CN106170348B - 直接接触式冲击波换能器 - Google Patents

直接接触式冲击波换能器 Download PDF

Info

Publication number
CN106170348B
CN106170348B CN201580009133.8A CN201580009133A CN106170348B CN 106170348 B CN106170348 B CN 106170348B CN 201580009133 A CN201580009133 A CN 201580009133A CN 106170348 B CN106170348 B CN 106170348B
Authority
CN
China
Prior art keywords
shock wave
generating unit
energy converter
tissue
wave generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580009133.8A
Other languages
English (en)
Other versions
CN106170348A (zh
Inventor
摩西·艾因-高尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MOSES EIN-GALL
Original Assignee
MOSES EIN-GALL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MOSES EIN-GALL filed Critical MOSES EIN-GALL
Publication of CN106170348A publication Critical patent/CN106170348A/zh
Application granted granted Critical
Publication of CN106170348B publication Critical patent/CN106170348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • A61B17/2251Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves characterised by coupling elements between the apparatus, e.g. shock wave apparatus or locating means, and the patient, e.g. details of bags, pressure control of bag on patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • G10K9/125Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means with a plurality of active elements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/13Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using electromagnetic driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Electromagnetism (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)

Abstract

一种可附接至患者的组织(18)的表面以施加压力脉冲至组织(18)的系统(10)。该系统(10)包括冲击波换能器(12),其具有冲击波发生部(14)和布置为直接接触患者的组织(18)的固体换能器界面(16)。冲击波发生部(14)包括电能‑冲击波能转换器,其可操作以生成冲击波脉冲。换能器界面(16)包括电气安全且生物兼容材料,其布置为从冲击波发生部(14)传递所述冲击波至组织(18)。

Description

直接接触式冲击波换能器
技术领域
本发明涉及一种用于冲击波生成和冲击波治疗的方法和系统,其中冲击波发生器(换能器)直接接触患者身体的一部分而无需使用传播液。
背景技术
用于医疗目的(诸如震波碎石、治疗病理组织疾病和许多其他疾病)的电磁冲击波系统是公知的。例如,Rattner的美国专利5233972描述了一种电磁或电动冲击波系统,其中冲击波由通过电磁与固定元件相互作用驱动的可动元件来生成。冲击波源具有线圈装置,其用作为固定元件,以及其附接至冲击波源中的绝缘体构件。导电材料膜用作为可动元件,并且与固定线圈装置相对的布置。在线圈装置以高电压脉冲充电时,在膜中感应出与线圈装置中流动的电流方向相反的方向上的电流。作为由于线圈装置中和膜中各自的电流流动引起的相反磁场的结果,膜经受将膜突然且迅速地移动远离线圈的排斥力。
Ratner描述了压力波至冲击波的转换:“压力波由此引入到靠近膜布置的声传播介质内。作为传播介质的非线性压缩性能的结果,该压力脉冲在其穿过传播介质的路径期间增强以形成冲击波”。
非线性效应随着增加的峰值压力而增加。因此在与峰值压力成反比的形成距离上发生冲击波形成。该形成距离通过聚焦波以及增加峰值压力来缩短。例如通常通过聚焦波来执行肾结石粉碎,其中冲击波形成开始于水中并结束于(等效于水)组织内。通常的冲击波形成距离(从排斥膜至聚焦区)处于10-30cm的范围。
关于术语“冲击波”,Rattner声明:“出于简化起见,传播介质内的波将始终在本文中称作为冲击波,以及该术语将包含以压力脉冲形式的初期冲击波”。
现有技术电磁冲击波换能器(发生器)的另一示例发现于Buchholtz等人的美国专利5230328中。压力脉冲如下地生成:“利用螺旋线圈装置驱动膜,螺旋线圈装置具有连接至高压脉冲发生器的端子,其以具有例如20kV的千伏范围幅度的高压脉冲给线圈充电。这样的高压可以例如通过电容器放电来生成。在螺旋线圈装置以该高压脉冲充电时,它极快地生成磁场。同时,在膜中感应电流,或至少在其导电区域中感应电流,该电流与线圈中流动的电流反向。膜电流因此生成相反的磁场,引起膜快速地远离螺旋线圈装置运动。在声传播介质(其优选为液体,诸如水)中开始的压力脉冲被以合适的方式引入到正被压力脉冲填充的对象内。必要时,压力脉冲的聚焦可在各压力脉冲到达对象之前例如借助于声透镜进行。”
Hassler的美国专利5374236也描述了一种用于生成压力脉冲的电磁线圈系统,压力脉冲通过柔性耦合枕施加至患者的身体表面,柔性耦合枕填充有液体介质用于声学耦合。“由于耦合枕的柔性,能够设置来自身体表面的压力脉冲源的间隔,而维持耦合枕与身体表面之间的接触,从而压力脉冲的焦点位于待治疗的区域内。”
还可以通过压电元件的自聚焦阵列生成和聚焦冲击波。示例包括Kurtze等人的美国专利4721106和Jaggy等人的美国专利5111805。这里再次地,波在到达患者之前传播通过液体声学传播介质。
通过电磁换能器的相位阵列聚焦冲击波在Jolesz等人的美国专利5131392和Gelbart等人的美国专利申请20090275832中描述。这里再次地,波在到达患者之前传播通过液体声学传播介质。
因此,现有技术的电磁和压电冲击波换能器被配置为在传播介质(通常是水)中生成压力波。足够的传播距离实现了聚焦和冲击波形成。换能器和聚焦装置通常是圆形地对称的且通常被配置为生成球面汇聚波。
发明内容
本发明试图提供一种如下文中更加详细地描述的新型的压力波治疗系统和方法,其用于许多医疗应用中,诸如但不限于碎石术、整形术、治疗病原组织疾病和许多其他疾病,特别是针对软组织的应用。采用了Rattner关于术语“冲击波”的命名并且术语“冲击波”在这里可互换地用于压力波的脉冲,包括具有长上升时间的波。
在本发明的一个非限制性实施方式中,提供了一种设备和方法,用于通过至少一个换能器与患者身体一部分的直接接触来生成、成形和耦合至患者的压力波脉冲,因此避免使用传播液。而是,换能器与固体界面协作来作为传播介质。利用电气上安全和生物兼容的接触以及患者和换能器的各自的声学阻抗的机械上有效的匹配来实现如此近距离的换能器至患者的耦合。从单个换能器发出的波无需聚焦。通过各种方法可获得聚焦,诸如杯吸膜、通过将固体截面成形为透镜或通过将多个换能器被配置为相位阵列,其中换能器根据时间序列被分别激励以确保来自各个换能器的波同时到达期望的聚焦区。
在一个实施方式中,换能器是电磁换能器。换能器膜被配置为顺从地附接至患者身体的一部分。膜中磁场和电流脉冲的相互作用引起膜排斥并将压力波传递到患者。
根据另一个实施方式,膜根据应用成形并弯曲以提供发散、平行或汇聚波。
另一个实施方式描述了多个电磁或压电换能器,它们附接至患者身体作为相位阵列。电磁换能器可包括膜,以及压电换能器可包括压电晶体。每个换能器分别通过电流或电压脉冲单独地激励。
另一个实施方式描述了多个换能器被配置为同心环。该环是连续的或由离散的换能器制成。换能器可以例如是电磁的或压电的。朝向患者的环面可以是平面的或锥形的。通过根据换能器与所治疗区域的各自的距离来个别地激励(触发)换能器以获得聚焦,从而提供在聚焦区的波的同时到达。
附图说明
结合附图将从下面详细描述更加全面地理解和认识本发明,其中:
图1是根据本发明实施方式构造和可操作的用于压力波生成或治疗的系统的简化剖面图;
图2是根据本发明另一实施方式构造和可操作的、并使用换能器的相位阵列的用于压力波生成或治疗的系统的简化剖面图;
图3是根据本发明另一实施方式构造和可操作的、并使用换能器的环形装置的用于压力波生成或治疗的系统的简化剖面图。
具体实施方式
现在参照图1,其示意了根据本发明非限制实施方式构造和可操作的用于冲击波生成或治疗的系统10。
系统10包括冲击波换能器12,其包括冲击波发生部14和布置为接触患者组织18的固体(非流体)换能器界面(耦合界面)16。冲击波换能器12的冲击波发生部14可非限制性地包括电能-冲击波能转换器(例如,电动液压、电磁或压电),其生成冲击波(声压脉冲)。换能器界面16优选地由电气安全且生物兼容材料制成,其呈现患者与换能器的各自的声学阻抗的机械上有效的匹配。优选地,耦合界面16具有不低于组织18且不高于冲击波发生部14的声阻抗,最优选地是接近(20%内)这两个的几何平均值。
材料的声阻抗(Z)定义为密度(ρ)和声速(V)的乘积,即Z=ρ*V。
声阻抗(Z)以Rayls(kg/(sec·m2))或更常用地以MegaRayls(MRayls)来测量。通常生物材料的Z如下以MRayls测量(取自“Basics of Biomedical Ultrasound forEngineers”,在线公开:2010年4月9日并可在http://onlinelibrary.wiley.com/doi/ 10.1002/9780470561478.appl/pdf上找到):
水1.48
血液1.66
脂肪1.38
肝脏1.69
肾脏1.65
大脑1.60
心脏1.64
肌肉(沿纤维)1.68
肌肉(跨纤维)1.69
皮肤1.99
眼睛(晶状体)1.72
眼睛(玻璃体)1.54
骨轴(纵向波)7.75
骨轴(剪切波)5.32
牙齿(牙质)7.92
牙齿(牙釉质)15.95
一些铝合金具有17的Z;铜合金约44(这些值来自http://www.ondacorp.com/ images/Solids.pdf)。用于耦合界面16的可能材料非限制性地包括玻璃类(Z处于10-14MRayls的范围)、ECCOSORB类(从Emerson&Cuming可获得,Z处于5-12MRayls的范围)、钛(Z约27)、塑料和碳化硼(Z约26)。
耦合界面可包括多个级联层,每个包括相应的声学阻抗从而提供耦合界面内的充分的波传播。接触患者的层包括接近于患者的声阻抗的声阻抗,从而最小化与患者的界面处的波反射以及对患者皮肤的相关损伤。
在本发明的一个非限制实施方式中,冲击波发生部14是由导电材料(例如铜或铝合金)制成的膜或包括导电线圈的膜。换能器界面16是薄层的耦合界面,其附接至膜的外表面。换能器12的表面附接至组织18的表面以使得膜14距离组织18的表面的距离不超过几毫米(例如2-20mm)。
冲击波发生部(膜)14被配置为与磁体20通信,其感应膜14中平行于膜14的外表面的磁场。冲击波发生部(膜)14还被配置为与脉冲器(电脉冲发生器)22通信。脉冲器22输送电流脉冲。电流取向平行于冲击波发生部(膜)14的外表面并通常不平行于膜14中的磁场。冲击波发生部(膜)14被配置为响应于膜14中磁场和电流脉冲之间的相互作用来排斥并输送压力脉冲至耦合界面16。
膜14可以是平的,但本发明不限于该形状,以及通常,膜14可以至少部分地是凹进的、平面的或凸起的。
磁体20可以是电磁体,其包括至少一个电磁体感应线圈24。在一个实施方式中,脉冲器22通过来自至少一个脉冲器感应线圈26的感应输送电流脉冲至膜14。在另一个实施方式中,具有一个或多个共用感应线圈(24或26),以及脉冲器22通过来自一个或多个共用感应线圈的感应输送电流脉冲至膜14。感应线圈(24或26或共用感应线圈)可以是一个或多个印刷电路板的一层或多层中的线圈。
在本发明的一个非限制性实施方式中,系统10将冲击波换能器12与一个或多个换能器28组合在一起用于输送能量,诸如但不限于光能、超声能、RF能、磁能、微波能发生器和/或机械能发生器(例如,弹簧或振荡块)。额外的能量的输送与通过脉冲器22或与换能器通信的控制器(序列发生器)23(图2)(在压电换能器的情形中为控制器)输送的电流脉冲同步。可提供成像器30来对冲击波至组织的输送成像。
现在参照图2。在图1的实施方式中,从单个换能器12发出的冲击波无需聚焦。在图2的实施方式中,通过被配置为相位阵列的多个换能器12来获得聚焦。换能器12根据定时的序列被分别激励以确保来自各个换能器的波同时到达期望聚焦区。换言之,脉冲器12以受控的触发时间输送电流脉冲至冲击波换能器12。
现在参照图3。在该实施方式中,多个换能器12布置为同心环,为连续的环或由离散的换能器制成。换能器可以例如是电磁的或压电的。朝向患者的环面可以是平面或锥形的。
根据换能器距治疗区域的各自的距离来分别激励(触发)换能器,可获得图2或3的相位阵列的聚焦。从而提供在聚焦区的波同时到达。
如下参数定义为:
Tz=各个波同时到达聚焦区的时间,
Ti=与第i个换能器相关的激励脉冲的时间,
Di=第i个换能器与聚焦区之间的距离;以及
Ci=与第i个换能器相关的波的平均传播速度,
Ti然后通过下式给出:
Ti=Tz-Di/Ci
瞬时传播速度可以在传播期间根据波传播所穿过的组织而改变。距离Di和相关组织(用于计算平均传播速度Ci)是例如从患者的3D成像或通过换能器和所治疗区域之间的距离的声学测量可确定的。
图3也示意了能够通过杯吸或弯曲固体耦合界面或通过将其成形为透镜(例如,凹进的或凸起的)来获得聚焦。

Claims (12)

1.一种可附接至患者的组织的表面以将压力脉冲施加至组织的系统,所述系统特征在于:
冲击波换能器,所述冲击波换能器包括冲击波发生部和布置为直接接触患者的组织的固体换能器界面,所述冲击波发生部包括电能-冲击波能转换器,其可操作以生成压力波的脉冲,以及所述换能器界面包括电气安全且生物兼容材料,其布置为将所述冲击波从所述冲击波发生部传递至组织;
磁体,所述磁体可操作以感应所述冲击波发生部中的磁场;以及
脉冲器,所述脉冲器可操作以将电流脉冲输送至所述冲击波发生部,其中所述冲击波发生部响应于所述磁场和所述电流脉冲生成冲击波,并且其中所述换能器界面的声阻抗为在组织和所述冲击波发生部的声阻抗的几何平均值的20%内。
2.根据权利要求1所述的系统,其中所述换能器界面的声阻抗不低于组织的声阻抗且不高于所述冲击波发生部的声阻抗。
3.根据权利要求1所述的系统,其中所述冲击波发生部包括由导电材料制成的膜。
4.根据权利要求1所述的系统,其中所述冲击波发生部包括膜,所述膜包括导电线圈。
5.根据权利要求1所述的系统,其中所述换能器界面的厚度不超过10mm。
6.根据权利要求1所述的系统,其中所述电流脉冲被定向为平行于所述冲击波发生部的外表面但不平行于所述磁场。
7.根据权利要求1所述的系统,其中所述冲击波发生部是至少部分地凹进的、平面的或凸起的。
8.根据权利要求1所述的系统,其中所述脉冲器可操作以通过感应输送所述电流脉冲。
9.根据权利要求1所述的系统,还包括可操作以输送额外的能量的至少一个额外的能量换能器,所述额外的能量是光学、超声、RF、磁、微波和/或机械能中的至少一种,以及其中额外的能量的输送与通过所述脉冲器输送的所述电流脉冲同步。
10.根据权利要求1所述的系统,包括冲击波换能器的阵列,其中所述脉冲器可操作以在受控的触发时间将电流脉冲输送至所述冲击波换能器,从而压力波同时到达共同聚焦区,其中:
Tz=各个波同时到达聚焦区的时间,
Ti=与第i个换能器相关的激励脉冲的时间,
Di=第i个换能器与聚焦区之间的距离,以及
Ci=与第i个换能器相关的波的平均传播速度,以及,
Ti通过Ti=Tz-Di/Ci给出。
11.一种可附接至患者的组织的表面以将压力脉冲施加至组织的系统,所述系统特征在于:
冲击波换能器,所述冲击波换能器包括冲击波发生部和布置为直接接触患者的组织的固体换能器界面,所述冲击波发生部包括电能-冲击波能转换器,其可操作以生成压力波的脉冲,以及所述换能器界面包括电气安全且生物兼容材料,其布置为将所述冲击波从所述冲击波发生部传递至组织;
磁体,所述磁体可操作以感应所述冲击波发生部中的磁场;以及
脉冲器,所述脉冲器可操作以将电流脉冲输送至所述冲击波发生部,其中所述冲击波发生部响应于所述磁场和所述电流脉冲生成冲击波,其中所述磁体可操作以感应平行于所述冲击波发生部的外表面的所述磁场。
12.一种用于将压力脉冲施加至组织的方法,所述方法包括:
将如权利要求1所述的系统中的所述冲击波换能器附接至患者的组织;以及
使用所述冲击波发生部来生成穿过所述换能器界面至组织的冲击波。
CN201580009133.8A 2014-02-17 2015-02-17 直接接触式冲击波换能器 Active CN106170348B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/181,747 2014-02-17
US14/181,747 US9555267B2 (en) 2014-02-17 2014-02-17 Direct contact shockwave transducer
PCT/IB2015/051155 WO2015121845A1 (en) 2014-02-17 2015-02-17 Direct contact shockwave transducer

Publications (2)

Publication Number Publication Date
CN106170348A CN106170348A (zh) 2016-11-30
CN106170348B true CN106170348B (zh) 2018-06-22

Family

ID=52684597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580009133.8A Active CN106170348B (zh) 2014-02-17 2015-02-17 直接接触式冲击波换能器

Country Status (5)

Country Link
US (1) US9555267B2 (zh)
JP (1) JP6480946B2 (zh)
CN (1) CN106170348B (zh)
DE (1) DE112015000829T5 (zh)
WO (1) WO2015121845A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843012B2 (en) * 2014-10-22 2020-11-24 Otsuka Medical Devices Co., Ltd. Optimized therapeutic energy delivery
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
TWI548402B (zh) * 2015-09-04 2016-09-11 寶健科技股份有限公司 震波探頭結構
DE102016003854A1 (de) 2016-03-26 2017-09-28 Gerd Straßmann Optimierung der Schalldruckwellentherapie eines Tumors
US20180008297A1 (en) * 2016-07-11 2018-01-11 Moshe Ein-Gal Pressure wave transducer
US11103262B2 (en) 2018-03-14 2021-08-31 Boston Scientific Scimed, Inc. Balloon-based intravascular ultrasound system for treatment of vascular lesions
US20200060704A1 (en) 2018-08-21 2020-02-27 Moshe Ein-Gal Direct contact shockwave transducer
US10441498B1 (en) 2018-10-18 2019-10-15 S-Wave Corp. Acoustic shock wave devices and methods for treating erectile dysfunction
US10441499B1 (en) * 2018-10-18 2019-10-15 S-Wave Corp. Acoustic shock wave devices and methods for generating a shock wave field within an enclosed space
WO2020086361A1 (en) 2018-10-24 2020-04-30 Boston Scientific Scimed, Inc. Photoacoustic pressure wave generation for intravascular calcification disruption
US10695588B1 (en) 2018-12-27 2020-06-30 Sonicon Inc. Cranial hair loss treatment using micro-energy acoustic shock wave devices and methods
EP3682822B1 (en) * 2019-01-18 2024-05-08 Storz Medical AG Combined shockwave and ultrasound source
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
WO2020256898A1 (en) 2019-06-19 2020-12-24 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US20200406009A1 (en) 2019-06-26 2020-12-31 Boston Scientific Scimed, Inc. Focusing element for plasma system to disrupt vascular lesions
US11883047B2 (en) * 2019-09-02 2024-01-30 Moshe Ein-Gal Electromagnetic shockwave transducer
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US20210290286A1 (en) 2020-03-18 2021-09-23 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
CN112891182A (zh) * 2021-01-29 2021-06-04 厦门市领汇医疗科技有限公司 一种ed治疗头及ed治疗仪
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669472A (en) * 1984-11-28 1987-06-02 Wolfgang Eisenmenger Contactless comminution of concrements in the body of a living being
US5131392A (en) * 1990-02-13 1992-07-21 Brigham & Women's Hospital Use of magnetic field of magnetic resonance imaging devices as the source of the magnetic field of electromagnetic transducers
US6217530B1 (en) * 1999-05-14 2001-04-17 University Of Washington Ultrasonic applicator for medical applications
DE202010009899U1 (de) * 2010-07-06 2010-10-14 Zimmer Medizinsysteme Gmbh Stoßwellenapparatur zur Erzeugung von mechanischen Stoßwellen und Stoßwellengerät
EP2289435A1 (de) * 2009-08-27 2011-03-02 Storz Medical Ag Druckwellengerät zur Behandlung des menschlichen oder tierischen Körpers mit Piezolagenstapel
CN102481459A (zh) * 2009-06-16 2012-05-30 威欧麦德有限公司 移动驻波

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3119295A1 (de) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
DE3425992C2 (de) 1984-07-14 1986-10-09 Richard Wolf Gmbh, 7134 Knittlingen Piezoelektrischer Wandler zur Zerstörung von Konkrementen im Körperinneren
JPH01181858A (ja) * 1988-01-13 1989-07-19 Toshiba Corp 衝撃波治療装置
DE3932959C1 (zh) 1989-10-03 1991-04-11 Richard Wolf Gmbh, 7134 Knittlingen, De
US5233972A (en) 1990-09-27 1993-08-10 Siemens Aktiengesellschaft Shockwave source for acoustic shockwaves
DE4110102A1 (de) 1991-03-27 1992-10-01 Siemens Ag Elektromagnetische druckimpulsquelle
DE4125088C1 (zh) 1991-07-29 1992-06-11 Siemens Ag, 8000 Muenchen, De
JP2001170068A (ja) * 2000-10-16 2001-06-26 Toshiba Corp 超音波治療装置
US20080161692A1 (en) 2006-12-29 2008-07-03 Podmore Jonathan L Devices and methods for ablation
DE202007007920U1 (de) 2007-05-31 2008-10-09 Storz Medical Ag Medizinisches Gerät zur Behandlung des menschlichen oder tierischen Körpers
US20090275832A1 (en) 2008-05-02 2009-11-05 Daniel Gelbart Lithotripsy system with automatic 3D tracking
AR087170A1 (es) * 2011-07-15 2014-02-26 Univ Texas Aparato para generar ondas de choque terapeuticas y sus aplicaciones

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669472A (en) * 1984-11-28 1987-06-02 Wolfgang Eisenmenger Contactless comminution of concrements in the body of a living being
US5131392A (en) * 1990-02-13 1992-07-21 Brigham & Women's Hospital Use of magnetic field of magnetic resonance imaging devices as the source of the magnetic field of electromagnetic transducers
US6217530B1 (en) * 1999-05-14 2001-04-17 University Of Washington Ultrasonic applicator for medical applications
CN102481459A (zh) * 2009-06-16 2012-05-30 威欧麦德有限公司 移动驻波
EP2289435A1 (de) * 2009-08-27 2011-03-02 Storz Medical Ag Druckwellengerät zur Behandlung des menschlichen oder tierischen Körpers mit Piezolagenstapel
DE202010009899U1 (de) * 2010-07-06 2010-10-14 Zimmer Medizinsysteme Gmbh Stoßwellenapparatur zur Erzeugung von mechanischen Stoßwellen und Stoßwellengerät

Also Published As

Publication number Publication date
DE112015000829T5 (de) 2016-11-03
JP2017505672A (ja) 2017-02-23
US9555267B2 (en) 2017-01-31
CN106170348A (zh) 2016-11-30
WO2015121845A1 (en) 2015-08-20
JP6480946B2 (ja) 2019-03-13
US20150231414A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
CN106170348B (zh) 直接接触式冲击波换能器
Jiang et al. Ultrasound‐induced wireless energy harvesting for potential retinal electrical stimulation application
CN110314834B (zh) 一种超声换能器及其制备方法
US7867178B2 (en) Apparatus for generating shock waves with piezoelectric fibers integrated in a composite
KR20180123035A (ko) 소노트로드
CN109589132A (zh) 基于柔性衬底的可调节焦距的电容微机械超声换能器阵列
CN107580474A (zh) 可变形超声阵列和系统
US11712226B2 (en) Integrated system for ultrasound imaging and therapy
CA2753746C (en) High-frequency ultrasound imaging system
Gougheri et al. A comprehensive study of ultrasound transducer characteristics in microscopic ultrasound neuromodulation
CN107073291B (zh) 用于超声热疗和成像的超声片块
CN215914793U (zh) 冲击波系统
Tsai et al. Skull impact on the ultrasound beam profile of transcranial focused ultrasound stimulation
CN108173331B (zh) 超声波充电方法及装置
KR101424506B1 (ko) 초음파 프로브 장치, 초음파 치료 시스템 및 초음파 치료 시스템 제어 방법
Kim et al. Acoustic power transfer using self-focused transducers for miniaturized implantable neurostimulators
US7666152B2 (en) Focusing electromagnetic acoustic wave source
JPH0340256Y2 (zh)
KR101497303B1 (ko) 초음파 빔포밍 기술을 이용하여 인체 내에 이식된 의료장치로의 무선전력전송장치
CN109193968A (zh) 基于自适应相位调节的超声波充电系统及方法
KR102088849B1 (ko) 초음파 프로브 및 그 제조방법
KR102085220B1 (ko) 매개체를 이용한 비침습적 치료시스템
US20180008297A1 (en) Pressure wave transducer
KR102532129B1 (ko) 초음파 발생 소자를 이용한 치과용 장치
CN110638629A (zh) 一种磁振子冲击波源发生器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant