CN106179500A - 一种高效脱氯复合材料及其制备方法 - Google Patents

一种高效脱氯复合材料及其制备方法 Download PDF

Info

Publication number
CN106179500A
CN106179500A CN201610561898.9A CN201610561898A CN106179500A CN 106179500 A CN106179500 A CN 106179500A CN 201610561898 A CN201610561898 A CN 201610561898A CN 106179500 A CN106179500 A CN 106179500A
Authority
CN
China
Prior art keywords
dechlorination
composite
nanoscale iron
starch
iron nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610561898.9A
Other languages
English (en)
Inventor
付明来
杨勇
谢蝶
殷晓东
黄海
张文
徐峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Dingshi Environmental Engineering Co Ltd
Original Assignee
Zhongke Dingshi Environmental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Dingshi Environmental Engineering Co Ltd filed Critical Zhongke Dingshi Environmental Engineering Co Ltd
Priority to CN201610561898.9A priority Critical patent/CN106179500A/zh
Publication of CN106179500A publication Critical patent/CN106179500A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种可用于处理地下水含氯烃有机污染物的淀粉负载纳米铁镍高效脱氯复合材料及其制备方法。该脱氯复合材料是以硼氢化钠作为还原剂还原硫酸亚铁,以氯化镍置换出一部分纳米铁作为纳米铁镍双金属,以淀粉为载体,通过液相还原法,获得一种高效脱氯复合材料。本发明制备出的淀粉负载纳米铁镍双金属复合材料不仅可以利用淀粉的还原性实现对纳米铁镍双金属脱氯性能的保护,而且还可以避免纳米铁镍双金属的团聚,增大纳米铁镍双金属的比面积,增强对目标污染物的吸附,从而促进了纳米铁镍双金属对三氯乙烯、氯仿的高效还原脱氯效果。

Description

一种高效脱氯复合材料及其制备方法
技术领域
本发明涉及一种原位修复含氯代烃类污染物的地下水的复合试剂的开发,具体来说是一种淀粉负载纳米铁镍双金属脱氯复合材料及其制备方法,属于水处理技术领域。
背景技术
根据污染物的可溶性,可将地下水中污染物分为可溶性污染物和非可溶性污染物。可溶性污染物多为无机物和对水溶解度高的有机物,大多数研究集中在这类污染物;非溶解性污染物为微溶于水的有机碳氢化合物,这类物质与水呈不可混合的状态,与水接触后会形成明显的分层状态,根据其密度的大小,可将其分为低密度非水相流体(Light non-aqueous phase liquid,LNAPL)和高密度非水相流体(dense non-aqueous phase liquid,DNAPL),LNAPL集中在地下水的表层,而DNAPL由于密度比水大,容易向地下迁移,从而增加了地下水与土壤受污染的深度和广度,进而增加了地下水治理和修复的难度。受DNAPL污染的土壤与地下水的修复已成为国外的研究热点,而国内对此的研究报道甚少。最近,有关国内土壤与地下水的污染情况调查数据引起了广泛的关注,可以预期在未来的一段时间内,特别是“十三”五时间里,治理和修复受污染的地下水和土壤将是我国环境保护领域一项极其重要的工程。
受污染的地下水中最常见的DNAPL污染物有氯仿、三氯乙烯(TCE)、四氯乙烯(PCE)、多氯联苯(PCBs)等氯代有机物(COCs),它们被广泛地应用于飞机发动机、汽车部件、电子元件以及衣服的脱脂等领域。TCE和氯仿在环境中具有持久性的特点,具有很强的生物毒性和致畸性,已被列入美国环保局优先控制污染物,中国环境优先监测和控制污染物以及欧盟公布的污染物“黑名单”。因此,开展以TCE和氯仿作为DNAPL的代表污染物的修复研究具有极其重要的研究价值和环境意义。
发明内容
本发明的目的在于提供一种高效脱氯复合材料及其制备方法,本发明的高效脱氯复合材料稳定性好,脱氯效果优异,而且制备方法简单、经济,投加到地下水中能高效地将三氯乙烯、氯仿还原,降低地下水中三氯乙烯、氯仿的浓度甚至完全消除,以达到使其转变成无毒或低毒的降解产物的目的,提高地下水的安全性,去除三氯乙烯和氯仿致癌、致畸、致突变的危害。
为达到上述目的,本发明采取的技术方案是:一种高效脱氯复合材料,所述脱氯复合材料是由淀粉和纳米铁镍颗粒所组成,纳米铁镍颗粒均匀地负载在淀粉上。
在复合材料的催化作用下,10小时内对三氯乙烯的降解效率可达到97.2%,对氯仿的降解效率可达到95.6%。
在本发明中,优选的,纳米铁镍颗粒均匀地分散淀粉上,铁镍颗粒的直径为20-50nm;淀粉与铁镍双金属质量比为16~4:1,双金属中铁镍摩尔比为4:1。
进一步的,本发明还提供了上述高效脱氯复合材料的制备方法,将淀粉作为载体加入到蒸馏水于三颈瓶中,同时加入一定量的六水合硫酸亚铁晶体并持续地通入氮气鼓泡,直至制得无氧溶液,并持续通N2,同时进行搅拌,再将采用无氧水配制的硼氢化钠溶液缓慢滴加至上述水溶液中,滴加完毕后再机械搅拌15min使其反应完全;最后向黑色悬浮液中滴加氯化镍溶液机械搅拌15min,并持续通氮气,随后经过一系列处理即得淀粉负载纳米铁镍颗粒脱氯复合材料。
在本发明中,优选的,采用0.8mol/L,100mL的硼氢化钠溶液缓慢滴加到0.05mol/L,100mL的硫酸亚铁溶液中。
在本发明中,优选的,采用一定量的六水氯化镍置换20%的纳米铁,理论上应得铁镍摩尔比为4:1的纳米铁镍双金属。
在本发明中,优选的,反应完全后先采用真空抽滤机对产物进行过滤分离,用无氧水洗涤,紧接着将经过抽滤的饼状双金属块放入真空干燥箱干燥;设置温度50℃,干燥12h,即得到半干的纳米铁镍双金属脱氯复合材料。
上述高效脱氯复合材料的制备方法具体包括以下步骤:
(1)称取1.39g FeSO4·7H2O和2.256g淀粉共同溶解于100mL的无氧水中,放入三口烧瓶,通N2搅拌15min;
(2)用分液漏斗将100mL 0.8mol/L的NaBH4溶液缓慢滴加到Fe2+溶液中,滴加反应过程中产生大量的气体,持续通N2,搅拌15min,将产生的H2及时赶走;理论得到的零价纳米Fe质量为0.28g;
(3)观察反应至不产生气泡,持续通入N2,然后加入0.237g的NiCl2·6H2O到三口烧瓶,置换20%的Fe,反应15min即停止反应,理论得到含有0.224g的Fe、0.058g的Ni的纳米Fe/Ni双金属,双金属的理论质量为0.282g。理论得到的摩尔比Fe:Ni=4:1的纳米双金属负载在2.256g淀粉表面,淀粉与双金属质量比为8:1;反应完成后,采用真空抽滤机对产物进行过滤分离,用无氧水洗涤,紧接着将经过抽滤的饼状双金属块放入真空干燥箱干燥;设置温度50℃,干燥12h,得到半干的纳米铁镍双金属脱氯复合材料样品。
本发明的淀粉负载纳米铁镍双金属脱氯复合材料的制备方法中,加入的淀粉不但作为载体,分散纳米铁镍双金属,提高纳米铁镍双金属的比表面积,从而提高材料的催化效果;而且淀粉具有的还原性能在制备过程中保护纳米铁镍以免被氧化,发挥复合材料的最大脱氯效能。
本发明与现有技术相比具有以下优点:
(1)本发明制备出的纳米铁镍双金属脱氯剂具有高的比表面积,纳米颗粒比表面积约为2.59㎡/g,比微米级铁颗粒高几十甚至几百倍。
(2)本发明制备出的淀粉负载纳米铁镍双金属脱氯剂具有高的反应活性。例如纳米颗粒对氯代烯烃降解时标准化后的降解速率比文献中报道的微米级铁颗粒高一至两个数量级;在本发明脱氯复合材料的催化作用下,10小时内对三氯乙烯的降解效率可达到97.2%,对氯仿的降解效率可达到95.6%。
(3)本发明成本低廉,对于双金属体系,催化剂为金属钯时,脱氯效果最好,但是由于钯为贵重金属,考虑工程应用的经济性,本发明采用相对更廉价的金属镍替代钯,效果相同的前提下,成本大大降低。
(4)本发明采用淀粉负载铁镍双金属,不仅可以利用淀粉的还原性实现对纳米铁镍双金属脱氯性能的保护,而且还可以避免纳米铁镍双金属的团聚,增大纳米铁镍双金属的比面积,增强对目标污染物的吸附,从而促进了纳米铁镍双金属对三氯乙烯、氯仿的高效还原脱氯效果。
附图说明
图1为淀粉负载纳米铁镍双金属复合材料的SEM图;
图2为三氯乙烯的降解效率随淀粉负载纳米铁镍双金属投加量的关系图;
图3为氯仿的降解效率随淀粉负载纳米铁镍双金属投加量的关系图。
具体实施方式
下面将结合具体实施例进一步阐明本发明的内容,但这些实施例并不限制本发明的保护范围。
实施例1:淀粉负载铁镍双金属纳米颗粒脱氯复合材料的制备
具体步骤如下:
(1)称取1.39g FeSO4·7H2O和2.256g淀粉共同溶解于100mL的无氧水中,放入三口烧瓶,通N2搅拌15min;
(2)用分液漏斗将100mL 0.8mol/L的NaBH4溶液缓慢滴加到Fe2+溶液中,滴加反应过程中产生大量的气体,持续通N2,搅拌15min,将产生的H2及时赶走;理论得到的零价纳米Fe质量为0.28g;
(3)观察反应至不产生气泡,持续通入N2,然后加入0.237g的NiCl2·6H2O到三口烧瓶,置换20%的Fe,反应15min即停止反应,理论得到含有0.224g的Fe、0.058g的Ni的纳米Fe/Ni双金属,双金属的理论质量为0.282g。理论得到的摩尔比Fe:Ni=4:1的纳米双金属负载在2.256g淀粉表面,淀粉与双金属质量比为8:1。反应完成后,采用真空抽滤机对产物进行过滤分离,用无氧水洗涤,紧接着将经过抽滤的饼状双金属块放入真空干燥箱干燥;设置温度50℃,干燥12h,得到半干的纳米铁镍双金属脱氯复合材料样品。
淀粉负载纳米铁镍双金属复合材料的SEM图见图1。由图1可知:本发明制备出的纳米铁镍双金属脱氯剂粒径范围20-50nm,具有高的比表面积,纳米颗粒比表面积约为2.59㎡/g,比微米级铁颗粒高几十甚至几百倍。
实施例2:淀粉负载铁镍双金属纳米颗粒脱氯复合材料降解三氯乙烯的实验
具体实验步骤如下:
分别称取实施例1制备的淀粉负载铁镍双金属纳米颗粒0.3g、0.5g、0.7g、0.9g、1.1g、1.3g分别放入6瓶装有40mL的三氯乙烯溶液(浓度为73ppm)血清瓶中,编号1-6,以未加入脱氯复合材料装有40mL的三氯乙烯溶液(浓度为73ppm)作为空白对照。置于室温搅拌(650rpm)反应10h后测试脱氯降解效果,如图2所示,除了1号外,所有样品中的三氯乙烯降解效率都在80%以上,最佳投加量是0.7g,10小时内其对三氯乙烯的降解效率可达到97.2%。
实施例3:淀粉负载铁镍双金属纳米颗粒脱氯复合材料降解氯仿的实验
具体实验步骤如下:
分别称取实施例1制备的淀粉负载铁镍双金属纳米颗粒0.3g、0.5g、0.7g、0.9g、1.1g、1.3g分别放入6瓶装有40mL的氯仿溶液(浓度为75ppm)血清瓶中,编号1-6,以未加入脱氯复合材料装有40mL的氯仿溶液(浓度为75ppm)作为空白对照。置于室温搅拌(650rpm)反应10h后测试脱氯降解效果,如图3所示,除了1号外,所有样品中的氯仿降解效率都在80%以上,最佳投加量是0.7g,10小时内其对氯仿的降解效率可达到95.6%。

Claims (6)

1.一种高效脱氯复合材料,其特征在于:所述脱氯复合材料是由淀粉和纳米铁镍颗粒所组成,纳米铁镍颗粒均匀地负载在淀粉上。
2.如权利要求1所述的一种高效脱氯复合材料,其特征在于:纳米铁镍颗粒均匀地分散淀粉上,铁镍颗粒的直径为20-50nm;淀粉与铁镍双金属质量比为16~4:1,双金属中铁镍摩尔比为4:1。
3.一种如权利要求1所述的一种高效脱氯复合材料的制备方法,其特征在于:将淀粉作为载体加入到蒸馏水于三颈瓶中,同时加入一定量的六水合硫酸亚铁晶体并持续地通入氮气鼓泡,直至制得无氧溶液,并持续通N2,同时进行搅拌,再将采用无氧水配制的硼氢化钠溶液缓慢滴加至上述水溶液中,滴加完毕后再机械搅拌15min使其反应完全;最后向黑色悬浮液中滴加氯化镍溶液机械搅拌15min,并持续通氮气,随后经过一系列处理即得淀粉负载纳米铁镍颗粒脱氯复合材料。
4.如权利要求3所述的一种高效脱氯复合材料的制备方法,其特征在于:采用0.8mol/L,100mL的硼氢化钠溶液缓慢滴加到0.05mol/L,100mL的硫酸亚铁溶液中。
5.如权利要求3所述的一种高效脱氯复合材料的制备方法,其特征在于:采用一定量的六水氯化镍置换20%的纳米铁,理论上应得铁镍摩尔比为4:1的纳米铁镍双金属。
6.如权利要求3所述的一种高效脱氯复合材料的制备方法,其特征在于:反应完全后先采用真空抽滤机对产物进行过滤分离,用无氧水洗涤,紧接着将经过抽滤的饼状双金属块放入真空干燥箱干燥;设置温度50℃,干燥12h,即得到半干的纳米铁镍双金属脱氯复合材料。
CN201610561898.9A 2016-07-15 2016-07-15 一种高效脱氯复合材料及其制备方法 Pending CN106179500A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610561898.9A CN106179500A (zh) 2016-07-15 2016-07-15 一种高效脱氯复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610561898.9A CN106179500A (zh) 2016-07-15 2016-07-15 一种高效脱氯复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106179500A true CN106179500A (zh) 2016-12-07

Family

ID=57475992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610561898.9A Pending CN106179500A (zh) 2016-07-15 2016-07-15 一种高效脱氯复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106179500A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107486136A (zh) * 2017-09-04 2017-12-19 绍兴文理学院 一种修复环境水体中镍和氯代有机物复合污染的方法
CN108793377A (zh) * 2018-06-08 2018-11-13 湖南农业大学 一种酵母菌负载纳米铁金复合材料的制备方法
CN110451627A (zh) * 2019-07-25 2019-11-15 武汉科技大学 纳米铁复合镍材料、其制备方法、应用和净化氯代有机物废水的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001309A2 (en) * 2004-06-30 2007-01-04 Auburn University Preparation and applications of stabilized metal nanoparticles for dechlorination of chlorinated hydrocarbons in soils, sediments and groundwater
CN1915511A (zh) * 2006-08-17 2007-02-21 南京工业大学 降解水中氯代有机污染物的双金属催化剂及其制备方法和应用
CN101406962A (zh) * 2008-11-12 2009-04-15 中国地质大学(北京) 一种用于降解水中卤代烃的纳米Ni/Fe双金属材料
CN104724813A (zh) * 2015-02-16 2015-06-24 南京大学 一种选择性降解高毒性多氯联苯及类二噁英物质的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001309A2 (en) * 2004-06-30 2007-01-04 Auburn University Preparation and applications of stabilized metal nanoparticles for dechlorination of chlorinated hydrocarbons in soils, sediments and groundwater
CN1915511A (zh) * 2006-08-17 2007-02-21 南京工业大学 降解水中氯代有机污染物的双金属催化剂及其制备方法和应用
CN101406962A (zh) * 2008-11-12 2009-04-15 中国地质大学(北京) 一种用于降解水中卤代烃的纳米Ni/Fe双金属材料
CN104724813A (zh) * 2015-02-16 2015-06-24 南京大学 一种选择性降解高毒性多氯联苯及类二噁英物质的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG HE,ET AL: "Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water", 《ENVIRONMENTAL SCIENCE & TECHNOLOGY》 *
RAZIEH NIKROO,ET AL: "Evaluation of trichloroethylene degradation by starch supported Fe/Ni nanoparticles via response surface methodology", 《WATER SCIENCE AND TECHNOLOGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107486136A (zh) * 2017-09-04 2017-12-19 绍兴文理学院 一种修复环境水体中镍和氯代有机物复合污染的方法
CN108793377A (zh) * 2018-06-08 2018-11-13 湖南农业大学 一种酵母菌负载纳米铁金复合材料的制备方法
CN108793377B (zh) * 2018-06-08 2022-02-08 湖南农业大学 一种酵母菌负载纳米铁金复合材料的制备方法
CN110451627A (zh) * 2019-07-25 2019-11-15 武汉科技大学 纳米铁复合镍材料、其制备方法、应用和净化氯代有机物废水的方法

Similar Documents

Publication Publication Date Title
Chu Revisiting the Temkin isotherm: dimensional inconsistency and approximate forms
Yuan et al. Highly efficient sunlight-driven reduction of Cr (VI) by TiO2@ NH2-MIL-88B (Fe) heterostructures under neutral conditions
Yu et al. Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review
Qu et al. Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr (Ⅵ) and tetracycline adsorption from water
Maiti et al. Evaluation of mechanism on selective, rapid, and superior adsorption of Congo red by reusable mesoporous α-Fe2O3 nanorods
Unuabonah et al. Adsorption of Pb (II) and Cd (II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies
Han et al. Transport and retention behaviors of titanium dioxide nanoparticles in iron oxide-coated quartz sand: effects of pH, ionic strength, and humic acid
Ding et al. Highly efficient extraction of thorium from aqueous solution by fungal mycelium-based microspheres fabricated via immobilization
Xing et al. A floating porous crystalline TiO2 ceramic with enhanced photocatalytic performance for wastewater decontamination
Sharma et al. Utilization of Ag2O–Al2O3–ZrO2 decorated onto rGO as adsorbent for the removal of Congo red from aqueous solution
CN106179500A (zh) 一种高效脱氯复合材料及其制备方法
CN103191699A (zh) 一种铁氧体/石墨烯复合吸附剂及其制备、使用方法
Fulekar et al. Nanotechnology: perspective for environmental sustainability
Yu et al. Adsorption Mechanisms and Electrochemical Properties of Methyl Blue onto Magnetic Ni x Mg y Zn (1-xy) Fe 2 O 4 Nanoparticles Fabricated Via the Ethanol-Assisted Combustion Process
Wang et al. Attachment of positively and negatively charged submicron polystyrene plastics on nine typical soils
Visa et al. Behavior of the new composites obtained from fly ash and titanium dioxide in removing of the pollutants from wastewater
Wu et al. Fast coadsorption and selective separation of gallium (III) and germanium (IV) from aqueous solutions by 3D hierarchical porous hoya-like α-FeOOH
Yin et al. Preparation of biochar grafted with amino-riched dendrimer by carbonization, magnetization and functional modification for enhanced copper removal
Chen et al. A novel CeO2/MIL101 (Fe) heterojunction for enhanced photocatalytic degradation of tetracycline under visible‐light irradiation
Silva-Rackov et al. Remediation of phenanthrene-contaminated soil by persulfate activated with Fe-modified diatomite: kinetic and statistical approaches
Chao et al. Preparation and adsorption properties of chitosan-modified magnetic nanoparticles for removal of Mo (VI) ions
Said et al. Facile fabrication of ZnMgAl/LDH/algae composites as a potential adsorbent for Cr (VI) ions from water: fabrication and equilibrium studies
Hu et al. Adsorption of phenol from aqueous solutions using interlayer modified titanate nanotubes
Shahmirzaee et al. Magnetic γ-Fe2O3/ZIF-7 Composite Particles and Their Application for Oily Water Treatment
Durodola et al. A Review on nanomaterial as photocatalysts for degradation of organic pollutants

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 100028, No. 3, building 6, North Fourth Ring Road, Chaoyang District, Beijing

Applicant after: Ding Ding environmental engineering Limited by Share Ltd

Address before: 100028, No. 3, building 6, North Fourth Ring Road, Chaoyang District, Beijing

Applicant before: ZHONGKE DINGSHI ENVIRONMENTAL ENGINEERING CO., LTD.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207