CN106179175A - 一种锑吸附材料的制备及其应用方法 - Google Patents

一种锑吸附材料的制备及其应用方法 Download PDF

Info

Publication number
CN106179175A
CN106179175A CN201610552845.0A CN201610552845A CN106179175A CN 106179175 A CN106179175 A CN 106179175A CN 201610552845 A CN201610552845 A CN 201610552845A CN 106179175 A CN106179175 A CN 106179175A
Authority
CN
China
Prior art keywords
antimony
adsorption
concentration
titanium dioxide
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610552845.0A
Other languages
English (en)
Inventor
景传勇
阎莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN201610552845.0A priority Critical patent/CN106179175A/zh
Publication of CN106179175A publication Critical patent/CN106179175A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Abstract

本发明涉及一种锑吸附材料的制备及其应用方法,属于环境科学与技术领域。本发明以钛酸四异丙酯为二氧化钛前驱体,在异丙醇溶剂中以二乙烯三胺为表面控制剂合成了高能{001}晶面自组装的二氧化钛材料,通过一系列实验证明本发明制备的高能{001}晶面二氧化钛对锑具有较高的吸附容量及较广的pH适用范围,可有效去除水中的锑。

Description

一种锑吸附材料的制备及其应用方法
技术领域
本发明涉及一种锑吸附材料的制备及其应用方法,属于环境科学与技术领域。
技术背景
随着锑矿的开采及锑化合物的广泛使用,水体锑(Sb)污染受到全球广泛关注。锑化学反应属性活泼,能与多种物质发生作用,可以参与生物体内的生化过程。因此,非正常的锑摄入会引起各种机体不良反应,损害心、脑、肝脏等器官。锑及锑化物已被多个国家和组织如美国、日本和欧盟列为饮用水中优先污染物,预警水平为2-6μg/L(USEPA6μg/L;日本2μg/L;欧盟5μg/L)。如何有效去除水体中的锑已成为环境领域亟待解决的关键问题。
二氧化钛(TiO2)材料作为性能优良的吸附剂已被广泛应用于环境领域。近期研究表明,纳米材料的晶面是影响其吸附性能的主要因素。由于TiO2高能{001}晶面Ti原子全部以不饱配位存在,因此具有更高的吸附效率。表面电子结构不同会导致吸附剂表面与被吸附物间电子转移及化学成键机理的显著差异。研究表明染料分子在TiO2{101}面以单齿吸附构型存在,吸附能力较弱;在高能{001}面以双齿吸附构型存在,吸附键合更为稳定。由此可见,高能晶面TiO2材料所特有的高效吸附能力为其高效去除水体中污染物提供了潜在机遇,而目前关于这方面的研究鲜有报道。
吸附过滤是当前处理水体锑污染的主流技术。常用吸附材料包括活性碳、氧化铁、氧化锆、氧化锰等。虽然铁基吸附材料被广泛应用于水体锑污染的去除,但其吸附容量难以满足实际需求,尤其是对锑矿开采区的高浓度锑污染。为了克服现有方法的不足,本发明以二乙烯三胺(DETA)为表面控制剂合成了高能{001}晶面自组装的TiO2材料。通过一系列实验证明,与目前相关研究相比,本发明方法具有更高的锑吸附容量,并具有更广的pH适用范围,可用于去除水体中的高浓度锑。
发明内容
本发明的目的在于提供一种锑吸附材料,并研究其对锑的吸附应用方法。
根据本发明的一个具体实施方式,一种锑吸附材料的制备及其应用方法,其特征在于,吸附材料由高能{001}晶面二氧化钛构成,材料表面呈薄片花朵状。
根据本发明的一个具体实施方式,一种锑吸附材料的制备及其应用方法,高能{001}晶面二氧化钛制备方法为:将60mL异丙醇加入100mL烧杯中,在磁力搅拌下逐滴加入2.5mL钛酸四异丙酯,之后加入50μLDETA溶液反应10分钟,将溶液置于聚四氟乙烯反应釜中,200℃下反应24h,用无水乙醇洗涤5次后烘干烧结得到产物。
根据本发明的一个具体实施方式,高能{001}晶面二氧化钛烘干温度为60℃。
根据本发明的一个具体实施方式,高能{001}晶面二氧化钛烧结温度为400℃,烧结时间为4小时。
根据本发明的一个具体实施方式,锑吸附等温线实验所用高能{001}晶面二氧化钛浓度为0.1g/L,pH值为7,溶液中锑浓度范围为5-500mg/L。
根据本发明的一个具体实施方式,锑吸附动力学实验所用高能{001}晶面二氧化钛浓度为0.1g/L,pH值为7,溶液中锑浓度为40mg/L。
根据本发明的一个具体实施方式,锑吸附pH边实验所用高能{001}晶面二氧化钛浓度为0.1g/L,pH范围为1.0~12.0,溶液中锑浓度为40mg/L。
根据本发明的一个具体实施方式,溶液中锑浓度检测使用电感耦合等离子原子发射光谱仪(ICP-OES)。
本发明中高能晶面二氧化钛材料对锑的吸附容量较其他吸附剂有大幅提高,适用pH范围广,可用于处理高浓度锑污染水体。
附图说明
下面通过图例说明本发明的主要特征。
附图1是本发明制备高能{001}晶面二氧化钛的扫描及透射电镜照片。从图中可以看出,二氧化钛颗粒大小均匀,呈球状,大小为700nm,材料表面呈薄片花朵状,主要以TiO2{001}晶面为主。
附图2是本发明制备高能{001}晶面二氧化钛材料的氮气吸附脱附曲线图。从图中可以看出,高能{001}晶面二氧化钛材料比表面积为205m2/g。
附图3是本发明制备高能{001}晶面二氧化钛材料的XRD谱图。结果表明,二氧化钛为锐钛矿正方晶系(JCPDS:65-5714)。
附图4是本发明制备高能{001}晶面二氧化钛材料的拉曼谱图。结果表明,二氧化钛具有锐钛矿型特征峰。
附图5是本发明制备高能{001}晶面二氧化钛对水中锑的吸附容量曲线。从图中可以看出,高能{001}晶面二氧化钛材料对三价锑的吸附容量为200mg/g,对五价锑的吸附容量为156mg/g,吸附等温线符合Langmuir模型。
附图6是本发明制备高能{001}晶面二氧化钛对水中锑的吸附动力学曲线。从图中可以看出,TiO2对锑的吸附在40min时达到吸附平衡,吸附行为符合拟二级动力学模型,说明化学吸附起主要作用。
附图7是本发明制备高能{001}晶面二氧化钛在不同pH下对水中锑的去除效果。从图中可以看出,二氧化钛在较广的pH范围(1-8)内均能有效去除水中的锑。
发明实施例
下面进一步通过实施例来阐述本发明。
实施例1 高能{001}晶面二氧化钛材料制备:将60mL异丙醇加入100mL烧杯中,在磁力搅拌下逐滴加入2.5mL钛酸四异丙酯,之后加入50μLDETA溶液,反应10分钟后将溶液置于聚四氟乙烯反应釜中,200℃下反应24h,无水乙醇洗涤5次后,60℃下烘干,马弗炉400℃下煅烧4h,得到产物。
实施例2 高能{001}晶面二氧化钛应用于锑的吸附:准确称取4mg二氧化钛,分别加入40mL锑浓度为5-500mg/L的溶液中,背景液为0.04mol/L氯化钠,混匀,pH调至7,放入摇床进行平衡吸附实验,吸附平衡后将吸附液过0.45μm滤头,使用ICP-OES测量水中锑的浓度;准确称取15mg二氧化钛,加入150mL锑浓度为40mg/L的溶液中,背景液为0.04mol/L氯化钠,pH调至7,磁力搅拌下混匀,隔时取样,吸附液过0.45μm滤头,使用ICP-OES测量水中锑的浓度;准确称取4mg二氧化钛,加入40mL锑浓度为40mg/L的溶液中,背景液为0.04mol/L氯化钠,混匀,pH调至所需值,放入摇床中进行平衡吸附实验,吸附平衡后将吸附液过0.45μm滤头,使用ICP-OES测量水中锑的浓度。通过实验以及文献调研,得到以下数据(表1):
表1.本研究高能{001}晶面二氧化钛以及文献报道吸附材料对三价锑与五价锑的吸附容量
上述实施例说明,与目前常用的吸附剂相比,本发明制备高能{001}晶面二氧化钛对水中锑具有更高的吸附容量。

Claims (5)

1.一种锑吸附材料的制备及其应用方法,其包括以下步骤:
(1)将60mL异丙醇加入100mL烧杯中,在磁力搅拌下逐滴加入2.5mL钛酸四异丙酯,之后加入50μLDETA溶液,反应10分钟后将溶液置于聚四氟乙烯反应釜中,200℃下反应24h,无水乙醇洗涤5次后,60℃下烘干,马弗炉400℃下煅烧4h,得到产物高能{001}晶面二氧化钛材料;
(2)称取4mg步骤(1)制备的二氧化钛,加入40mL不同浓度锑溶液中,背景液为0.04mol/L氯化钠,混匀,pH调至7,放入摇床进行平衡吸附实验,吸附平衡后将吸附液过0.45μm滤头,使用ICP-OES测量水中锑的浓度;
(3)称取15mg步骤(1)制备的二氧化钛,加入150mL锑浓度为40mg/L的溶液中,背景液为0.04mol/L氯化钠,pH调至7,磁力搅拌下混匀,隔时取样,吸附液过0.45μm滤头,使用ICP-OES测量水中锑的浓度;
(4)称取4mg步骤(1)制备的二氧化钛,加入40mL锑浓度为40mg/L的溶液中,背景液为0.04mol/L氯化钠,混匀,pH调至所需值,放入摇床中进行平衡吸附实验,吸附平衡后将吸附液过0.45μm滤头,使用ICP-OES测量水中锑的浓度。
2.如权利要求1所述的一种锑吸附材料的制备及其应用方法,步骤(2)溶液中锑浓度为5~500mg/L。
3.如权利要求1所述的一种锑吸附材料的制备及其应用方法,步骤(3)中取样时间为0~120min。
4.如权利要求1所述的一种锑吸附材料的制备及其应用方法,步骤(4)中pH值调节范围为1~12。
5.如权利要求1所述的一种锑吸附材料的制备及其应用方法,其对三价锑的吸附容量为200mg/g,对五价锑的吸附容量为156mg/g。
CN201610552845.0A 2016-07-14 2016-07-14 一种锑吸附材料的制备及其应用方法 Pending CN106179175A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610552845.0A CN106179175A (zh) 2016-07-14 2016-07-14 一种锑吸附材料的制备及其应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610552845.0A CN106179175A (zh) 2016-07-14 2016-07-14 一种锑吸附材料的制备及其应用方法

Publications (1)

Publication Number Publication Date
CN106179175A true CN106179175A (zh) 2016-12-07

Family

ID=57477973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610552845.0A Pending CN106179175A (zh) 2016-07-14 2016-07-14 一种锑吸附材料的制备及其应用方法

Country Status (1)

Country Link
CN (1) CN106179175A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107570107A (zh) * 2017-10-25 2018-01-12 中南大学 一种网状多孔结构的复合材料及其制备方法和应用
CN111001398A (zh) * 2019-11-20 2020-04-14 浙江大学 具有特殊形貌的改性二氧化钛催化剂及其制备方法和应用
CN111994950A (zh) * 2020-09-14 2020-11-27 四川轻化工大学 一种锐钛矿型纳米二氧化钛微球的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102078792B (zh) * 2009-11-27 2012-12-12 中国科学院生态环境研究中心 一种用于吸附重金属的纳米二氧化钛的合成方法与应用
CN104973710A (zh) * 2014-04-10 2015-10-14 中国科学院生态环境研究中心 颗粒二氧化钛处理酸性废水中高浓度砷与镉的方法
CN105664839A (zh) * 2016-03-30 2016-06-15 中国科学院生态环境研究中心 一种载镧二氧化钛砷氟共除吸附材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102078792B (zh) * 2009-11-27 2012-12-12 中国科学院生态环境研究中心 一种用于吸附重金属的纳米二氧化钛的合成方法与应用
CN104973710A (zh) * 2014-04-10 2015-10-14 中国科学院生态环境研究中心 颗粒二氧化钛处理酸性废水中高浓度砷与镉的方法
CN105664839A (zh) * 2016-03-30 2016-06-15 中国科学院生态环境研究中心 一种载镧二氧化钛砷氟共除吸附材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN SONG CHEN ET AL.: "Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage", 《J. AM. CHEM. SOC. 》 *
宋佳颖等: "锑在二氧化钛高能晶面上的吸附去除机理", 《中国化学会第30届学术年会摘要集-第二十六分会:环境化学》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107570107A (zh) * 2017-10-25 2018-01-12 中南大学 一种网状多孔结构的复合材料及其制备方法和应用
CN107570107B (zh) * 2017-10-25 2019-12-17 中南大学 一种网状多孔结构的复合材料及其制备方法和应用
CN111001398A (zh) * 2019-11-20 2020-04-14 浙江大学 具有特殊形貌的改性二氧化钛催化剂及其制备方法和应用
CN111001398B (zh) * 2019-11-20 2021-07-06 浙江大学 具有特殊形貌的改性二氧化钛催化剂及其制备方法和应用
CN111994950A (zh) * 2020-09-14 2020-11-27 四川轻化工大学 一种锐钛矿型纳米二氧化钛微球的制备方法

Similar Documents

Publication Publication Date Title
Gomaa et al. Selective, photoenhanced trapping/detrapping of arsenate anions using mesoporous blobfish head TiO2 monoliths
Weidner et al. Removal of hazardous oxyanions from the environment using metal-oxide-based materials
Sun et al. Macroscopic and microscopic investigation of U (VI) and Eu (III) adsorption on carbonaceous nanofibers
Liu et al. Structural incorporation of manganese into goethite and its enhancement of Pb (II) adsorption
Luo et al. Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies
Habuda-Stanić et al. A review on adsorption of fluoride from aqueous solution
Bontchev et al. Synthesis, characterization, and ion exchange properties of hydrotalcite Mg6Al2 (OH) 16 (A) x (A ‘) 2-x⊙ 4H2O (A, A ‘= Cl-, Br-, I-, and NO3-, 2≥ x≥ 0) derivatives
Tan et al. Eu (III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies
Shen et al. Facet-dependent adsorption and fractionation of natural organic matter on crystalline metal oxide nanoparticles
Gao et al. Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water
Southon et al. Formation and characterization of an aqueous zirconium hydroxide colloid
Gimsing et al. Phosphate and glyphosate adsorption by hematite and ferrihydrite and comparison with other variable-charge minerals
CN102784624B (zh) 一种炭包覆磁性吸附材料的制备方法及其用途
Martin et al. Synthesis of coordination polymers of tetravalent actinides (uranium and neptunium) with a phthalate or mellitate ligand in an aqueous medium
CN104549146B (zh) 氧化铝修饰的多壁碳纳米管纳米复合材料及其制备方法和应用
Pica Treatment of wastewaters with zirconium phosphate based materials: A review on efficient systems for the removal of heavy metal and dye water pollutants
Zhang et al. In situ synthesis of γ-AlOOH and synchronous adsorption separation of V (V) from highly concentrated Cr (VI) multiplex complex solutions
CN106179175A (zh) 一种锑吸附材料的制备及其应用方法
Domán et al. Graphene oxide protected copper benzene-1, 3, 5-tricarboxylate for clean energy gas adsorption
Zhang et al. Highly effective removal of metal cyanide complexes and recovery of palladium using quaternary-ammonium-functionalized MOFs
Wang et al. Insight into the effect of structural characteristics of magnetic ZrO2/Fe3O4 nanocomposites on phosphate removal in water
Jaber et al. Adsorptive removal of lead and chromate ions from water by using iron-doped granular activated carbon obtained from coconut shells
Arinchtein et al. Role of water in phase transformations and crystallization of ferrihydrite and hematite
Wu et al. Isopentyl-sulfide-impregnated nano-MnO2 for the selective sorption of Pd (II) from the leaching liquor of ores
Cui et al. Cellulose bridged carbonate hydroxyapatite nanoparticles as novel adsorbents for efficient Cr (VI) removal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161207

WD01 Invention patent application deemed withdrawn after publication