尺寸是1um至100um,含氧量小于3wt%,含碳量大于95wt%,比表面积为20至750m2/g,且平面横向尺寸及厚度的比值是在10至10000,堆积密度为0.1g/cm3至0.01g/cm3,而整体复合结构的堆积密度小于0.03g/cm3
本发明的另一目的在于提供石墨烯/奈米碳管复合结构的制作方法,包括石墨烯片准备步骤、化学沉淀步骤、还原步骤以及奈米碳管成长步骤,其中化学沉淀步骤及还原步骤可在石墨烯片上析出金属颗粒,并进一步热处理成长出奈米碳管。
首先,在石墨烯片准备步骤中,准备多个石墨烯片,且每个石墨烯片是由N个石墨烯层所堆叠形成,而N为1~1000之间的正整数。接着在化学沉淀步骤中,将石墨烯片分散于包含金属盐类前驱物的水溶液中,并利用沉淀反应而析出金属盐类,并沉淀于石墨烯片的表面上。
进入还原步骤,将表面沉积有金属盐类的石墨烯片置于高温中进行还原热处理,以使得金属盐类进一步加热分解而还原为金属颗粒。在奈米碳管成长步骤中,提供碳源及还原气氛,对表面沉积有金属颗粒的石墨烯片,进行一高温处理而于石墨烯片表面成长多个奈米碳管。
以垂直平面成长的奈米碳管作为立体障碍更可以有效区隔每一片独立的石墨烯片,限制彼此互相堆叠,进一步在分散制程之后强化石墨烯的性质表现。
附图说明
图1为依据本发明实施例石墨烯散热片结构的示意图。
图2为依据本发明另一实施例石墨烯散热片结构的制作方法的操作处理流程图。
图3为本发明中石墨烯片的SEM照片。
图4为本发明中石墨烯/奈米碳管复合结构的粉体的SEM照片。
其中,附图标记说明如下:
1石墨烯/奈米碳管复合结构
10 石墨烯片
11 石墨烯层
20 金属颗粒
30 奈米碳管
D 平面方向
L 轴向
S10 石墨烯片准备步骤
S20 化学沉淀步骤
S30 还原步骤
S40 奈米碳管成长步骤
具体实施方式
以下配合图示及附图标记对本发明的实施方式做更详细的说明,使熟悉本领域的技术人员在研读本说明书后能据以实施。
请参阅图1,本发明实施例石墨烯/奈米碳管复合结构的示意图。要注意的是,为清楚展现本发明的主要特点,因此图1只是以示意方式显示其中主要元件之间的相对关系,并非依据实际大小而绘制,所以图中主要元件的厚度、大小、形状、排列、配置等等都只是参考而已,并非用以限定本发明的范围。
如图1所示,本发明的石墨烯/奈米碳管复合结构1具有三维方向,主要是包括多个石墨烯片10、多个金属颗粒20以及多个奈米碳管30,且每个石墨烯片10具薄片状,金属颗粒20是批覆于石墨烯片10上,而所述奈米碳管30是利用金属颗粒20作为成长位置,并垂直成长于石墨烯片10,即,奈米碳管30的轴向L是配置成垂直成长于石墨烯片10的平面方向D,同时,所述奈米碳管30是并排而藉金属颗粒20以批覆于石墨烯片10上,藉以形成本发明的石墨烯/奈米碳管复合结构1。
具体而言,石墨烯片10是由N个石墨烯层11所堆叠而形成,且N为1~1000之间的正整数,而整体石墨烯片10的堆积密度为0.1g/cm3至0.01g/cm3,厚度是1nm至50nm,平面横向尺寸是1um至100um,含氧量小于3wt%,含碳量大于95wt%,比表面积为20至750m2/g,且平面横向尺寸及厚度的比值是在10至10000。
上述的金属颗粒20可包含铜、镍及铁的至少其中之一,而奈米碳管30是在披覆有金属颗粒20的位置成长,并垂直于石墨烯片10的平面方向D。
此外,当本发明的石墨烯/奈米碳管复合结构1以铁金属颗粒作为触媒进行奈米碳管成长时,由于铁本身具有磁性,因此该复合结构制作完成后,进一步具有磁性,且其堆积密度是小于0.03g/cm3
进一步而言,所述石墨烯片10之间是由所述碳米碳管30所形成的立体障碍而相互分离,所述奈米碳管30是由气相碳源与金属颗粒接触之后,藉由催化或裂解共熔,由金属颗粒表面与石墨烯表面相接之处重新析出碳原子,该碳原子与所述石墨烯片10之间以化学键结而相连接,并以有序的方式沿石墨烯平面垂直方向排列生长。
进一步参考图2,为本发明另一实施例石墨烯/奈米碳管复合结构的制作方法的操作处理流程图,其中本发明的制作方法包含依序进行的石墨烯片准备步骤S10、化学沉淀步骤S20、还原步骤S30以及奈米碳管成长步骤S40,用以制作石墨烯/奈米碳管复合结构。
如图2所示,首先本发明石墨烯散热片结构的制作方法是由石墨烯片准备步骤S10开始,准备多个石墨烯片,且每个石墨烯片是由N个石墨烯层所堆叠形成,且N为1~1000之间的正整数。本实施例的石墨烯片是具有相同于图1实施例中石墨烯片的特征,包含特定范围的堆积密度、厚度、平面横向尺寸、含氧量、含碳量、比表面积、平面横向尺寸对厚度的比值,因此,石墨烯片的详细内容不再赘述。
接着在化学沉淀步骤S20中,将石墨烯片分散于包含金属盐类前驱物的水溶液中,利用沉淀反应以析出金属盐类,进而沉积于石墨烯片的表面上。因此,金属盐类包覆整个石墨烯片。较佳的,金属盐类前驱物可包含铜、镍及铁的至少其中之一的金属元素,而金属盐类为包含铜、镍及铁的至少其中之一的金属元素的盐类。
进入还原步骤S30,将表面沉积有金属盐类的石墨烯片置于高温中进行还原热处理,比如是在温度大于200℃并低于1200℃下,使得石墨烯片上的金属盐类经加热分解而还原为金属颗粒,其中金属颗粒包含铜、镍及铁的至少其中之一的金属元素。较佳的,还原步骤S30是在保护气氛中进行,而保护气氛可包含还原气氛,比如氢气。
最后,在奈米碳管成长步骤S40中,对表面沉积有金属颗粒的石墨烯片,通入带有气相碳源及还原气氛,并进行高温处理,以使得气相碳源中的碳元素经高温下与还原气氛进行还原反应,而于石墨烯片表面上成长出奈米碳管,进而获得石墨烯/奈米碳管复合结构。尤其是,奈米碳管的轴向是垂直于石墨烯片的平面方向。
较佳的,奈米碳管成长步骤40中所使用的气相碳源可选自气相碳氢化合物,比如甲烷,且高温处理的处理温度是大于800℃,并低于1500℃。
[实例1]
主要是藉还原铜金属颗粒而在石墨烯片表面上成长奈米碳管的方式,进而得到石墨烯/奈米碳管复合结构。选用的石墨烯片的平面横向尺寸约为20um,比表面积约为350m2/g,并在化学沉淀步骤中,将石墨烯片加入0.08M的硫酸铜水溶液,适度添加散剂以利石墨烯片分散、悬浮,再以沉淀法析出铜的前驱物盐类而附于石墨烯片的表面上。接着,将附着铜前驱物盐类的石墨烯片置于高温炉中,同时通入氢、氩混和气体,然后将高温炉的温度上升至650℃,且维持该温度约一小时,并于反应结束后可得到表面附着铜金属颗粒的石墨烯片。该石墨烯片以扫描式电子显镜(SEM)所拍摄的照片如图3所示。最后,进一步将表面附着铜金属颗粒的石墨烯片置于高温炉中,将炉体升温至800℃以上,接着通入甲烷与氩气的混合气氛,反应一小时,并于反应结束冷却后,即可得到石墨烯/奈米碳管复合结构的粉体。该粉体以SEM所拍摄的照片如图4所示。
综上所述,本发明的主要特点在于石墨烯/奈米碳管复合结构是利用奈米碳管形成的立体障碍有效分离各片石墨烯,并使其不易再发生团聚。此外,奈米碳管优异的性质更能进一步强化石墨烯在应用上的表现。
此外,本发明的另一特点在于制作石墨烯/奈米碳管复合结构所进行的石墨烯片准备步骤、化学沉淀步骤、还原步骤以及奈米碳管成长步骤都可直接使用现有技术中的现有设备而达成,不需额外设计新式的处理设备,因而相当具有成本优势,提高产业利用性。
以上所述仅为用以解释本发明的较佳实施例,并非企图据以对本发明做任何形式上的限制,因此,凡有在相同的发明精神下所作有关本发明的任何修饰或变更,皆仍应包括在本发明意图保护的范畴。

Claims (10)

1.一种石墨烯/奈米碳管复合结构,具有三维方向,其特征在于,包括:
多个石墨烯片,每个石墨烯片为一薄片状并具有一平面方向,且每个石墨烯片是由N个石墨烯层所堆叠形成,而N为1~1000之间的正整数;
多个金属颗粒,是批覆于所述石墨烯片上;以及
多个奈米碳管,每个奈米碳管具有一轴向,是利用所述金属颗粒作为成长位置而垂直成长于所述石墨烯片上,以使得该奈米碳管的轴向是垂直于该石墨烯片的平面方向,且所述石墨烯片之间是由所述碳米碳管形成一立体障碍而相互分离,而所述奈米碳管及所述石墨烯片之间以化学键结而相连接。
2.根据权利要求1所述的石墨烯/奈米碳管复合结构,其特征在于,进一步具有一磁性。
3.根据权利要求1所述的石墨烯/奈米碳管复合结构,其特征在于,所述石墨烯片的堆积密度是在0.1g/cm3至0.01g/cm3之间,且每个石墨烯片具有一厚度、一平面横向尺寸、一含氧量、一含碳量及一比表面积,而该厚度是在1nm至50nm的区间,该平面横向尺寸是在1um至100um的区间,该含氧量是小于3wt%,该含碳量是大于95wt%,该比表面积为20至750m2/g,且该平面横向尺寸及该厚度的一比值是在10至10000的区间。
4.根据权利要求1所述的石墨烯/奈米碳管复合结构,其特征在于,进一步具有一堆积密度,小于0.03g/cm3
5.一种石墨烯/奈米碳管结构的制作方法,其特征在于,包括以下步骤:
一石墨烯片准备步骤,准备多个石墨烯片,且每个石墨烯片是由N个石墨烯层所堆叠形成,而N为1~1000之间的正整数;
一化学沉淀步骤,将所述石墨烯片分散于包含一金属盐类前驱物的一水溶液中,并利用一沉淀反应而析出一金属盐类,并沉积于所述石墨烯片的表面上;
一还原步骤,将表面沉积有该金属盐类的所述石墨烯片置于一高温中进行一还原热处理,以使得该金属盐类进一步经加热分解而还原为多个金属颗粒;以及
一奈米碳管成长步骤,对表面沉积有所述金属颗粒的所述石墨烯片,提供一气相碳源及一还原气氛,并进行一高温处理而于所述金属颗粒上成长多个奈米碳管,且该奈米碳管的一轴向垂直于该石墨烯片的一平面方向。
6.根据权利要求5所述的制作方法,其特征在于,所述石墨烯片的堆积密度是在0.1g/cm3至0.01g/cm3之间,且每个石墨烯片具有一厚度、一平面横向尺寸、一含氧量、一含碳量及一比表面积,而该厚度是在1nm至50nm的区间,该平面横向尺寸是在1um至100um的区间,该含氧量是小于3wt%,该含碳量是大于95wt%,该比表面积为20至750m2/g,且该平面横向尺寸及该厚度的一比值是在10至10000的区间。
7.根据权利要求5所述的制作方法,其特征在于,该金属盐类前驱物包含铜、镍及铁的至少其中之一的金属元素,而该金属盐类为包含铜、镍及铁的至少其中之一的金属元素的盐类。
8.根据权利要求5所述的制作方法,其特征在于,该还原步骤于一保护气氛中进行,而该保护气氛包含一还原气氛,且该还原气氛包含氢气,而该高温的温度是大于200℃,并低于1200℃。
9.根据权利要求5所述的制作方法,其特征在于,该奈米碳管成长步骤的气相碳源选自气相碳氢化合物,且该气相碳氢化合物包含甲烷。
10.根据权利要求5所述的制作方法,其特征在于,该奈米碳管成长步骤的高温处理的一处理温度是大于800℃,并低于1500℃。
CN201510263947.6A 2015-05-07 2015-05-22 石墨烯/奈米碳管复合结构及其制作方法 Active CN106180694B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104114561A TWI557070B (zh) 2015-05-07 2015-05-07 石墨烯/奈米碳管複合結構及其製作方法
TW104114561 2015-05-07

Publications (2)

Publication Number Publication Date
CN106180694A true CN106180694A (zh) 2016-12-07
CN106180694B CN106180694B (zh) 2018-05-22

Family

ID=57222767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510263947.6A Active CN106180694B (zh) 2015-05-07 2015-05-22 石墨烯/奈米碳管复合结构及其制作方法

Country Status (3)

Country Link
US (1) US9704611B2 (zh)
CN (1) CN106180694B (zh)
TW (1) TWI557070B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406581A (zh) * 2018-12-28 2019-03-01 苏州甫电子科技有限公司 石墨烯复合气体敏感材料、气敏传感器及其制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112553616B (zh) * 2020-11-10 2022-10-21 国网宁夏电力有限公司检修公司 一种隔离开关电触头的表面保护方法
CN114180558B (zh) * 2021-12-27 2023-09-08 广东墨睿科技有限公司 石墨烯微纳腔超导膜的制备方法及相关产品和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059428A (ja) * 2002-07-29 2004-02-26 Samsung Sdi Co Ltd 燃料電池用炭素ナノチューブ、その製造法及びそれを採用した燃料電池
CN101712452A (zh) * 2009-11-20 2010-05-26 哈尔滨工程大学 纳米石墨片、碳纳米管和过渡金属氧化物复合材料及制法
US20110157772A1 (en) * 2009-12-28 2011-06-30 Aruna Zhamu Spacer-modified nano graphene electrodes for supercapacitors
CN102219203A (zh) * 2011-04-15 2011-10-19 清华大学 一种用于复合增强的三维纳米碳材料及其制备方法
CN102923686A (zh) * 2011-08-09 2013-02-13 海洋王照明科技股份有限公司 一种石墨烯/碳纳米管复合材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017756B2 (en) * 2010-01-07 2015-04-28 Nanotek Instruments, Inc. Continuous process for producing spacer-modified nano graphene electrodes for supercapacitors
KR20130060614A (ko) * 2011-11-30 2013-06-10 한국전자통신연구원 탄소 이온 발생용 타깃 및 이를 이용한 치료 장치
US20140030590A1 (en) * 2012-07-25 2014-01-30 Mingchao Wang Solvent-free process based graphene electrode for energy storage devices
US8947854B2 (en) * 2012-10-09 2015-02-03 Nanotek Instruments, Inc. Spacer-modified graphene electrode for supercapacitor
US9056778B2 (en) * 2013-04-12 2015-06-16 Enerage Inc. Nano-graphite plate structure
US9484160B2 (en) * 2013-09-23 2016-11-01 Nanotek Instruments, Inc. Large-grain graphene thin film current collector and secondary batteries containing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059428A (ja) * 2002-07-29 2004-02-26 Samsung Sdi Co Ltd 燃料電池用炭素ナノチューブ、その製造法及びそれを採用した燃料電池
CN101712452A (zh) * 2009-11-20 2010-05-26 哈尔滨工程大学 纳米石墨片、碳纳米管和过渡金属氧化物复合材料及制法
US20110157772A1 (en) * 2009-12-28 2011-06-30 Aruna Zhamu Spacer-modified nano graphene electrodes for supercapacitors
CN102219203A (zh) * 2011-04-15 2011-10-19 清华大学 一种用于复合增强的三维纳米碳材料及其制备方法
CN102923686A (zh) * 2011-08-09 2013-02-13 海洋王照明科技股份有限公司 一种石墨烯/碳纳米管复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KITU KUMAR ET AL: "Chemical Vapor Deposition of Carbon Nanotubes on Monolayer Graphene Substrates: Reduced Etching via Suppressed Catalytic Hydrogenation Using C2H4", 《CHEMISTRY OF MATERIALS》 *
ZHUANGJUN FAN ET AL: "A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors", 《ADVANCED MATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406581A (zh) * 2018-12-28 2019-03-01 苏州甫电子科技有限公司 石墨烯复合气体敏感材料、气敏传感器及其制作方法
CN109406581B (zh) * 2018-12-28 2024-03-01 苏州甫一电子科技有限公司 石墨烯复合气体敏感材料、气敏传感器及其制作方法

Also Published As

Publication number Publication date
TW201639783A (zh) 2016-11-16
CN106180694B (zh) 2018-05-22
US20160329120A1 (en) 2016-11-10
US9704611B2 (en) 2017-07-11
TWI557070B (zh) 2016-11-11

Similar Documents

Publication Publication Date Title
Zhou et al. Layered intercalation materials
Tay et al. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper
Jana et al. Progress in CVD synthesis of layered hexagonal boron nitride with tunable properties and their applications
US8808860B2 (en) 3-dimensional nanostructure having nanomaterials stacked on graphene substrate and fabrication method thereof
Ma et al. Poly (vinylidene fluoride-co-hexafluoropropylene)-MXene Nanosheet Composites for Microcapacitors
Dang et al. Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics
US20090092824A1 (en) Apparatus, methods, and articles of manufacture corresponding to a self-composite comprised of nanocrystalline diamond and a non-diamond component and corresponding to a composite comprised of nanocrystalline diamond, metal, and other nanocarbons that is useful for thermoelectric and other applications
Liu et al. Silver nanoparticle-enhanced three-dimensional boron nitride/reduced graphene oxide skeletons for improving thermal conductivity of polymer composites
Alim et al. Recent advances on thermally conductive adhesive in electronic packaging: a review
Kim et al. Magnetic filler alignment of paramagnetic Fe3O4 coated SiC/epoxy composite for thermal conductivity improvement
JP2016504756A (ja) バルクサイズナノ構造材料、およびナノワイヤを焼結することによるその作製方法
CN102898680A (zh) 表面改质的石墨烯
Kshirsagar et al. Band engineered I/III/V–VI binary metal selenide/MWCNT/PANI nanocomposites for potential room temperature thermoelectric applications
CN106180694A (zh) 石墨烯/奈米碳管复合结构及其制作方法
US20110005564A1 (en) Method and Apparatus Pertaining to Nanoensembles Having Integral Variable Potential Junctions
CN104555994A (zh) 奈米石墨烯空心粒子及其制作方法
Sheng et al. Copper Nanoplates for printing flexible high-temperature conductors
Wang et al. Enhancement of thermal conductivity of BN-Ni/epoxy resin composites through the orientation of BN-Ni fillers by magnetic field and hot-pressing
Barry et al. A general and flexible synthesis of transition-metal polyphosphides via PCl3 elimination
Zhang et al. Twist the doorknob to open the electronic properties of graphene-based van der Waals structure
Kwon et al. Thermally conducting yet electrically insulating epoxy nanocomposites containing aluminum@ electrochemically exfoliated graphene hybrid
CN104109569A (zh) 含有奈米石墨片的润滑油
Tarutani et al. Metal hydroxide salt monolayer nanoparticles: Synthesis, redox characterization, and electrochemical catalytic performance
Liu et al. Composition‐Dependent Magnetic Ordering in Freestanding 2D Non‐van der Waals Cr2TexSe3− x Crystals
Wu et al. Controlling phase and morphology of inorganic nanostructures originated from the internal crystal structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190527

Address after: Building 301-16, No. 6, No. 1 Gaolizhang Road, Haidian District, Beijing

Patentee after: Beijing Ensemble Technology Co., Ltd. (Limited Partnership)

Address before: Taiwan County, Yilan, China five knot Li Road, No. 5, three

Patentee before: Enerage, Inc.

TR01 Transfer of patent right