CN106179292A - 能响应可见光的灰化纳米TiO2光催化剂的制备方法 - Google Patents

能响应可见光的灰化纳米TiO2光催化剂的制备方法 Download PDF

Info

Publication number
CN106179292A
CN106179292A CN201610530257.7A CN201610530257A CN106179292A CN 106179292 A CN106179292 A CN 106179292A CN 201610530257 A CN201610530257 A CN 201610530257A CN 106179292 A CN106179292 A CN 106179292A
Authority
CN
China
Prior art keywords
nano
photocatalyst
tio
ashing
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610530257.7A
Other languages
English (en)
Inventor
孙秀果
李艳廷
朱亚辉
郭丹
李攀
訾贺
杨桂珍
王焕荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shijiazhuang Tiedao University
Original Assignee
Shijiazhuang Tiedao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shijiazhuang Tiedao University filed Critical Shijiazhuang Tiedao University
Priority to CN201610530257.7A priority Critical patent/CN106179292A/zh
Publication of CN106179292A publication Critical patent/CN106179292A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种能响应可见光的灰化纳米TiO2光催化剂的制备方法,包括如下步骤:A、分别称量摩尔比例为1∶1的纳米二氧化钛p25粉末和还原性铁粉,放到盛有100mL去离子水并带有循环冷却水的反应器中,室温下,利用超声细胞粉碎机在570W的功率下进行超声反应1h;B、得到反应产物后,用强磁铁吸在反应器底部,倒出反应液,以此除过量铁粉;C、经过稀盐酸反复洗涤3‑5次,后用去离子水洗涤,直到磁性消失说明铁已经除去;D、过滤后60℃下真空干燥8h,得到改性纳米二氧化钛。本发明创新点在于改性灰化纳米TiO2光催化剂光活性只依赖于催化剂二氧化钛本身,成分简单,可控性稳定性好,既保留原有的紫外光吸收和强氧化性,即能带位置不改变的前提下,还对可见光有响应。

Description

能响应可见光的灰化纳米TiO2光催化剂的制备方法
技术领域
本发明属于光催化产品合成技术领域,具体涉及一种能响应可见光的灰化纳米TiO2光催化剂的制备方法。
背景技术
太阳能具有廉价、清洁、可再生等优点,以高效利用和转化太阳能为核心,以光解水制氢和光催化消除环境污染物为主要方式的半导体光催化技术是人类应对21世纪环境与能源两大挑战的重要手段。该技术应用的关键是获得具有高太阳能利用效率和催化活性的光催化剂。
目前有很多性能优良的光催化剂,如TiO2、BiOCl及La、Nb、Ta基氧化物等。多为宽禁带半导体,只能吸收紫外和近紫外光,严重限制了其广泛应用。为改变这一现状,利用窄禁带半导体或者金属离子掺杂以拓宽半导体的光响应范围。此类调控催化剂禁带的方法虽然能提高光催化剂对太阳光的利用率,但是改性后的半导体能带电位发生较大改变,氧化电位降低,往往会降低其光催化活性。如果能有一种调控方式,既能扩展宽禁带半导体的光吸收范围又能保持主体材料的能带位置,将对光催化技术的应用有着非凡现实意义。
2011年陈晓波教授首次获得了表观黑色的二氧化钛,因其表面是黑色,吸光范围拓宽到了1000nm左右,引发了世界范围内的关于 黑色二氧化钛的研究热潮。目前关于黑色二氧化钛的制备主要有以下几种方法:利用溶胶凝胶法进行纳米铁粒子与二氧化钛的复合,高温高压氢气热处理、惰性气体混合气高压处理等。文献中制得的催化剂增强光活性依靠铁元素,这样就存在不可控性,铁是可变价态容易发生变化,稳定性差,一旦二氧化钛脱离复合基体铁,催化剂效率就会下降甚至失活。
发明内容
本发明的目的是提供一种使用比较廉价的德国气相法制得的纳米二氧化钛(简称p25)为原料,利用简单的超声法用铁粉处理,在不改变能带位置的前提下,拓宽光吸收的范围,使二氧化钛可见光光响应程度提高。
为了实现本发明所述目的,本发明提供了以下技术方案。
这种能响应可见光的灰化纳米TiO2光催化剂的制备方法,包括如下步骤:
A、分别称量摩尔比例为1∶1的纳米二氧化钛p25粉末和还原性铁粉,放到盛有100mL去离子水并带有循环冷却水的反应器中,室温下,利用超声细胞粉碎机在570W的功率下进行超声反应1h;
B、得到反应产物后,用强磁铁吸在反应器底部,倒出反应液,以此除过量铁粉;
C、经过稀盐酸反复洗涤3-5次,后用去离子水洗涤,直到磁性消失说明铁已经除去;
D、过滤后60℃下真空干燥8h,得到改性纳米二氧化钛。
所述能响应可见光的灰化纳米TiO2光催化剂的制备方法,步骤B得到的反应产物经搅拌后倒出悬浮液。
所述能响应可见光的灰化纳米TiO2光催化剂的制备方法,步骤C的洗涤是把0.01mol/l的稀盐酸直接倒在悬浮液里反复浸泡3-5次,浸泡时间为12h,每次浸泡后用沙心漏斗过滤,并用去离子水洗涤至中性,直到磁性消失。
本发明创新点在于改性灰化纳米TiO2光催化剂实现在使用的过程中不用考虑复合后催化剂的稳定性问题及复合后二氧化钛的损失问题,利用磁铁是把剩余的铁粉吸出来,以得到纯的二氧化钛,光活性只依赖于催化剂二氧化钛本身,成分简单,可控性稳定性好,另外本身二氧化钛无毒无污染,经过处理既保留原有的紫外光吸收和强氧化性,即能带位置不改变的前提下,还对可见光有响应。
除此之外,本制备方法较为简便安全,工艺简单,不用在450℃的氢气氛围下还原,原料相对于钛醇盐来说价格便宜,易于实现工业化生产。
附图说明
一、实物对比
图1-a是改性所得二氧化钛的实物图
图1-b是原料二氧化钛的实物图
如图1-a和图1-b两种样品的实物图对照所示,本发明改性的纳米二氧化钛颜色加深,这就有利用可见光的吸收。
二、所得产物的表征结果
图2是本发明不同功率下制备样品和原样p25的XRD图
从XRD图中可以看出,样品中的主要衍射峰出现的位置与原料p25的特征衍射峰的位置相对应,并未出现其他物质的衍射峰。说明晶型与原物质相比并未发生改变,且并未出现Fe2+的相关峰值。
图3是本发明制备样品透射电镜图
从HRTEM图3中可以看出制备产物的晶格条纹,约为0.358nm,经布拉格方程2dsinθ=nλ计算知,对应于P25的(101)晶面,说明这种方法的处理没有改变二氧化钛的结构。
图4是本发明制备样品的扫描电镜图
从图4中可以看出制备的样品催化剂颗粒均匀,颗粒大小大约为20-40nm之间,分散性较好,局部小部分堆积。并未发现有Fe任何形式的出现,包括表面复合或者是Fe的物质负载到p25表面。
三、样品能带的分析
证实这种方法制得的二氧化钛能带位置基本没变,禁带宽度也变化很小,但从紫外-可见光谱图可知,光吸收范围扩大到了近红外区,光催化性能也提高了。
图5是摩尔比p25∶Fe=1∶0.5和p25超声时间60min所得产物的禁带宽度图
由图可知p25的禁带宽度为2.93eV,摩尔比为p25∶Fe=1∶0.5产物的禁带宽度为2.86。下面是产物能带位置的计算:
EVB=X-Ee+0.5Eg=5.8-4.5+0.5*2.86=2.73eV
(P25 EVB=2.765eV)
ECB=EVB-Eg=2.73-2.86=-0.13eV
(p25 ECB=-0.165eV)
与p25的价带和导带位置相比,制备的催化剂的能带位置变化很小。
四、制备条件对产物可见光催化性能的影响
图6是不同超声功率和超声间歇所得产物的紫外-可见吸收光谱图(注:2-2指超声2S歇2S,其他类推)
功率从570W到1548W,发现制备产物与原料p25相比在可见光部分的吸收都有很大的提高,其中960W以上的功率制备的催化剂可见光的吸收大于其他功率的吸收。然而间歇对产物影响较小。
图7是不同超声功率和超声间歇所得产物对有机染料甲基橙MO的降解曲线
其中p25是在紫外光下的降解,制备产物是在模拟太阳光下的降解。结果发现制备的产物光催化效果均好于同等条件下的原料紫外光下的光催化效果。(注:2-2指超声2S歇2S,其他类推)
图8是p25和Fe的不同摩尔比和超声时间所得产物的紫外-可见吸收光谱图
不难发现,p25∶Fe的摩尔比为1∶1的条件下超声180min有较好的可见光吸收。
图9是不同摩尔比和超声时间所得产物的降解MO的曲线
显示,所有产品都有着优于原料的光催化性能。
具体实施方式
下面结合具体实施例对本发明所述内容做进一步详细的说明。 p25粉末(是德国气相法制得的纳米二氧化钛的简称)来源于上海冠都实业有限公司
实施例1∶
A、分别称量摩尔比例为1∶1的纳米二氧化钛p25粉末和还原性铁粉,放到盛有100mL去离子水并带有循环冷却水的反应器中,室温下,利用超声细胞粉碎机在570W的功率下进行超声反应1h;
B、得到反应产物后,用强磁铁吸在反应器底部,反应产物经搅拌后倒出悬浮液,以此除过量铁粉;
C、经过稀盐酸反复洗涤3-5次,后用去离子水洗涤,直到磁性消失说明铁已经除去。
上述步骤的洗涤是把0.01mol/l的稀盐酸直接倒在悬浮液里反复浸泡3-5次,浸泡时间为12h,每次浸泡后用沙心漏斗过滤,并用去离子水洗涤至中性,直到磁性消失。
D、过滤后60℃下真空干燥8h,得到改性纳米二氧化钛。
具体反应如下:
Fe+Ti4+=Fe2++Ti3+
从上面反应看,在制备此催化剂的过程中,铁粉作为处理剂,剩余被磁性吸出,成为二价铁之后并没有掺杂到晶格中或者以任何形式负载到二氧化钛的表面。且在后处理的过程中是经过多次酸洗和去离子水洗涤的。无论是从XRD,还是SEM中都可以看出Fe并没有以任何形式存在于催化剂中。
五、使用效果:
所得样品用于制药废水的处理,光催化降解效果采用国标GB11914-89测量COD的值来考量。
取0.20g所得催化剂,在300W Xe灯下光催化2h稀释40倍的制药废水(原液CODCr(O2,mg/L)=21098.80mg/L)。催化后废水的COD(CODCr(O2,mg/L)=10893.312mg/L)降解到原制药废水的51.63%,降解效果显著。
本发明通过超声辅助相对温和的方法,制备出了可见光催化性能优越的改性纳米二氧化钛p25催化剂。综合实验结果发现,在超声仪功率1152W、p25∶Fe的摩尔比为1∶1,反应60min的情况下制备的催化剂,在能带不改变的前提下,具有最好的可见光催化降解甲基橙的性能,从而实现了纳米二氧化钛对可见光没有吸收的突破。
综上所述,本发明制备改性灰化纳米TiO2光催化剂的方法简便易行,用于产业化开发,具有重要的创新意义。

Claims (3)

1.能响应可见光的灰化纳米TiO2光催化剂的制备方法,其特征包括如下步骤:
A、分别称量摩尔比例为1∶1的纳米二氧化钛p25粉末和还原性铁粉,放到盛有100mL去离子水并带有循环冷却水的反应器中,室温下,利用超声细胞粉碎机在570W的功率下进行超声反应1h;
B、得到反应产物后,用强磁铁吸在反应器底部,倒出反应液,以此除过量铁粉;
C、经过稀盐酸反复洗涤3-5次,后用去离子水洗涤,直到磁性消失说明铁已经除去;
D、过滤后60℃下真空干燥8h,得到改性纳米二氧化钛。
2.根据权利要求1所述能响应可见光的灰化纳米TiO2光催化剂的制备方法,其特征在于:步骤B得到的反应产物经搅拌后倒出悬浮液。
3.根据权利要求1所述能响应可见光的灰化纳米TiO2光催化剂的制备方法,其特征在于:步骤C的洗涤是把0.01mol/l的稀盐酸直接倒在悬浮液里反复浸泡3-5次,浸泡时间为12h,每次浸泡后用沙心漏斗过滤,并用去离子水洗涤至中性,直到磁性消失。
CN201610530257.7A 2016-07-07 2016-07-07 能响应可见光的灰化纳米TiO2光催化剂的制备方法 Pending CN106179292A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610530257.7A CN106179292A (zh) 2016-07-07 2016-07-07 能响应可见光的灰化纳米TiO2光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610530257.7A CN106179292A (zh) 2016-07-07 2016-07-07 能响应可见光的灰化纳米TiO2光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN106179292A true CN106179292A (zh) 2016-12-07

Family

ID=57472401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610530257.7A Pending CN106179292A (zh) 2016-07-07 2016-07-07 能响应可见光的灰化纳米TiO2光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106179292A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497037A (zh) * 2008-01-31 2009-08-05 黑龙江大学 锡还原纳米二氧化钛催化剂的制备方法
CN103191707A (zh) * 2013-04-28 2013-07-10 中国科学院上海硅酸盐研究所 双温区还原法制备黑色二氧化钛的方法
CN103962117A (zh) * 2014-05-05 2014-08-06 中国科学院长春光学精密机械与物理研究所 颜色可调具有高效光催化活性的二氧化钛的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497037A (zh) * 2008-01-31 2009-08-05 黑龙江大学 锡还原纳米二氧化钛催化剂的制备方法
CN103191707A (zh) * 2013-04-28 2013-07-10 中国科学院上海硅酸盐研究所 双温区还原法制备黑色二氧化钛的方法
CN103962117A (zh) * 2014-05-05 2014-08-06 中国科学院长春光学精密机械与物理研究所 颜色可调具有高效光催化活性的二氧化钛的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAONAN WANG ET AL: ""Colored Titania Nanocrystals and Excellent Photocatalysis for Water Cleaning"", 《CATALYSIS》 *
XING CHEN ET AL: ""Laser-Modified Black Titanium Oxide Nanospheres and Their Photocatalytic Activities under Visible Light"", 《ACS APPL. MATER. INTERFACES》 *
YANTING LI ET AL: ""Black BiOCl with disorder surface structure prepared by Fe reduction and the enhanced photocatalytic activity"", 《SOLID STATE SCIENCES》 *

Similar Documents

Publication Publication Date Title
Yu et al. Non-noble metal Bi deposition by utilizing Bi2WO6 as the self-sacrificing template for enhancing visible light photocatalytic activity
CN104722302B (zh) 酸化混晶TiO2纳米线负载型光催化剂及其制备与应用
Cao et al. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties
Xu et al. Enhanced photocatalytic degradation of rutile/anatase TiO2 heterojunction nanoflowers
Taufik et al. Synthesis of iron (II, III) oxide/zinc oxide/copper (II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal
CN107149932B (zh) 晶面比例可控的钒酸铋光催化剂的合成及催化剂和应用
CN108686665B (zh) 一种纳米棒铁酸锌原位复合片层二氧化钛光催化材料的制备方法
Lv et al. Fabrication of magnetically recyclable yolk-shell Fe 3 O 4@ TiO 2 nanosheet/Ag/gC 3 N 4 microspheres for enhanced photocatalytic degradation of organic pollutants
Zhao et al. Synthesis of Bi‐doped TiO2 nanotubes and enhanced photocatalytic activity for hydrogen evolution from glycerol solution
Song et al. Defect density modulation of La2TiO5: An effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation
Chen et al. Facile template-free fabrication of mesoporous ZnCo2O4 fibers with enhanced photocatalytic activity under visible-light irradiation
CN113731503A (zh) 一种金属酞菁配合物-二氧化钛复合光催化剂的制备方法
CN104826628A (zh) 一种在可见光下具有高催化降解活性的石墨烯–铁掺杂TiO2纳米线的制法
CN103601253B (zh) 一种圆片状α-Fe2O3 光催化剂及其制备方法和应用
CN107162057A (zh) 一种具有优异可见光吸收性能的非化学计量钼氧化物材料及其制备方法和应用
Xing et al. Photocatalytic hydrogen production over Na2Ti2O4 (OH) 2 nanotube sensitized by CdS nanoparticles
Gu et al. A dual-templating strategy for synthesis of Bi2WO6 with oxygen vacancies for enhanced light-driven photocatalytic oxidation alcohol
CN104098134A (zh) 一种无定形层包覆的TiO2纳米管的制备方法及其用途
Shen et al. Unravelling the favorable photocatalytic effect of hydrogenation process on the novel g-C3N4-TiO2 catalysts for water purification
Saputera et al. Role of defects on TiO 2/SiO 2 composites for boosting photocatalytic water splitting
CN107497455A (zh) 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用
Wang et al. Hierarchically grown Ni–Mo–S modified 2D CeO2 for high-efficiency photocatalytic hydrogen evolution
CN106964352B (zh) 新型光催化材料TiO2@Fe2O3、SrTiO3@Fe2O3的制备及应用
CN106268879B (zh) 一种具有莫尔条纹的BiOCl光催化材料及其制备方法
CN108525651A (zh) 一种具有高光催化活性的还原二氧化钛制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161207