CN106164251B - 具有改进的生物质分离行为的修饰微生物 - Google Patents

具有改进的生物质分离行为的修饰微生物 Download PDF

Info

Publication number
CN106164251B
CN106164251B CN201580017927.9A CN201580017927A CN106164251B CN 106164251 B CN106164251 B CN 106164251B CN 201580017927 A CN201580017927 A CN 201580017927A CN 106164251 B CN106164251 B CN 106164251B
Authority
CN
China
Prior art keywords
gene
modified microorganism
wcaj
deletion
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580017927.9A
Other languages
English (en)
Other versions
CN106164251A (zh
Inventor
J·M·克拉夫奇克
S·哈夫纳
H·施罗德
E·丹塔斯科斯塔
O·策尔德尔
G·冯阿本德罗特
C·维特曼
R·施特尔马赫
J·贝克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN106164251A publication Critical patent/CN106164251A/zh
Application granted granted Critical
Publication of CN106164251B publication Critical patent/CN106164251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01027L-Lactate dehydrogenase (1.1.1.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01054Formate C-acetyltransferase (2.3.1.54), i.e. pyruvate formate-lyase or PFL
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/08Transferases for other substituted phosphate groups (2.7.8)
    • C12Y207/08031Undecaprenyl-phosphate glucose phosphotransferase (2.7.8.31)

Abstract

本发明涉及修饰微生物,与其野生型相比,其具有降低的wcaJ基因编码的酶的活性。本发明还涉及用于产生有机化合物的方法及修饰微生物的用途。

Description

具有改进的生物质分离行为的修饰微生物
本发明涉及修饰微生物、用于产生有机化合物的方法及修饰微生物的用途。
诸如具有6个碳或6个以下碳的小的二羧酸的有机化合物是商业上重要的具有许多用途的化学品。例如,小的二酸包括1,4-二酸,如琥珀酸、苹果酸和酒石酸,及5碳分子衣康酸。其他二酸包括二碳草酸、三碳丙二酸、五碳戊二酸和6碳己二酸,也存在这类二酸的许多衍生物。
作为一个组,小的二酸具有一些化学相似性,它们在聚合物生产中的使用可以为树脂提供特化性质。这种通用性使得它们能够容易地契合下游化学基础市场。例如,1,4-二酸分子满足大规模化学品马来酐的许多用途,因为它们转化为多种工业化学品(四氢呋喃、丁内酯、1,4-丁二醇、2-吡咯烷酮)及琥珀酸衍生物琥珀酰胺、琥珀腈、二氨基丁烷和琥珀酸酯。酒石酸在食品、皮革、金属和印刷工业中具有许多用途。衣康酸形成用于产生3-甲基吡咯烷酮、甲基-BDO和甲基-THF等的原材料。
尤其是,琥珀酸或丁二酸(这些术语在本文中可互换使用)引起了相当大的兴趣,因为它已在食品、化学和药物工业中用作许多工业上重要的化学品的前体。事实上,来自美国能源部的报告报道,琥珀酸是从生物量制造的前12种化学构件之一。因此,在细菌中产生二酸的能力将具有显著的商业重要性。
WO-A-2009/024294公开了产琥珀酸细菌菌株,该菌株是巴斯德氏菌科(Pasteurellaceae)成员,最初分离自瘤胃,能够利用甘油作为碳源,从其衍生的变体和突变菌株保留该能力,尤其是保藏于DSMZ(德意志微生物保藏中心(Deutsche Sammlung vonMikroorganismen und Zellkulturen GmbH),Inhoffenstr.7B,D-38124Braunschweig,德国)的命名为DD1的细菌菌株,其具有保藏号DSM 18541(ID 06-614),且具有产生琥珀酸的能力。如Kuhnert等,2010所分类,DD1菌株属于物种Basfia succiniciproducens和巴斯德氏菌科。这些菌株的突变(其中破坏了ldhA基因和/或pflD或pflA基因)公开于WO-A-2010/092155中,这些突变菌株的特征在于,与WO-A-2009/024294中公开的DD1野生型相比,在厌氧条件下,从诸如甘油或甘油和糖类(如麦芽糖)的碳源产生的琥珀酸显著增加。
但是,在用诸如WO-A-2009/024294或WO-A-2010/092155中公开的那些的细菌菌株来产生诸如琥珀酸的有机化合物时,将碳源转化为希望得到的有机化合物的选择性以及希望得到的有机化合物的产率仍可以改进。
此外,已观察到,在使用现有技术的细菌菌株时,有时难以在发酵过程结束时从发酵液分离生物质。通常,发酵产生诸如琥珀酸的有机化合物包括以下步骤:在适宜的培养条件下在包含至少一种可同化碳源的培养基中培养微生物,以允许该微生物产生希望得到的有机化合物,随后从发酵液回收该有机化合物,其中在回收过程的第一个步骤中,通常通过例如沉降或离心来将微生物(即生物质)从培养基分离。在使用现有技术的微生物时,不能容易地从发酵液分离生物量,其(因为部分发酵液以某种方式包封在生物质中)有时导致某个量的发酵液的损失(从而也导致某个量的希望得到的有机化合物的损失)。
因此本发明的目的是克服现有技术的劣势。
具体而言,本发明的目的是提供微生物,该微生物可以用于发酵产生有机化合物(如琥珀酸),且不仅从可同化的碳源(如甘油、葡萄糖、蔗糖、木糖、乳糖、果糖或麦芽糖)大量(优选仅有少量副产物)产生希望得到的有机产物(如琥珀酸),还可以在随后回收有机化合物的过程中容易地从发酵液分离,仅少量发酵液包封在生物质中。
通过修饰微生物来为达到上述目的提供贡献,与其野生型相比,该修饰微生物具有降低的wcaJ基因编码的酶的活性。尤其通过其中已缺失wcaJ基因或其部分,或其中已缺失wcaJ基因的调节元件或至少其部分,或其中已在wcaJ基因中引入至少一个突变的修饰微生物来提供促成达到上述目的。
令人惊奇地,已发现,例如通过缺失wcaJ基因或其部分来降低wcaJ基因编码的酶(此酶可能是葡萄糖转移酶)的活性,产生了这样的微生物,与其中此酶活性未降低的相应微生物相比,该微生物可以于在合适的培养基中发酵产生诸如琥珀酸的有机化合物之后,更容易地作为生物质从培养基分离。在使用本发明的修饰微生物时,更少的发酵液包封在纯化过程中分离的生物质中,这意味着用于发酵过程的每克生物质可以获得更高量的发酵液(从而获得更高量的希望得到的有机化合物,如琥珀酸),从该发酵液分离有机化合物。
在表述“与其野生型相比具有降低的x基因编码的酶的活性的修饰微生物”(其中x基因是fruA基因,及可选地,后文所述的ldhA基因、pflA基因和/或pflD基因)的背景中,术语“野生型”指其中x基因编码的酶的活性未降低的微生物,即指其基因组以引入x基因的遗传修饰之前的状态存在的微生物。优选地,表述“野生型”指其基因组尤其是其x基因以由于进化而天然产生的状态存在的微生物(例如细菌、酵母细胞、真菌细胞等)。该术语用于整个微生物和单个基因二者。因此,术语“野生型”优选尤其不涵盖已借助重组方法至少部分人为修饰其基因序列的那些微生物或那些基因。因此术语“修饰微生物”包括这样的微生物,该微生物已进行遗传改变、修饰或改造(例如遗传改造),使得它与它所衍生自的天然存在的野生型微生物相比显示改变的、修饰的或不同的基因型和/或表型(例如,在遗传修饰影响微生物的编码核酸序列时)。根据本发明的修饰微生物的具体的优选实施方案,修饰微生物是重组微生物,其是指用重组DNA获得的微生物。本文所用的表述“重组DNA”指源自用实验室方法(分子克隆)使来自多种来源的遗传物质结合在一起产生否则将不见于生物中的序列的DNA序列。
衍生本发明的微生物的野生型可以是酵母、真菌或细菌。适宜的细菌、酵母或真菌尤其是作为细菌、酵母或真菌菌株保藏于德意志微生物保藏中心(DSMZ),Brunswick,德国的那些细菌、酵母或真菌。本文所用的表述“衍生自野生型的修饰微生物”指通过受控的遗传修饰(例如基因工程)、通过不受控(随机)的遗传修饰(例如用诱变化学剂、X射线、紫外线等处理)或通过这些方法的组合从野生型获得的微生物。下文提供制备本发明的修饰微生物的其他细节。
适于本发明的细菌属于http://www.dsmz.de/species/bacteria.htm下详述的属;
适于本发明的酵母属于http://www.dsmz.de/species/yeasts.htm下详述的那些属;
适于本发明的真菌是http://www.dsmz.de/species/fungi.htm下详述的那些。
优选地,衍生本发明的修饰微生物的野生型是细菌细胞。本文所用的术语“细菌细胞”指原核生物,即细菌。细菌可根据其生物化学和微生物学特性以及其形态学来分类。这些分类标准为本领域公知。
根据本发明的修饰微生物的优选实施方案,衍生修饰微生物的野生型属于肠杆菌科(Enterobacteriaceae)、巴斯德氏菌科、芽孢杆菌科(Bacillaceae)或棒杆菌科(Corynebacteriaceae)。
“肠杆菌科”代表一个细菌大家族,包括许多更熟悉的细菌,如沙门氏菌属(Salmonella)和大肠埃希氏菌(Escherichia coli)。它们属于朊细菌(Proteobacteria),且它们被赋予它们自己的目Enterobacteriales。肠杆菌科的成员为杆状。与其他朊细菌一样,它们具有革兰氏阴性菌株,且它们是兼性厌氧菌,发酵糖来产生乳酸和多种其他终产物,如琥珀酸。大多数还将硝酸盐还原为亚硝酸盐。与大多数相似的细菌不同,肠杆菌科通常缺乏细胞色素C氧化酶。大多数具有许多用于移动的鞭毛,但少数属不能移动。它们是无芽孢细菌,且大多数情况下它们为过氧化氢酶阳性。此家族的许多成员是见于人类和其他动物肠中的肠道菌群的正常部分,而其他成员见于水和土壤中,或寄生在多种不同的动物和植物上。大肠埃希氏菌(作为大肠杆菌(E.coli)更为出名)是最重要的模式生物之一,且其遗传学和生物化学已得到仔细研究。肠杆菌科的大多数成员具有涉及细菌细胞黏附于其宿主的周毛I型菌毛。肠杆菌科的实例是大肠杆菌、变形杆菌属(Proteus)、沙门氏菌属和克雷伯氏菌属(Klebsiella)。
巴斯德氏菌科包含革兰氏阴性朊细菌的大家族,成员从细菌(如流感嗜血杆菌(Haemophilus influenzae))至动物和人类黏膜的共生体。大部分成员作为鸟类和哺乳类黏膜表面(尤其是在上呼吸道中)上的共生体生活。巴斯德氏菌科通常为杆状,是值得注意的一组兼性厌氧菌。它们可以通过氧化酶的存在而与相关的肠杆菌科区分开,并通过鞭毛的缺乏而与大多数其他相似的细菌区分开。巴斯德氏菌科中的细菌已根据代谢特性及其16S RNA和23S RNA序列分类为许多属。巴斯德氏菌科的许多成员包含丙酮酸甲酸裂合酶基因,能够厌氧发酵碳源为有机酸。
“芽孢杆菌科”是可以产生内生孢子的革兰氏阳性、异养、圆形细菌家族。此家族的可移动成员表征为周毛鞭毛。一些芽孢杆菌为需氧细菌,而其他芽孢杆菌为兼性厌氧菌或专性厌氧菌。大多数为非致病菌,但已知芽孢杆菌属(Bacillus)物种在人类中引起疾病。此家族还包括芽孢杆菌,其包括芽孢杆菌目(Bacillales)和乳杆菌目(Lactobacillales)两个目。芽孢杆菌属物种代表可以在37℃有氧条件下生长的大的圆柱形细菌。它们通常为非致病菌。芽孢杆菌目包括Alicyclobacillaceae、芽孢杆菌科、显核菌科(Caryophanaceae)、利斯特氏菌科(Listeriaceae)、Paenibacillaceae、动性球菌科(Planococcaceae)、芽孢乳杆菌科(Sporolactobacillaceae)、葡萄球菌科(Staphylococcaceae)、高温放线菌科(Thermoactinomycetaceae)、Turicibacteraceae物种。许多芽孢杆菌包含丙酮酸甲酸裂合酶基因,能够厌氧发酵碳源为有机酸。
“棒杆菌科”是Eubacteriales目的大多数情况下为革兰氏阳性、需氧和非移动的杆状细菌的大家族。此家族还包括棒杆菌属(Corynebacterium),棒杆菌属是革兰氏阳性、杆状细菌的属。棒杆菌广泛分布于自然界中,大多数情况下无害。一些棒杆菌用于工业背景中,如谷氨酸棒杆菌(C.glutamicum)。
根据本发明的修饰微生物的具体的优选实施方案,衍生修饰微生物的野生型属于巴斯德氏菌科。在此背景中,进一步优选衍生本发明的修饰微生物的野生型属于Basfia属,尤其优选衍生修饰微生物的野生型属于Basfia succiniciproducens物种。
最优选地,衍生本发明的修饰微生物的野生型是在布达佩斯条约下保藏于德国DSMZ(德意志微生物保藏中心)的保藏号DSM 18541的Basfiasucciniciproducens菌株DD1。此菌株最初分离自德国来源的牛的瘤胃,巴斯德氏菌属(Pasteurella)细菌可从动物优选哺乳动物的胃肠道分离。细菌菌株DD1尤其可从牛瘤胃分离,且能够利用甘油(包括粗甘油)作为碳源。可以用于制备本发明的修饰微生物的其他Basfia属菌株是在保藏号DSM 22022下保藏的Basfia属菌株,或保藏于瑞典哥德堡大学培养物保藏所(Culture Collection ofthe University of
Figure BDA0001124360820000061
CCUG)的具有保藏号CCUG 57335、CCUG 57762、CCUG57763、CCUG 57764、CCUG 57765或CCUG 57766的Basfia属菌株。该菌株最初分离自德国或瑞士来源的牛的瘤胃。
在此背景中,尤其优选衍生本发明的修饰微生物的野生型具有SEQ ID NO:1或与SEQ ID NO:1显示至少96%、至少97%、至少98%、至少99%或至少99.9%序列同源性的序列的16S rDNA。还优选衍生本发明的修饰微生物的野生型具有SEQ ID NO:2或与SEQ IDNO:2显示至少96%、至少97%、至少98%、至少99%或至少99.9%序列同源性的序列的23SrDNA。
与待用于本发明的修饰微生物的多种多肽或多核苷酸一并提到的以百分比值表示的同一性优选计算为所比对的序列全长内残基的同一性,例如,借助来自生物信息学软件包EMBOSS(5.0.0版,http://emboss.source-forge.net/what/)的程序,以默认参数计算的同一性(对于非常相似的序列),该默认参数即为缺口开放(开放一个缺口的罚分):10.0;缺口延伸(延伸一个缺口的罚分):0.5;数据文件(包括在软件包中的评分矩阵文件):EDNAFUL。
应指出,本发明的重组微生物不仅可以衍生自上述野生型微生物,尤其是衍生自Basfia succiniciproducens菌株DD1,还可以衍生自这些菌株的变体。在此背景中,表述“菌株的变体”包含具有与野生型菌株相同或基本相同的特征的每种菌株。在此背景中,尤其优选变体的16S rDNA与衍生变体的野生型具有至少90%、优选至少95%、更优选至少99%、更优选至少99.5%、更优选至少99.6%、更优选至少99.7%、更优选至少99.8%和最优选至少99.9%同一性。还尤其优选变体的23S rDNA与衍生变体的野生型具有至少90%、优选至少95%、更优选至少99%、更优选至少99.5%、更优选至少99.6%、更优选至少99.7%、更优选至少99.8%和最优选至少99.9%同一性。此定义意义上的菌株的变体可以例如通过用诱变化学剂、X射线或紫外线处理野生型菌株来获得。
本发明的修饰微生物的特征在于,与其野生型相比,wcaJ基因编码的酶的活性降低。
酶活性的降低(Δ活性)定义如下:
Figure BDA0001124360820000071
其中,在测定Δ活性时,在完全相同的条件下测定野生型中的活性和修饰微生物中的活性。用于检测和测定wcaJ基因编码的酶的活性的方法可见于例如Nothaft等:“In vivoanalysis of HPr reveals a fructose-specific phosphotransferase system thatconfers high-affinity uptake in Streptomyces coelicolor”,Journal ofbacteriology,185(3)卷,929-937页中。
降低的本文公开的酶的活性,尤其是降低的wcaJ基因编码的酶、乳酸脱氢酶和/或丙酮酸甲酸裂合酶的活性可以是,与野生型微生物中该酶的活性相比,酶活性降低至少50%,或酶活性降低至少90%,或更优选酶活性降低至少95%,或更优选酶活性降低至少98%,或甚至更优选酶活性降低至少99%,或甚至更优选酶活性降低至少99.9%。术语“降低的wcaJ基因编码的酶的活性”或下文所述的“降低的乳酸脱氢酶活性”或“降低的丙酮酸甲酸裂合酶活性”也涵盖没有可检测到的这些酶活性的修饰微生物。
术语“降低的酶活性”包括,例如,该遗传操作(例如遗传改造)微生物以比该微生物的野生型的表达水平低的水平表达该酶。用于降低酶的表达的遗传操作可以包括但不限于缺失编码该酶的基因或其部分、改变或修饰与编码该酶的基因的表达相关的调节序列或位点(例如通过去除强启动子或阻抑型启动子)、修饰涉及编码该酶的基因的转录和/或基因产物的翻译的蛋白质(例如调节蛋白质、抑制因子、增强子、转录激活因子等)、或本领域例行的任何其他降低特定基因表达的常规手段(包括但不限于使用反义核酸分子或iRNA或其他方法来敲除或阻断靶蛋白的表达)。此外,可以在mRNA中引入去稳定化元件或引入导致RNA核糖体结合位点(RBS)退化的遗传修饰。还可能以这样的方式改变基因的密码子选择,使得翻译效率和速度降低。
降低的酶活性也可以通过引入一个或多个导致酶活性降低的基因突变来获得。此外,酶活性降低还可以包括使激活待降低其活性的酶所必需的激活酶失活(或降低表达)。通过后一种方法,待降低其活性的酶优选保持处于失活状态。
具有降低的wcaJ基因编码的酶的活性的微生物可以天然存在,即由于自发突变。可以通过多种技术(如化学处理或辐射)来将微生物修饰为缺乏或具有显著降低的wcaJ基因编码的酶的活性。为此,将通过例如诱变化学剂、X射线或紫外线来处理微生物。在随后的步骤中,将选择具有降低的wcaJ基因编码的酶的活性的那些微生物。修饰微生物也可通过同源重组技术获得,该同源重组技术旨在突变、破坏或切除微生物基因组中的wcaJ基因,或用相应基因取代该基因,该相应基因编码与野生型基因编码的酶相比具有降低的活性的酶。
根据本发明的修饰微生物的优选实施方案,通过修饰wcaJ基因来达到降低wcaJ基因编码的酶的活性,其中优选通过缺失wcaJ基因或至少其部分,缺失wcaJ基因的调节元件或至少其部分(如启动子序列)、或通过在wcaJ基因中引入至少一个突变来实现此基因修饰。在wcaJ基因中引入至少一个突变的背景中,尤其优选该至少一个突变导致表达截短的由wcaJ基因编码的酶。此外优选在截短的酶中,从C端缺失了wcaJ基因编码的野生型酶的至少100个氨基酸、优选至少125个氨基酸、更优选至少150个氨基酸和最优选至少160个氨基酸。wcaJ基因编码的这种截短的酶可以例如通过在wcaJ基因内适当位置插入或缺失导致移码突变的核苷酸来获得,其中借助此移码突变引入终止密码子。例如,如SEQ ID NO:16中所示,在81位胸腺嘧啶和82位腺嘌呤之间在编码赖氨酸的密码子中插入核苷酸导致移码突变,借助该移码突变引入终止密码子。wcaJ基因的这类突变可以例如通过定位或随机诱变来引入,然后通过重组来将修饰基因引入微生物的基因组中。可以通过借助PCR突变wcaJ基因序列SEQ ID NO:3来产生wcaJ基因的变体。可以用“Quickchange定位诱变试剂盒”(Stratagene)来进行定位诱变。可以借助“GeneMorph II随机诱变试剂盒”(Stratagene)来进行SEQ ID NO:3的整个编码序列或仅其部分的随机诱变。
在下文中,描述适合用于重组、尤其是用于引入突变或用于删除序列的技术。
此技术在本位中有时也称为“Campbell重组”(Leenhouts等,Appl EnvMicrobiol.(1989),55卷,394-400页)。本文所用的“Campbell入(Campbell in)”指原宿主细胞的转化体,其中整个环状双链DNA分子(例如质粒)通过单个同源重组事件(交叉入(cross in)事件)整合入染色体,并有效导致该环状DNA分子的线性化形式插入与该环状DNA分子的第一DNA序列同源的染色体的第一DNA序列。“已Campbell入(Campbelled in)”指已整合入“Campbell入”转化体的染色体中的线性化DNA序列。“Campbell入”包含双份第一同源DNA序列,其中每个拷贝包含和围绕同源重组交叉点的拷贝。
本文所用的“Campbell出(Campbell out)”指源自“Campbell入”转化体的细胞,其中在包含在“已Campbell入”DNA的线性化插入DNA上的第二DNA序列和与该线性化插入片段的第二DNA序列同源的染色体来源的第二DNA序列之间发生了第二同源重组事件(交叉出(cross out)事件),该第二重组事件导致一部分整合DNA序列的缺失(抛弃),但更重要的是,还导致一部分(这可以少至单个碱基)整合的已Campbell入DNA保留在染色体中,使得与原宿主细胞相比,“Campbell出”细胞在染色体中包含一个或多个有意改变(例如,单个碱基取代、多个碱基取代、插入异源基因或DNA序列、插入同源基因或修饰同源基因的一个或多个额外拷贝、或插入包含一个以上上文所列的这些前述实例的DNA序列)。优选通过针对包含在“已Campbell入”DNA序列的一部分(希望抛弃的部分)中的基因的逆选择来获得“Campbell出”细胞,该基因例如枯草芽孢杆菌(Bacillussubtilis)sacB基因,其在约5%至10%蔗糖存在下培养的细胞中表达时致死。在有或无逆选择的情况下,可以通过用任何可筛选表型筛选希望得到的细胞来获得或鉴定希望得到的“Campbell出”细胞,该可筛选表型例如但不限于菌落形态、菌落颜色、存在或缺乏抗生素抗性、聚合酶链反应确定给定DNA序列的存在或缺乏、存在或缺乏辅源营养、存在或缺乏酶、菌落核酸杂交、抗体筛选等。术语“Campbell入”和“Campbell出”也可以以多种时态用作动词来指上述方法或过程。
应理解,导致“Campbell入”或“Campbell出”的同源重组事件可以在同源DNA序列内的DNA碱基的一个范围内发生,由于同源序列将在此范围的至少一部分内彼此相同,通常不可能确切地指出在什么地方发生交叉事件。换言之,不可能精确指出那个序列最初来自插入的DNA,哪个序列最初来自染色体DNA。此外,第一同源DNA序列和第二同源DNA序列通常由部分非同源的区域分隔开,正是此非同源区域保留在“Campbell出”细胞的染色体中。
优选地,第一和第二同源DNA序列长度为至少约200个碱基对,且长度可以为至多几千个碱基对。但是,可使该方法对更短或更长的序列有效。例如,第一和第二同源序列的长度可以在约500个碱基至2000个碱基的范围内,通过安排第一和第二同源序列为大致相同的长度,优选差异小于200个碱基对,最优选二者中较短的序列是较长的序列的碱基对长度的至少70%,来便于从“Campbell入”获得“Campbell出”。
其活性在本发明的修饰微生物中降低的wcaJ基因优选包含选自以下的核酸:
a)具有核苷酸序列SEQ ID NO:3的核酸;
b)编码氨基酸序列序列SEQ ID NO:4的核酸;
c)与a)或b)的核酸至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%、至少99.6%、至少99.7%、至少99.8%、或至少99.9%、最优选100%同一的核酸,该同一性是a)或b)的核酸全长内的同一性;
d)编码与a)或b)的核酸所编码的氨基酸序列至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%、至少99.6%、至少99.7%、至少99.8%、或至少99.9%、最优选100%同一的氨基酸序列的核酸,该同一性是a)或b)的核酸所编码的氨基酸序列全长内的同一性;
e)能够在严格条件下与a)或b)的任意核酸的互补序列杂交的核酸;和
f)编码与a)或b)的任意核酸相同的蛋白质,但由于遗传密码的简并性而不同于以上a)或b)的核酸的核酸。
本文所用的术语“杂交”包括“核酸分子的链通过碱基配对与互补链结合的任何过程”(J.Coombs(1994)Dictionary of Biotechnology,Stockton Press,纽约)。杂交和杂交的强度(即核酸分子间结合的强度)受诸多因素影响,如核酸分子间的互补程度、所涉及条件的严格性、所形成杂合链的Tm、核酸分子内的G:C比。
本文所用的术语“Tm”用来指“解链温度”。解链温度是双链核酸分子群体的一半解离为单链的温度。用于计算核酸分子Tm的方程为本领域公知。如标准参考文献所示,可以通过方程Tm=81.5+0.41(%G+C)来计算核酸分子处于1M NaCl水溶液中时的Tm值的简单估计值(参见例如Anderson和Young,Quantitative Filter Hybridization,in Nucleic AcidHybridization(1985))。其他参考文献包括更复杂的计算,其将结构以及序列特征考虑在Tm的计算中。严格条件为本领域技术人员已知,且可见于Current Protocols inMolecular Biology,John Wiley&Sons,N.Y.(1989),6.3.1-6.3.6中。
具体而言,术语“严格条件”指这样的条件,其中作为互补核苷酸分子(DNA、RNA、ssDNA或ssRNA)的片段或与互补核苷酸分子同一的100个相邻核苷酸或更多核苷酸、150个相邻核苷酸或更多核苷酸、200个相邻核苷酸或更多核苷酸、或250个相邻核苷酸或更多核苷酸,在等同于在50℃下在7%十二烷基硫酸钠(SDS)、0.5M NaPO4、1mM EDTA中杂交,并在50℃或65℃下、优选65℃下在2×SSC、0.1%SDS中洗涤的条件下,与特定核酸分子(DNA、RNA、ssDNA或ssRNA)杂交。优选地,该杂交条件等同于在50℃下在7%十二烷基硫酸钠(SDS)、0.5M NaPO4、1mM EDTA中杂交,并在50℃或65℃、优选65℃下在1×SSC、0.1%SDS中洗涤,更优选地,该杂交条件等同于在50℃下在7%十二烷基硫酸钠(SDS)、0.5M NaPO4、1mMEDTA中杂交,并在50℃或65℃、优选65℃下在0.1×SSC、0.1%SDS中洗涤。优选地,该互补核苷酸与wcaJ核酸片段或整个wcaJ核酸杂交。备选地,优选的杂交条件包括在65℃下在1×SSC中或在42℃下在1×SSC和50%甲酰胺中杂交,然后在65℃下在0.3×SSC中洗涤,或在50℃下在4×SSC中或在40℃下在6×SSC和50%甲酰胺中杂交,然后在50℃下在2×SSC中洗涤。其他优选的杂交条件是0.1%SDS、0.1SSD和65℃。
可以通过上述“Campbell重组”来删除或通过上述“Campbell重组”在其中引入至少一个突变的wcaJ基因或其部分优选包含上文定义的核酸。
具有核苷酸序列SEQ ID NO:3的核酸对应于Basfia succiniciproducens菌株DD1的wcaJ基因。
根据本发明的修饰微生物的优选实施方案,与野生型相比,此微生物不仅表征为降低的wcaJ基因编码的酶的活性,还表征为:
i)降低的丙酮酸甲酸裂合酶活性;
ii)降低的乳酸脱氢酶活性;或
iii)降低的丙酮酸甲酸裂合酶活性和降低的乳酸脱氢酶活性。
WO-A-2010/092155、US 2010/0159543和WO-A-2005/052135中公开了乳酸脱氢酶缺陷和/或丙酮酸甲酸裂合酶活性缺陷的修饰微生物,其关于降低微生物中、优选巴斯德氏菌属细菌细胞中、尤其优选Basfia succiniciproducens菌株DD1中乳酸脱氢酶和/或丙酮酸甲酸裂合酶活性的不同方法的公开内容,在此引入作为参考。用于测定丙酮酸甲酸裂合酶活性的方法例如由Asanuma N.和Hino T.公开于“Effects of pH and Energy Supplyon Activity and Amount of Pyruvate-Formate-Lyase in Streptococcus bovis”,Appl.Environ.Microbiol.(2000),66卷,3773-3777页中,用于测定乳酸脱氢酶活性的方法例如由Bergmeyer,H.U.,Bergmeyer J.和Grassl,M.(1983-1986)公开于“Methods ofEnzymatic Analysis”,第3版,III卷,126-133页,Verlag Chemie,Weinheim中。
在此背景中,优选通过失活ldhA基因(其编码乳酸脱氢酶LdhA;EC 1.1.1.27或EC1.1.1.28)来达到降低乳酸脱氢酶活性,通过失活pflA基因(其编丙酮酸甲酸裂合酶激活物PflA;EC 1.97.1.4)或pflD基因(其编丙酮酸甲酸裂合酶PflD;EC 2.3.1.54)来达到降低丙酮酸甲酸裂合酶活性,其中优选通过缺失这些基因或其部分、通过缺失这些基因的调节元件或至少其部分,或通过在这些基因中引入至少一个突变来达到失活这些基因(即ldhA、pflA和pflD),尤其优选借助上文所述的“Campbell重组”。
其活性在本发明的修饰微生物中降低的ldhA基因优选包含选自以下的核酸:
α1)具有核苷酸序列SEQ ID NO:10的核酸;
α2)编码氨基酸序列序列SEQ ID NO:11的核酸;
α3)与α1)或α2)的核酸至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%、至少99.6%、至少99.7%、至少99.8%、或至少99.9%、最优选100%同一的核酸,该同一性是α1)或α2)的核酸全长内的同一性;
α4)编码与α1)或α2)的核酸所编码的氨基酸序列至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%、至少99.6%、至少99.7%、至少99.8%、或至少99.9%、最优选100%同一的氨基酸序列的核酸,该同一性是α1)或α2)的核酸所编码的氨基酸序列全长内的同一性;
α5)能够在严格条件下与α1)或α2)的任意核酸的互补序列杂交的核酸;和
α6)编码与α1)或α2)的任意核酸相同的蛋白质,但由于遗传密码的简并性而不同于以上α1)或α2)的核酸的核酸。
其活性在本发明的修饰微生物中降低的pflA基因优选包含选自以下的核酸:
β1)具有核苷酸序列SEQ ID NO:12的核酸;
β2)编码氨基酸序列序列SEQ ID NO:13的核酸;
β3)与β1)或β2)的核酸至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%、至少99.6%、至少99.7%、至少99.8%、或至少99.9%、最优选100%同一的核酸,该同一性是β1)或β2)的核酸全长内的同一性;
β4)编码与β1)或β2)的核酸所编码的氨基酸序列至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%、至少99.6%、至少99.7%、至少99.8%、或至少99.9%、最优选100%同一的氨基酸序列的核酸,该同一性是β1)或β2)的核酸所编码的氨基酸序列全长内的同一性;
β5)能够在严格条件下与β1)或β2)的任意核酸的互补序列杂交的核酸;和
β6)编码与β1)或β2)的任意核酸相同的蛋白质,但由于遗传密码的简并性而不同于以上β1)或β2)的核酸的核酸。
其活性在本发明的修饰微生物中降低的pflD基因优选包含选自以下的核酸:
γ1)具有核苷酸序列SEQ ID NO:14的核酸;
γ2)编码氨基酸序列序列SEQ ID NO:15的核酸;
γ3)与γ1)或γ2)的核酸至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%、至少99.6%、至少99.7%、至少99.8%、或至少99.9%、最优选100%同一的核酸,该同一性是γ1)或γ2)的核酸全长内的同一性;
γ4)编码与γ1)或γ2)的核酸所编码的氨基酸序列至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%、至少99.6%、至少99.7%、至少99.8%、或至少99.9%、最优选100%同一的氨基酸序列的核酸,该同一性是γ1)或γ2)的核酸所编码的氨基酸序列全长内的同一性;
γ5)能够在严格条件下与γ1)或γ2)的任意核酸的互补序列杂交的核酸;和
γ6)编码与γ1)或γ2)的任意核酸相同的蛋白质,但由于遗传密码的简并性而不同于以上γ1)或γ2)的核酸的核酸。
在此背景中,优选本发明的修饰微生物进一步包含:
A)ldhA基因或至少其部分的缺失,ldhA基因的调节元件或至少其部分的缺失,或ldhA基因中至少一个突变的引入;
B)pflD基因或至少其部分的缺失,pflD基因的调节元件或至少其部分的缺失,或pflD基因中至少一个突变的引入;
C)pflA基因或至少其部分的缺失,pflA基因的调节元件或至少其部分的缺失,或pflA基因中至少一个突变的引入;
D)ldhA基因或至少其部分的缺失,ldhA基因的调节元件或至少其部分的缺失,或ldhA基因中至少一个突变的引入;
pflD基因或至少其部分的缺失,pflD基因的调节元件或至少其部分的缺失,或pflD基因中至少一个突变的引入;
E)ldhA基因或至少其部分的缺失,ldhA基因的调节元件或至少其部分的缺失,或ldhA基因中至少一个突变的引入;
pflA基因或至少其部分的缺失,pflA基因的调节元件或至少其部分的缺失,或pflA基因中至少一个突变的引入。
本发明的修饰微生物的尤其优选的实施方案是:
-巴斯德氏菌科、尤其优选Basfia属、甚至更优选Basfia succiniciproducens物种的修饰细菌细胞,其中缺失了wcaJ基因或至少其部分,或在wcaJ基因中引入了至少一个突变,其中该至少一个突变的引入优选导致表达这样的酶,该酶从C端缺失了wcaJ基因编码的野生型酶的至少100个氨基酸、优选至少125个氨基酸、更优选至少150个氨基酸和最优选至少160个氨基酸;
-巴斯德氏菌科、尤其优选Basfia属、甚至更优选Basfia succiniciproducens物种的修饰细菌细胞,其中缺失了wcaJ基因或至少其部分,或在wcaJ基因中引入了至少一个突变,其中该至少一个突变的引入优选导致表达这样的酶,该酶从C端缺失了wcaJ基因编码的野生型酶的至少100个氨基酸、优选至少125个氨基酸、更优选至少150个氨基酸和最优选至少160个氨基酸,且其中与野生型相比,优选通过修饰ldhA基因,尤其是通过修饰具有SEQID NO:10的核酸序列且编码具有SEQ ID NO:11的氨基酸序列的LdhA的ldhA基因,来降低乳酸脱氢酶的活性;
-巴斯德氏菌科、尤其优选Basfia属、甚至更优选Basfia succiniciproducens物种的修饰细菌细胞,其中缺失了wcaJ基因或至少其部分,或在wcaJ基因中引入了至少一个突变,其中该至少一个突变的引入优选导致表达这样的酶,该酶从C端缺失了wcaJ基因编码的野生型酶的至少100个氨基酸、优选至少125个氨基酸、更优选至少150个氨基酸和最优选至少160个氨基酸,且其中与野生型相比,优选通过修饰pflA基因或pflD基因,尤其是通过修饰具有SEQ ID NO:12的核酸序列且编码具有SEQ ID NO:13的氨基酸序列的PflA的pflA基因,或通过修饰具有SEQ ID NO:14的核酸序列且编码具有SEQ ID NO:15的氨基酸序列的PflD的pflD基因,来降低丙酮酸甲酸裂合酶的活性;
-巴斯德氏菌科、尤其优选Basfia属、甚至更优选Basfia succiniciproducens物种的修饰细菌细胞,其中缺失了wcaJ基因或至少其部分,或在wcaJ基因中引入了至少一个突变,其中该至少一个突变的引入优选导致表达这样的酶,该酶从C端缺失了wcaJ基因编码的野生型酶的至少100个氨基酸、优选至少125个氨基酸、更优选至少150个氨基酸和最优选至少160个氨基酸,且其中与野生型相比,优选通过修饰ldhA基因和pflA基因,尤其是通过修饰具有SEQ ID NO:10的核酸序列且编码具有SEQ ID NO:11的氨基酸序列的LdhA的ldhA基因,或通过修饰具有SEQ ID NO:12的核酸序列且编码具有SEQ ID NO:13的氨基酸序列的PflA的pflA基因,或通过修饰ldhA基因和pflD基因,尤其是通过修饰具有SEQ ID NO:10的核酸序列且编码具有SEQ ID NO:11的氨基酸序列的LdhA的ldhA基因,或通过修饰具有SEQID NO:14的核酸序列且编码具有SEQ ID NO:15的氨基酸序列的PflD的pflD基因,来降低乳酸脱氢酶和丙酮酸甲酸裂合酶的活性。
此外,通过产生有机化合物的方法来为解决一开始提到的问题提供贡献,该方法包括:
I)在包含至少一种可同化的碳源的培养基中培养本发明的修饰微生物,以允许修饰微生物产生有机化合物,从而获得包含有机化合物的发酵液;
II)从方法步骤I)中获得的发酵液回收有机化合物。
在方法步骤I)中,在包含至少一种可同化的碳源的培养基中培养本发明的修饰微生物,以允许修饰微生物产生有机化合物,从而获得包含有机化合物的发酵液。可通过本发明的方法产生的优选的有机化合物包括:羧酸,如甲酸、乳酸、丙酸、2-羟基丙酸、3-羟基丙酸、3-羟基丁酸、丙烯酸、丙酮酸或这些羧酸的盐;二羧酸,如丙二酸、琥珀酸、苹果酸、酒石酸、戊二酸、衣康酸、己二酸或其盐;三羧酸,如柠檬酸或其盐;醇,如甲醇或乙醇;氨基酸,如L-天冬酰胺、L-天冬氨酸、L-精氨酸、L-异亮氨酸、L-甘氨酸、L-谷氨酰胺、L-谷氨酸、L-半胱氨酸、L-丝氨酸、L-酪氨酸、L-色氨酸、L-苏氨酸、L-缬氨酸、L-组氨酸、L-脯氨酸、L-甲硫氨酸、L-赖氨酸、L-亮氨酸等。
根据本发明的方法的优选实施方案,该有机化合物是琥珀酸。在本发明背景中使用的术语“琥珀酸”必须以其最广泛的含义理解,且还涵盖其盐(即琥珀酸盐),例如,碱金属盐,如Na+和K+盐,或碱土金属盐,如Mg2+和Ca2+盐,或铵盐,或琥珀酸酐。
优选在约10℃至60℃,或20℃至50℃,或30℃至45℃范围内的温度下,在5.0至9.0,或5.5至8.0,或6.0至7.0的pH下,在培养基中培养本发明的修饰微生物。
优选地,在厌氧条件下产生有机化合物,尤其是琥珀酸。厌氧条件可以借助常规技术来建立,例如,通过对反应介质的组分脱气,并通过按例如0.1至1,或0.2至0.5vvm的流速引入二氧化碳或氮气或其混合物和可选地引入氢气来维持厌氧条件。需氧条件可以借助常规技术来建立,例如,通过按例如0.1至1,或0.2至0.5vvm的流速引入空气或氧气。根据需要,可以在方法中应用0.1至1.5bar的轻微超压。
可同化的碳源优选选自蔗糖、麦芽糖、麦芽三糖、麦芽四糖、麦芽五糖、麦芽六糖、麦芽七糖、D-果糖、D-葡萄糖、D-木糖、L-阿拉伯糖、D-半乳糖、D-甘露糖、甘油及其混合物、或包含该化合物中的至少一种的组合物,或选自淀粉、纤维素、半纤维素和/或木素纤维素的分解产物。优选地,可同化的碳源包含D-葡萄糖、麦芽糖、蔗糖、甘油或这些化合物中的至少两种的混合物,其中尤其优选甘油和D-葡萄糖、甘油和蔗糖、甘油和D-木糖、甘油和麦芽糖,及D-葡萄糖和果糖的混合物。
可同化的碳源的初始浓度优选调节至5至100g/l、优选5至75g/l和更优选5至50g/l范围内的值,且可以在培养期间维持在该范围内。反应介质的pH可以通过加入适宜的碱来控制,例如气态氨、NH4HCO3、(NH4)2CO3、NaOH、Na2CO3、NaHCO3、KOH、K2CO3、KHCO3、Mg(OH)2、MgCO3、Mg(HCO3)2、Ca(OH)2、CaCO3、Ca(HCO3)2、CaO、CH6N2O2、C2H7N和/或其混合物。如果发酵方法过程中形成的有机化合物是羧酸或二羧酸,则尤其需要这些碱性中和剂。在琥珀酸作为有机化合物的情况下,Mg(OH)2和MgCO3是尤其优选的碱。
本发明的发酵步骤I)可以例如在搅拌式发酵罐、泡罩塔和环式反应器中进行。可能的方法类型(包括搅拌器类型和几何设计)的综合概述可见于Chmiel:“Bioprozesstechnik:Einführung in die Bioverfahrenstechnik”,1卷中。在本发明的方法中,在本发明的方法中,可用的典型变通形式是本领域技术人员已知或例如Chmiel,Hammes and Bailey:“Biochemical Engineering”中解释的以下变通形式:如批次、补料分批、反复补料分批或其他具有生物质再循环的连续发酵。取决于生产菌株,可以用空气、氧气、二氧化碳、氢气、氮气或适当的气体混合物进行通气,以达到良好的产率(YP/S)。
用于在方法步骤I)中产生有机酸尤其是琥珀酸的尤其优选的条件是:
可同化的碳源:甘油、蔗糖、D-葡萄糖、麦芽糖、甘油+D-葡萄糖、甘油+蔗糖、甘油+麦芽糖、甘油+D-木糖、D-葡萄糖+果糖
温度:30至45℃
pH:5.5至7.0
所提供的气体:CO2
此外,优选在方法步骤I)中,可同化的碳源转化为有机化合物(优选琥珀酸),碳产率YP/S为至少0.5g/g至约1.28g/g,例如,碳产率YP/S为至少0.6g/g、至少0.7g/g、至少0.75g/g、至少0.8g/g、至少0.85g/g、至少0.9g/g、至少0.95g/g、至少1.0g/g、至少1.05g/g、至少1.1g/g、至少1.15g/g、至少1.20g/g、至少1.22g/g或至少1.24g/g(有机化合物/碳,优选琥珀酸/碳)。
此外,优选在方法步骤I)中,可同化的碳源转化为有机化合物(优选琥珀酸),单位生产率(specific productivity yield)为至少0.6g g DCW-1h-1有机化合物(优选琥珀酸)、或至少0.65g g DCW-1h-1、或至少0.7g g DCW-1h-1、或至少0.75g g DCW-1h-1或至少0.77g g DCW-1h-1有机化合物(优选琥珀酸)。
此外,优选在方法步骤I)中,可同化的碳源转化为有机化合物(优选琥珀酸),有机化合物(优选琥珀酸)的时空产率为至少2.2g/(L×h)、或至少2.5g/(L×h)、至少2.75g/(L×h)、至少3g/(L×h)、至少3.25g/(L×h)、至少3.5g/(L×h)、至少3.7g/(L×h)、至少4.0g/(L×h)、至少4.5g/(L×h)、或至少5.0g/(L×h)有机化合物(优选琥珀酸)。根据本发明的方法的另一优选实施方案,在方法步骤I)中,修饰微生物将至少20g/l、更优选至少25g/l和甚至更优选至少30g/l的可同化碳源(优选选自蔗糖、麦芽糖、D-果糖、D-葡萄糖、D-木糖、L-阿拉伯糖、D-半乳糖、D-甘露糖和/或甘油的可同化碳源)转化为至少20g/l、更优选至少25g/l和甚至更优选至少30g/l的有机化合物(优选琥珀酸)。
本文所述的不同产率参数(“碳产率”或“YP/S”、“单位生产率”或“时空产率(STY)”)为本领域公知,并按例如Song和Lee,2006所述测定。“碳产率”和“YP/S”(各以所产生的有机化合物的质量/所消耗的可同化碳源的质量表示)在本文中作为同义词使用。单位生产率描述每克干生物质每小时和每升发酵液产生的产物(如琥珀酸)的量。表示为“DCW”的干细胞重的量描述生物化学反应中生物活性微生物的量。值作为克产物/克DCW/小时(即g g DCW-1h-1)给出。时空产率(STY)定义为发酵过程中形成的有机化合物的总量与培养物体积的比值,在整个培养时间内考虑。时空产率也称为“体积生产力(volumetricproductivity)”。
在方法步骤II)中,从方法步骤I)中获得的发酵液回收有机化合物,优选琥珀酸。
通常,回收方法包括将重组微生物作为所谓的“生物质”从发酵液分离的步骤。用于去除生物质的方法为本领域技术人员已知,且包括过滤、沉降、漂浮或其组合。因此,可以用例如离心机、分离器、倾析器、滤器或在漂浮设备中去除生物质。为了有价值的产物的最大回收,通常可以例如以渗滤的形式洗涤生物质。方法的选择取决于发酵液中的生物质含量和生物质的特性,以及生物质与有机化合物(即有价值的产物)的相互作用。在一个实施方案中,可对发酵液进行灭菌或巴氏灭菌。在另一实施方案中,浓缩发酵液。取决于需要,此浓缩可以分批或连续进行。压力和温度范围应这样选择,使得首先不发生产物损伤,其次仅有必要最小程度地使用设备和能量。为多级蒸发巧妙地选择压力和温度水平尤其使得能够节约能量。
回收方法可以进一步包括附加的纯化步骤,其中进一步纯化有机化合物,优选琥珀酸。但是,如果通过下文所述的化学反应将该有机化合物转化为次级有机产物,则取决于反应类型和反应条件,并非必然需要进一步纯化该有机化合物。为了纯化方法步骤II)中获得的有机化合物,优选为了纯化琥珀酸,可以使用本领域技术人员已知的方法,例如结晶、过滤、电透析和层析。在琥珀酸作为有机化合物的情况下,例如,可以通过用氢氧化钙、氧化钙、碳酸钙或碳酸氢钙中和并过滤沉淀,通过将琥珀酸沉淀为琥珀酸钙产物来分离它。通过用硫酸酸化,然后过滤去除沉淀的硫酸钙(石膏)来从沉淀的琥珀酸钙回收琥珀酸。得到的溶液可以借助离子交换层析来进一步纯化,以去除不希望得到的残留离子。备选地,如果用氢氧化镁、碳酸镁或其混合物来中和发酵液,则可以酸化方法步骤I)中获得的发酵液,以将包含在介质中的琥珀酸镁转化为酸形式(即琥珀酸),随后可以通过冷却酸化的介质来结晶。其他适宜的纯化方法的实例公开于EP-A-1 005 562、WO-A-2008/010373、WO-A-2011/082378、WO-A-2011/043443、WO-A-2005/030973、WO-A-2011/123268、WO-A-2011/064151和EP-A-2360137中。
根据本发明的方法的优选实施方案,该方法进一步包括方法步骤:
III)通过至少一步化学反应,使包含在方法步骤I)中获得的发酵液中的有机化合物转化或使方法步骤II)中获得的回收的有机化合物转化为不同于该有机化合物次级有机产物。
在琥珀酸作为有机化合物的情况下,优选的次级有机产物选自琥珀酸酯及其聚合物、四氢呋喃(THF)、1,4-丁二醇(BDO)、γ-丁内酯(GBL)和吡咯烷酮。
根据用于产生THF、BDO和/或GBL的优选实施方案,此方法包括:
b1)直接催化氢化方法步骤I)或II)中获得的琥珀酸为THF和/或BDO和/或GBL;或
b2)化学酯化方法步骤I)或II)中获得的琥珀酸和/或琥珀酸盐为其相应的二-低级烷基酯,随后催化氢化该酯为THF和/或BDO和/或GBL。
根据用于产生吡咯烷酮的优选实施方案,此方法包括:
b)以本身已知的方式化学转化方法步骤I)或II)中获得的琥珀酸铵盐为吡咯烷酮。
对于制备这些化合物的详情,参考US-A-2010/0159543和WO-A-2010/092155。
通过本发明的修饰微生物在发酵产生有机化合物中的用途来为解决一开始提到的问题提供贡献。优选的有机化合物是已经与本发明的方法一并提到的那些化合物,最优选的有机化合物是琥珀酸。此外,用于发酵产生有机化合物(优选琥珀酸)的优选条件是已经与本发明方法的方法步骤I)一并描述的那些条件。
现在借助附图和非限制性实施例更详细地解释本发明。
图1显示质粒pSacB(SEQ ID NO:5)的示意图谱。
图2显示质粒pSacB ΔldhA(SEQ ID NO:6)的示意图谱。
图3显示质粒pSacB ΔpflA(SEQ ID NO:7)的示意图谱。
图4显示质粒pSacB ΔwcaJ(SEQ ID NO:8)的示意图谱。
图5显示质粒pSacB ΔpflD(SEQ ID NO:9)的示意图谱。
图6显示通过沉降不同培养基获得的细胞沉淀。
实施例
实施例1:用于转化Basfia succiniciproducens的一般方法
菌株
野生型DD1(保藏号DSM18541)
DD1 ΔwcaJ
DD1 ΔldhA
DD1 ΔldhA ΔpflD
DD1 ΔldhA ΔpflD ΔwcaJ
DD1 ΔldhA ΔpflA
DD1 ΔldhA ΔpflA ΔwcaJ
表1:实施例中提到的DD1野生型和突变体的命名。
通过使用以下流程的电穿孔来用DNA转化Basfia succiniciproducens DD1(野生型):
为了制备预培养物,从冻存物将DD1接种入100ml摇瓶中的40mlBHI(脑心浸液;Becton,Dickinson and Company)。37℃、200转/分钟过夜进行孵育。为了制备主培养物,在250ml摇瓶中放入100ml BHI,用预培养物接种至最终OD(600nm)为0.2。37℃、200转/分钟进行孵育。在OD约为0.5、0.6和0.7时收集细胞,用4℃的10%冷甘油洗涤沉淀一次,重悬在2ml10%甘油(4℃)中。
在宽度为0.2cm的电穿孔杯中将100μl感受态细胞与2-8μg质粒DNA混合,并在冰上放置2分钟。在以下条件下电穿孔:400Ω、25μF、2.5kV(Gene Pulser,Bio-Rad)。电穿孔后立即加入1ml冷BHI,并在37℃进行约2小时孵育。
将细胞接种在含5mg/L氯霉素的BHI上,并在37℃孵育2-5天,直至转化体的菌落可见。分离克隆,并重新划线接种在含5mg/L氯霉素的BHI上,直至获得纯的克隆。
实施例2:缺失构建体的产生
突变/缺失质粒基于载体pSacB(SEQ ID NO:5)构建。图1显示质粒pSacB的示意图谱。通过PCR从Basfia succiniciproducens的染色体DNA扩增应缺失的染色体片段5’-和3’-侧翼区(各约1500bp),并用标准技术引入该载体。通常,靶向至少80%的OFR进行缺失。以这种方式,构建了用于乳酸脱氢酶ldhA(pSacB_delta_ldhA(SEQ ID NO:6))、丙酮酸甲酸裂合酶激活酶pflA(pSacB_delta_pflA(SEQ ID NO:7))、假定的果糖特异性转运蛋白wcaJ(pSacB_delta_wcaJ(SEQ ID NO:8))和丙酮酸甲酸裂合酶pflD(pSacB_delta_pflD(SEQ IDNO:9))的缺失质粒。图2、3、4和5分别显示质粒pSacB_delta_ldhA、pSacB_delta_pflA、pSacB_delta_wcaJ和pSacB_delta_pflD的示意图谱。
在pSacB的质粒序列(SEQ ID NO:5)中,从碱基2380至3801包含sacB基因。从碱基3802至4264包含sacB启动子。从碱基526至984包含氯霉素基因。从碱基1477至2337包含用于大肠杆菌(E.coli)的复制起点(oriEC)(参见图1)。
在pSacB_delta_ldhA的质粒序列(SEQ ID NO:6)中,从碱基1519至2850包含与Basfia succiniciproducens基因组同源的ldhA基因5’侧翼区,而从碱基62至1518包含与Basfia succiniciproducens基因组同源的ldhA基因3’侧翼区。从碱基5169至6590包含sacB基因。从碱基6591至7053包含sacB启动子。从碱基3315至3773包含氯霉素基因。从碱基4266至5126包含用于大肠杆菌的复制起点(ori EC)(参见图2)。
在pSacB_delta_pflA的质粒序列(SEQ ID NO:7)中,从碱基1506至3005包含与Basfia succiniciproducens基因组同源的pflA基因5’侧翼区,而从碱基6至1505包含与Basfia succiniciproducens基因组同源的pflA基因3’侧翼区。从碱基5278至6699包含sacB基因。从碱基6700至7162包含sacB启动子。从碱基3424至3882包含氯霉素基因。从碱基4375至5235包含用于大肠杆菌的复制起点(ori EC)(参见图3)。
在pSacB_delta_wcaJ的质粒序列(SEQ ID NO:8)中,从碱基1506至3122包含与Basfia succiniciproducens基因组同源的wcaJ基因5’侧翼区,而从碱基6至1505包含与Basfia succiniciproducens基因组同源的wcaJ基因3’侧翼区。从碱基5395至6816包含sacB基因。从碱基6817至7279包含sacB启动子。从碱基3541至3999包含氯霉素基因。从碱基4492至5352包含用于大肠杆菌的复制起点(ori EC)(参见图4)。
在pSacB_delta_pflD的质粒序列(SEQ ID NO:9)中,从碱基1533至2955包含与Basfia succiniciproducens基因组同源的pflD基因5’侧翼区,而从碱基62至1532包含与Basfia succiniciproducens基因组同源的pflD基因3’侧翼区。从碱基5256至6677包含sacB基因。从碱基6678至7140包含sacB启动子。从碱基3402至3860包含氯霉素基因。从碱基4353至5213包含用于大肠杆菌的复制起点(ori EC)(参见图5)。
实施例3:改进的产琥珀酸菌株的产生
a)用pSacB_delta_ldhA按上文所述转化Basfia succiniciproducens DD1,并“Campbelled入”,以产生“Campbell入”菌株。通过PCR来确认转化和整合入Basfiasucciniciproducens基因组,该PCR产生质粒整合入Basfia succiniciproducens基因组的事件的条带。
然后用含有蔗糖的琼脂平板作为针对sacB基因(的功能)的丧失进行选择的反选择培养基“Campbelled出”“Campbell入”菌株。因此,在25-35ml非选择培养基(不含抗生素的BHI)中37℃、200转/分钟过夜孵育“Campbell入”菌株。然后将过夜培养物划线培养在现配制的含蔗糖的BHI平板(10%,不含抗生素)上,并在37℃过夜孵育(“第一次蔗糖转移”)。从第一转移获得的单菌落再次划线培养在现配制的含蔗糖的BHI平板(10%)上,并在37℃过夜孵育(“第二次蔗糖转移”)。重复此流程,直至在蔗糖中完成最少五次转移(“第三、第四、第五次转移”)。术语“第一至第五次蔗糖转移”指为了选择sacB基因和周围质粒序列丢失的菌株的目的而将染色体整合了含有sacB果聚糖蔗糖酶基因的菌株转移至含有蔗糖和生长培养基的琼脂平板上。将从第五块转移平板获得的单菌落接种在25-35ml非选择培养基(不含抗生素的BHI)上,并在37℃、220转/分钟过夜孵育。将过夜培养物系列稀释,并接种在BHI平板上,以获得分离的单菌落。
通过氯霉素敏感性来确认含有ldhA基因的突变/缺失的“Campbelled出”菌株。通过PCR分析来鉴定和确认这些菌株中的突变/缺失突变体。这产生了ldhA缺失突变体Basfiasucciniciproducens DD1 ΔldhA。
b)按上文所述用pSacB_delta_pflD转化Basfia succiniciproducens ΔldhA,并“Campbelled入”,以产生“Campbell入”菌株。通过PCR来确认转化和整合。然后按之前所述“Campbelled出”“Campbell入”菌株。通过PCR分析来鉴定和确认这些菌株中的缺失突变体。这产生了ldhA pflD双缺失突变体Basfia succiniciproducens DD1 ΔldhA ΔpflD。
c)按上文所述用pSacB_delta_wcaJ转化Basfia succiniciproducens DD1 ΔldhA ΔpflD,并“Campbelled入”,以产生“Campbell入”菌株。通过PCR来确认转化和整合。然后按之前所述“Campbelled出”“Campbell入”菌株。通过PCR分析来鉴定和确认这些菌株中的缺失突变体。这产生了ldhA pflD wcaJ三重缺失突变体Basfia succiniciproducensDD1 ΔldhA ΔpflD ΔwcaJ。
d)按上文所述用pSacB_delta_pflA转化Basfia succiniciproducens DD1 ΔldhA,并“Campbelled入”,以产生“Campbell入”菌株。通过PCR来确认转化和整合。然后按之前所述“Campbelled出”“Campbell入”菌株。通过PCR分析来鉴定和确认这些菌株中的缺失突变体。这产生了ldhA pflA双缺失突变体Basfia succiniciproducens DD1 ΔldhA ΔpflA。
e)按上文所述用pSacB_delta_wcaJ转化Basfiasucciniciproducens DD1 ΔldhAΔpflA,并“Campbelled入”,以产生“Campbell入”菌株。通过PCR来确认转化和整合。然后按之前所述“Campbelled出”“Campbell入”菌株。通过PCR分析来鉴定和确认这些菌株中的缺失突变体。这产生了ldhA pflA wcaJ三重缺失突变体Basfia succiniciproducens DD1 ΔldhA ΔpflA ΔwcaJ。
f)按上文所述用pSacB_delta_wcaJ转化Basfia succiniciproducens DD1,并“Campbelled入”,以产生“Campbell入”菌株。通过PCR来确认转化和整合。然后按之前所述“Campbelled出”“Campbell入”菌株。通过PCR分析来鉴定和确认这些菌株中的缺失突变体。这产生了wcaJ缺失突变体Basfia succiniciproducens DD1 ΔwcaJ。
实施例4:在葡萄糖和蔗糖上培养多种DD1菌株
在存在葡萄糖或蔗糖作为碳源的情况下,将DD1的生产力与突变体菌株DD1 ΔwcaJ的生产力相比较。
在存在葡萄糖或蔗糖作为碳源的情况下,将DD1 ΔldhA ΔpflD的生产力与突变体菌株DD1 ΔldhA ΔpflD ΔwcaJ的生产力相比较。
在存在葡萄糖或蔗糖作为碳源的情况下,将DD1 ΔldhA ΔpflA的生产力与突变体菌株DD1 ΔldhA ΔpflA ΔwcaJ的生产力相比较。
利用下文所述的培养基和孵育条件分析生产力。
1.培养基配制
培养基的组成和配制如以下表2、3、4和5中所述。
Figure BDA0001124360820000271
表2:痕量元素溶液的组成。
Figure BDA0001124360820000272
表3:维生素溶液的组成。
Figure BDA0001124360820000273
表4:用于葡萄糖上培养的LSM培养基的组成。
Figure BDA0001124360820000281
表5:用于蔗糖上培养的LSM培养基的组成。
2.培养和分析
为了培养主培养物,用来自新鲜培养的BHI琼脂平板的细菌接种具有气密丁基橡胶塞的100ml血清瓶至OD600=0.75,该血清瓶包含50ml表2和3中所述液体培养基,具有CO2气体。37℃和160转/分钟(摇动直径:2.5cm)孵育血清瓶。24小时或48小时后通过HPLC(HPLC方法在表10和11中描述)定量碳源的消耗和羧酸的产生。通过用分光光度计(Ultrospec3000,Amersham Biosciences,Uppsala瑞典)测量600nm吸光度(OD600)来测量细胞生长。
3.结果
表6、7和8中显示不同DD1菌株的培养实验结果。如从这些结果可见,ΔwcaJ细胞编码的酶的活性的降低导致琥珀酸的产生增加。
此外,将孵育24小时或48小时后通过培养DD1 ΔldhA ΔpflD/DD1 ΔldhA ΔpflA菌株和DD1 ΔldhA ΔpflD ΔwcaJ/DD1 ΔldhA ΔpflA ΔwcaJ菌株获得的样品转入15ml管,以测量离心后获得的上清体积。如表9中所示,ΔwcaJ细胞编码的酶的活性的降低产生这样的修饰微生物,该修饰微生物显示显著改进的沉降行为(离心后获得更紧密的细胞沉淀),因此可以更容易地在随后的纯化过程中从培养基去除。
Figure BDA0001124360820000291
表6:葡萄糖和蔗糖上的DD1和DD1 ΔwcaJ菌株培养。
a培养时间
b底物(葡萄糖或蔗糖)的消耗
c琥珀酸、乳酸、甲酸、乙酸、丙酮酸、丙酸和乙醇的形成
gSA产率(每份所消耗的底物的SA定量)
h发现乙酸、乳酸、苹果酸和甲酸的检测限在给定HPLC方法中低于0.01g/l
Figure BDA0001124360820000292
Figure BDA0001124360820000301
表7:葡萄糖和蔗糖上的DD1 ΔldhA ΔpflD菌株和DD1 ΔldhA ΔpflD ΔwcaJ菌株培养。
a培养时间
b底物(葡萄糖或蔗糖)的消耗
c琥珀酸、乳酸、甲酸、乙酸、丙酮酸、丙酸和乙醇的形成
gSA产率(每份所消耗的底物的SA定量)
h发现乙酸、乳酸、苹果酸和甲酸的检测限在给定HPLC方法中低于0.01g/l
Figure BDA0001124360820000302
表8:葡萄糖和蔗糖上的DD1 ΔldhA ΔpflA菌株和DD1 ΔldhA ΔpflA ΔwcaJ菌株培养。
a培养时间
b底物(葡萄糖或蔗糖)的消耗
c琥珀酸、乳酸、甲酸、乙酸、丙酮酸、丙酸和乙醇的形成
gSA产率(每份所消耗的底物的SA定量)
h发现乙酸、乳酸、苹果酸和甲酸的检测限在给定HPLC方法中低于0.01g/l
菌株 底物 培养时间 上清体积
DD1 ΔldhA ΔpflD 葡萄糖 24h 8,0mL
DD1 ΔldhA ΔpflD ΔwcaJ 葡萄糖 24h 8,8mL
DD1 ΔldhA ΔpflA 葡萄糖 24h 8,0mL
DD1 ΔldhA ΔpflA ΔwcaJ 葡萄糖 24h 8,4mL
DD1 ΔldhA ΔpflD 蔗糖 48h 8,3mL
DD1 ΔldhA ΔpflD ΔwcaJ 蔗糖 48h 9,0mL
DD1 ΔldhA ΔpflA 蔗糖 48h 8,3mL
DD1 ΔldhA ΔpflA ΔwcaJ 蔗糖 48h 8,6mL
表9:离心(4600转/分钟,10分钟)10ml细菌培养物后获得的上清体积。
Figure BDA0001124360820000311
表10:用于分析葡萄糖、琥珀酸、甲酸、乳酸、乙酸、丙酮酸和乙醇的HPLC方(ZX-THF50)法。
Figure BDA0001124360820000312
表11:用于分析葡萄糖和蔗糖的HPLC方法(Fast-CH)。
序列
SEQ ID NO:1(菌株DD1的16S rDNA的核苷酸序列)
Figure BDA0001124360820000321
SEQ ID NO:2(菌株DD1的23S rDNA的核苷酸序列)
Figure BDA0001124360820000322
SEQ ID NO:3(来自菌株DD1的wcaJ基因的核苷酸序列)
Figure BDA0001124360820000331
SEQ ID NO:4(以上wcaJ基因编码的酶的氨基酸序列)
Figure BDA0001124360820000332
SEQ ID NO:5(质粒pSacB的完整核苷酸序列)
Figure BDA0001124360820000333
Figure BDA0001124360820000341
SEQ ID NO:6(质粒pSacB_delta_ldhA的完整核苷酸序列)
Figure BDA0001124360820000342
Figure BDA0001124360820000351
Figure BDA0001124360820000361
SEQ ID NO:7(质粒pSacB_delta_pflA的完整核苷酸序列)
Figure BDA0001124360820000362
Figure BDA0001124360820000371
Figure BDA0001124360820000381
SEQ ID NO:8(质粒pSacB_wcaJ的完整核苷酸序列)
Figure BDA0001124360820000382
Figure BDA0001124360820000391
Figure BDA0001124360820000401
SEQ ID NO:9(质粒pSacB_pflD的完整核苷酸序列)
Figure BDA0001124360820000402
Figure BDA0001124360820000411
Figure BDA0001124360820000421
SEQ ID NO:10(来自菌株DD1的ldhA基因的核苷酸序列)
Figure BDA0001124360820000422
SEQ ID NO:11(来自菌株DD1的LdhA的氨基酸序列)
Figure BDA0001124360820000423
SEQ ID NO:12(来自菌株DD1的pflA基因的核苷酸序列)
Figure BDA0001124360820000424
Figure BDA0001124360820000431
SEQ ID NO:13(来自菌株DD1的PflA的氨基酸序列)
Figure BDA0001124360820000432
SEQ ID NO:14(来自菌株DD1的pflD基因的核苷酸序列)
Figure BDA0001124360820000433
SEQ ID NO:15(来自菌株DD1的PflD的氨基酸)
Figure BDA0001124360820000434
Figure BDA0001124360820000441
SEQ ID NO:16(核苷酸81和82之间插入胞嘧啶的来自菌株DD1的wcaJ基因的核苷酸序列)
Figure BDA0001124360820000442
打印输出(电子表格原件)
(该页不作为国际申请的一部分并且不作国际申请页计)
Figure BDA0001124360820000451
Figure BDA0001124360820000452
仅供受理局使用
Figure BDA0001124360820000453
仅供国际局使用
Figure BDA0001124360820000454
Figure IDA0001124360930000011
Figure IDA0001124360930000021
Figure IDA0001124360930000031
Figure IDA0001124360930000041
Figure IDA0001124360930000051
Figure IDA0001124360930000061
Figure IDA0001124360930000071
Figure IDA0001124360930000081
Figure IDA0001124360930000091
Figure IDA0001124360930000101
Figure IDA0001124360930000111
Figure IDA0001124360930000121
Figure IDA0001124360930000131
Figure IDA0001124360930000141
Figure IDA0001124360930000151
Figure IDA0001124360930000161
Figure IDA0001124360930000171
Figure IDA0001124360930000181
Figure IDA0001124360930000191
Figure IDA0001124360930000201
Figure IDA0001124360930000211
Figure IDA0001124360930000221
Figure IDA0001124360930000231
Figure IDA0001124360930000241

Claims (21)

1.与其野生型相比具有降低的wcaJ基因编码的酶的活性的修饰微生物,其中通过遗传修饰来实现降低wcaJ基因编码的酶的活性,
其中衍生修饰微生物的野生型属于Basfia属,且其中野生型指未进行遗传修饰的天然存在的微生物。
2.权利要求1的修饰微生物,其中衍生修饰微生物的野生型具有与SEQ ID NO:1显示至少96%序列同源性的序列的16S rDNA。
3.权利要求2的修饰微生物,其中衍生修饰微生物的野生型具有SEQ ID NO:1的16SrDNA。
4.权利要求1的修饰微生物,其中衍生修饰微生物的野生型属于Basfiasucciniciproducens物种。
5.权利要求4的修饰微生物,其中衍生修饰微生物的野生型是以DSM18541保藏于德国DSMZ的Basfia succiniciproducens菌株DD1。
6.权利要求1至5中任一项的修饰微生物,其中野生型wcaJ基因选自编码氨基酸序列SEQ ID NO:4的核酸。
7.权利要求6的修饰微生物,其中野生型wcaJ基因如SEQ ID NO:3的核苷酸序列所示。
8.权利要求1至5中任一项的修饰微生物,其中修饰wcaJ基因。
9.权利要求8的修饰微生物,其中通过缺失wcaJ基因或至少其部分,缺失wcaJ基因的调节元件或至少其部分,或在wcaJ基因中引入至少一个突变,进行wcaJ基因的修饰。
10.权利要求9的修饰微生物,其中wcaJ基因中的至少一个突变导致表达截短的由wcaJ基因编码的酶。
11.权利要求10的修饰微生物,其中在截短的酶中,从C端缺失了wcaJ基因编码的野生型酶的至少100个氨基酸。
12.权利要求1至5中任一项的修饰微生物,其中微生物与其野生型相比进一步具有:
i)降低的丙酮酸甲酸裂合酶活性;
ii)降低的乳酸脱氢酶活性;或
iii)降低的丙酮酸甲酸裂合酶活性和降低的乳酸脱氢酶活性。
13.权利要求12的修饰微生物,其中微生物包含:
A)ldhA基因或至少其部分的缺失,ldhA基因的调节元件或至少其部分的缺失,或ldhA基因中至少一个突变的引入;
B)pflD基因或至少其部分的缺失,pflD基因的调节元件或至少其部分的缺失,或pflD基因中至少一个突变的引入;
C)pflA基因或至少其部分的缺失,pflA基因的调节元件或至少其部分的缺失,或pflA基因中至少一个突变的引入;
D)ldhA基因或至少其部分的缺失,ldhA基因的调节元件或至少其部分的缺失,或ldhA基因中至少一个突变的引入;
pflD基因或至少其部分的缺失,pflD基因的调节元件或至少其部分的缺失,或pflD基因中至少一个突变的引入;
E)ldhA基因或至少其部分的缺失,ldhA基因的调节元件或至少其部分的缺失,或ldhA基因中至少一个突变的引入;
pflA基因或至少其部分的缺失,pflA基因的调节元件或至少其部分的缺失,或pflA基因中至少一个突变的引入。
14.产生有机化合物的方法,其包括:
I)在包含至少一种可同化的碳源的培养基中培养权利要求1-13中任一项的修饰微生物,以允许修饰微生物产生有机化合物,从而获得包含有机化合物的发酵液;
II)从方法步骤I)中获得的发酵液回收有机化合物;
其中有机化合物是羧酸。
15.权利要求14的方法,其中有机化合物是二羧酸或三羧酸。
16.权利要求14的方法,其中有机化合物是琥珀酸。
17.权利要求14或16的方法,其中可同化的碳源选自蔗糖、麦芽糖、D-葡萄糖、甘油、甘油和D-葡萄糖的混合物、甘油和蔗糖的混合物、甘油和D-木糖的混合物,及麦芽糖、D-葡萄糖和果糖的混合物。
18.权利要求14或16的方法,其中方法进一步包括方法步骤:
III)通过至少一步化学反应,使包含在方法步骤I)中获得的发酵液中的有机化合物或方法步骤II)中获得的回收的有机化合物转化为不同于有机化合物的次级有机产物。
19.权利要求18的方法,其中有机化合物是琥珀酸,其中次级有机产物选自琥珀酸酯或其聚合物、四氢呋喃(THF)、1,4-丁二醇(BDO)、γ-丁内酯(GBL)和吡咯烷酮。
20.权利要求1至13中任一项的修饰微生物的用途,用于发酵产生有机化合物。
21.权利要求20的用途,其中有机化合物是琥珀酸。
CN201580017927.9A 2014-02-07 2015-02-06 具有改进的生物质分离行为的修饰微生物 Active CN106164251B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP14154287 2014-02-07
EP14154287.8 2014-02-07
EP14167002.6 2014-05-05
EP14167002 2014-05-05
PCT/EP2015/052523 WO2015118111A2 (en) 2014-02-07 2015-02-06 Modified microorganism with improved biomass separation behaviour

Publications (2)

Publication Number Publication Date
CN106164251A CN106164251A (zh) 2016-11-23
CN106164251B true CN106164251B (zh) 2020-06-12

Family

ID=53673056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580017927.9A Active CN106164251B (zh) 2014-02-07 2015-02-06 具有改进的生物质分离行为的修饰微生物

Country Status (10)

Country Link
US (1) US10273485B2 (zh)
EP (1) EP3102674B1 (zh)
JP (1) JP6608377B2 (zh)
KR (1) KR102304838B1 (zh)
CN (1) CN106164251B (zh)
BR (1) BR112016018162B1 (zh)
CA (1) CA2938583A1 (zh)
ES (1) ES2702930T3 (zh)
MY (1) MY191429A (zh)
WO (1) WO2015118111A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3384003A1 (en) 2015-12-02 2018-10-10 Basf Se Method of producing proteins in filamentous fungi with decreased clri activity
CN108291189A (zh) 2015-12-02 2018-07-17 巴斯夫欧洲公司 在具有降低的clr2活性的丝状真菌中生产蛋白质的方法
EP3502241A1 (en) 2017-12-21 2019-06-26 Basf Se Modified microorganism for improved production of succinate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092155A1 (en) * 2009-02-16 2010-08-19 Basf Se Novel microbial succinic acid producers and purification of succinic acid
WO2014018596A2 (en) * 2012-07-25 2014-01-30 Glycosyn LLC Alpha (1,2) fucosyltransferases suitable for use in the production of fucosylated oligosaccharides

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958744A (en) 1997-08-18 1999-09-28 Applied Carbochemicals Succinic acid production and purification
EP1669459B1 (en) 2003-09-30 2014-10-22 Ajinomoto Co., Inc. Method of purifying succinic acid from fermentation liquid
CA2545363C (en) 2003-11-27 2011-11-15 Korea Advanced Institute Of Science And Technology Rumen bacteria mutants and process for producing succinic acid employing the same
WO2008010373A1 (en) 2006-07-19 2008-01-24 Showa Denko K.K. A process for producing succinic acid
EP2149608A4 (en) * 2007-04-16 2013-02-20 Ajinomoto Kk PROCESS FOR PRODUCING AN ORGANIC ACID
ES2764410T3 (es) * 2007-08-17 2020-06-03 Basf Se Nuevo productor de ácido succínico microbiano
ES2559385T3 (es) 2008-12-23 2016-02-11 Basf Se Células bacterianas que tienen una derivación de glioxilato para la fabricación de ácido succínico
JP5724876B2 (ja) 2009-10-07 2015-05-27 三菱化学株式会社 コハク酸の製造方法
EP2504307A1 (en) 2009-11-24 2012-10-03 DSM IP Assets B.V. Process for the crystallization of succinic acid
WO2011082378A2 (en) 2009-12-31 2011-07-07 Myriant Technologies Llc Purification of succinic acid from the fermentation broth containing ammonium succinate
ES2432642T3 (es) 2010-02-12 2013-12-04 Purac Biochem Bv Proceso de producción de ácido succínico
WO2011123268A1 (en) 2010-04-01 2011-10-06 Bioamber S.A.S. Processes for producing succinic acid from fermentation broths containing diammonium succinate
US9719119B2 (en) * 2011-12-16 2017-08-01 Universiteit Gent Mutant microorganisms to synthesize colanic acid, mannosylated and/or fucosylated oligosaccharides
US9597386B2 (en) * 2012-04-05 2017-03-21 Boehringer Ingelheim Vetmedica, Inc. Outer membrane proteins of Histophilus somni and methods thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092155A1 (en) * 2009-02-16 2010-08-19 Basf Se Novel microbial succinic acid producers and purification of succinic acid
WO2014018596A2 (en) * 2012-07-25 2014-01-30 Glycosyn LLC Alpha (1,2) fucosyltransferases suitable for use in the production of fucosylated oligosaccharides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
生物膜胞外聚合物的研究;蒲晓芬 等;《国外医学口腔医学分册》;20050930;第32卷(第5期);第339页左栏倒数第1行至右栏第1行和第340页右栏倒数第8-9行 *

Also Published As

Publication number Publication date
CA2938583A1 (en) 2015-08-13
KR102304838B1 (ko) 2021-09-28
WO2015118111A3 (en) 2015-11-12
US20160362696A1 (en) 2016-12-15
CN106164251A (zh) 2016-11-23
JP2017505135A (ja) 2017-02-16
WO2015118111A2 (en) 2015-08-13
BR112016018162B1 (pt) 2023-04-11
KR20160117583A (ko) 2016-10-10
EP3102674B1 (en) 2018-10-03
US10273485B2 (en) 2019-04-30
MY191429A (en) 2022-06-27
BR112016018162A2 (pt) 2018-02-20
ES2702930T3 (es) 2019-03-06
JP6608377B2 (ja) 2019-11-20
EP3102674A2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
US10513693B2 (en) Use of glycerol with limited feed of carbohydrates for fermentation
JP6608392B2 (ja) ショ糖におけるファインケミカルの改善された生産のための遺伝的改変微生物
JP2016529901A (ja) アラニンの生産向上のための改変微生物
CN106164252B (zh) 用于琥珀酸产生的改进微生物
CN106164251B (zh) 具有改进的生物质分离行为的修饰微生物
US9850506B2 (en) Modified microorganism for improved production of fine chemicals on sucrose
JP7158107B2 (ja) 有機化合物の生産方法
WO2016030373A1 (en) Modified microorganism for improved production of fine chemicals on sucrose
EP3502241A1 (en) Modified microorganism for improved production of succinate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant