CN106162869A - 移动自组织网络中高效协作定位方法 - Google Patents

移动自组织网络中高效协作定位方法 Download PDF

Info

Publication number
CN106162869A
CN106162869A CN201610532034.4A CN201610532034A CN106162869A CN 106162869 A CN106162869 A CN 106162869A CN 201610532034 A CN201610532034 A CN 201610532034A CN 106162869 A CN106162869 A CN 106162869A
Authority
CN
China
Prior art keywords
reference mode
node
sample
destination node
iteration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610532034.4A
Other languages
English (en)
Other versions
CN106162869B (zh
Inventor
徐超杰
刘中令
杨明
俞晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610532034.4A priority Critical patent/CN106162869B/zh
Publication of CN106162869A publication Critical patent/CN106162869A/zh
Application granted granted Critical
Publication of CN106162869B publication Critical patent/CN106162869B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供了一种移动自组织网络中高效协作定位方法,包括步骤A:针对当前的目标节点确定对应的参考节点集合与对应的参考节点进行测距通信;步骤B:根据距离测量值,以及测距误差模型随机生成一定数目的对目标节点位置的估计样本;步骤C:根据权重值对每个参考节点生成的位置估计样本分别进行筛选,将所述样本作为本次迭代得到的自身置信度,并计算出本次迭代中自身估计位置;步骤D:判断当前目标节点的迭代过程是否收敛或达到最大迭代次数,若目标节点的迭代过程收敛,则作为其他待被定位目标节点的参考节点。本发明提出的高效协作定位方法能够做到目标节点定位迭代过程中收敛速度快,同时计算复杂度较低,并能够保证较高的定位精度。

Description

移动自组织网络中高效协作定位方法
技术领域
本发明涉及移动通信技术领域,具体地,涉及一种移动自组织网络中高效协作定位方法。
背景技术
移动自组织网络由于其自组织、不依赖于基础设施等特性而被广泛应用在紧急救援、人员位置管理等领域。其中,对于组网对象节点(以下简称节点)的准确定位是促成这些应用的关键,因而移动自组织网络中节点的高精度定位问题得到了越来越多的关注与研究。在移动自组织网络中,基于距离测量的定位方案能够获得更高的定位精度,在这样的方案中,网络中的节点被分为锚节点与目标节点两种角色,其中锚节点的准确位置已知,且在所有节点中仅占较小的比例;目标节点位置未知,需要通过与锚节点进行距离测量进而对自身位置进行估计。相较于传统的非协作定位方案中目标节点仅可与其通信范围内的锚节点进行距离测量通信,协作定位方案还允许目标节点与其通信范围内的其他目标节点进行协作,从而可以利用目标节点之间的距离测量信息来降低每个目标节点位置估计的模糊性,可以提高定位过程所能达到的定位精度,并增大网络中可被定位目标节点(能够解算出唯一估计位置的目标节点)的比例,并且协作定位方案可以应用于锚节点数量较少且在网络中稀疏分布的情况,具有很好的应用前景。
非参数化置信传播算法是一种被广泛研究的协作定位算法,具有高定位精度、适用于非高斯型不确定度及分布式计算等优点。该算法是一种基于采样与信息传递的迭代算法,在目标节点定位迭代过程的每次迭代中,每个参与该目标节点定位过程的锚节点利用自身的置信度(即节点位置的后验分布)及自身与目标节点之间的距离测量结果,计算出传递给目标节点的信息(即对目标节点位置的一定数目的估计样本),目标节点可以利用这样的信息对自身的置信度进行计算,并在连续两次迭代过程中其置信度变化满足迭代过程终止条件时,获得自身的最终估计位置。
然而,在移动自组织网络(尤其是节点规模大、部署密集的情况)中,应用非参数化置信传播算法时,其所带来的信息传递路径过多及传递路径存在环路等问题为目标节点的位置估计过程引入了较高的计算复杂度及网络通信负载,同时节点的移动性进一步地恶化了这一情况。若要实现非参数化置信传播算法在实际中的应用,必须改进该算法以降低定位过程中的计算复杂度。
经过对现有的技术检索发现,目前关于降低非参数化置信传播算法中计算复杂度的方案主要包括通过最小生成树算法避免信息传递过程中出现环路、通过使用分层信息传播机制减少计算复杂度等,但是这些方法均做出了一些简化性的假设,如假设网络中节点均静止、假设锚节点静止以及选用简化的测距误差模型等,从而难以保证在移动自组织网络中的实际应用过程中依然可以保持其高效性。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种移动自组织网络中高效协作定位方法。
根据本发明提供的移动自组织网络中高效协作定位方法,包括如下步骤:
步骤A:针对当前的目标节点,根据目标节点的通信范围确定对应的参考节点,所述参考节点包括:锚节点与已定位的目标节点;并将当前的目标节点与对应参考节点进行测距通信;初始化每个参考节点对应的目标节点,生成位置估计样本时的随机方向取值范围;
步骤B:将每个参考节点与当前目标节点之间的距离测量值、测距误差模型随机生成的关于目标节点位置的若干位置估计样本,以及参考节点自身的位置信息一起发送给当前目标节点;
步骤C:更新计算关于目标节点位置的若干位置估计样本所对应的权重值;并根据权重值对每个参考节点生成的位置估计样本分别进行筛选,通过每个参考节点对应的被保留的位置估计样本得到该参考节点在下一次迭代时针对当前目标节点生成位置估计样本时的随机方向取值范围;当前目标节点归一化所有被保留的位置估计样本的权重值之后,将所述被保留的位置估计样本作为本次迭代得到的自身置信度,并计算出本次迭代中目标节点自身的估计位置;
步骤D:判断当前目标节点的迭代过程是否满足收敛或达到最大迭代次数,若满足,则终止迭代过程,且将最后一次迭代得到的估计位置作为该目标节点的最终估计位置。
优选地,所述步骤A包括如下步骤:
步骤A1:若当前目标节点nt与网络中某个节点nt′之间的距离dtt′不大于nt的最大通信距离R,则nt与nt′互为邻近节点,其中,nt′表示第t′个节点(可以为目标节点、锚节点);进而得到nt的邻近节点集合Γt
步骤A2:处于Γt中的锚节点或者已定位的目标节点即为nt在协作定位过程中所需要参考的参考节点,这些节点组成nt的参考节点集合
步骤A3:将中的每个参考节点针对nt生成位置估计样本时的随机方向取值范围初始化为[0,2π],其中表示中参考节点的数目, 分别为第1次迭代时针对nt生成位置估计样本时的随机方向取值范围的最小值与最大值;另外,将网络中任一个节点ni的二维位置表示为xi=[xi,yi]T
步骤A4:进入目标节点位置估计迭代过程,设定最大迭代次数为L。
优选地,所述步骤B包括如下步骤:
步骤B1:在第l次迭代中,当前目标节点nt的邻近参考节点集合中每个参考节点根据当前目标节点nt与nt之间的距离测量值对nt的位置进行估计,并得到M个位置估计样本其中:1≤l≤L;
x r i t ( l j ) = x r i + d r i t ( l j ) · [ s i n ( θ r i t ( l j ) ) , c o s ( θ r i t ( l j ) ) ] T , j = 1 , ... , M ,
式中,为随机方向值,并服从均匀分布 分别为第l次迭代时针对nt生成位置估计样本时的随机方向取值范围的最小值与最大值;表示的二维位置坐标,ri表示第ri个参考节点,下标i的取值范围为下标t表示当前时刻,表示与nt之间的一个带噪声的距离测量值,即
d r i t ( l j ) = | | x r i - x t | | + v r i t ( l j ) ,
其中,与nt之间的实际距离,xt表示nt的二维位置坐标;为距离测量误差,分布服从pv为测距误差分布模型;
步骤B2:将产生的每个位置估计样本对应的权重值初始化为1/M,并将对应的随机方向值连同所对应的权重值一起组合为权重样本
步骤B3:将产生的所有权重样本连同的位置作为信息发送给nt,其中j=1,...,M。
优选地,所述步骤C包括如下步骤:
步骤C1:当前目标节点nt对收到每一个权重样本进行权重值更新计算
ω r i t ( l j ) = ω r i t ( l j ) Π n r j ∈ Γ t r \ n r i p v ( d r j t ′ , d r j t ′ - d r j t ) ,
其中,与参考节点之间的实际距离,且 为nt之间带噪声的距离测量值;为了评估与nt的实际位置xt之间的偏差,将假设为nt之间的实际距离,并假设为nt的实际位置,则作为与nt之间的一个带噪声的距离测量值,即为的距离测量误差值,进而体现了从的角度对与xt之间偏差程度的估计;
步骤C2:nt根据已更新的样本权重值,将每个参考节点发送的样本分别进行筛选:针对由参考节点产生的M个权重样本,选择出个具有最大权重值的样本,其中的向下取整值;
则需要在某一个参考节点产生的样本中额外保留出个样本,记录相应被保留的样本中随机方向值,得到这些随机方向值对应的范围Sθ=[θminmax],并将在下一次迭代时针对nt生成位置估计样本时的随机方向取值范围设为Sθ
步骤C3:针对nt,将nt保留的M个位置估计样本,即进行权重值归一化处理,其中:k=1,...,M,表示第k个位置估计样本的二维位置坐标,表示第k个位置估计样本对应的随机方向值,表示第k个位置估计样本对应的权重值;归一化公式如下:
ω t ( l k ) = ω t ( l j ) Σ k = 1 M ω t ( l k ) ;
步骤C4:针对目标节点nt,对目标节点nt自身的置信度进行更新计算,并计算在当前迭代中的估计位置计算公式如下:
x ^ t ( l ) = Σ k = 1 M x t ( l k ) ω t ( l k ) ;
式中:表示第l次迭代中得到的对nt的估计位置。
优选地,所述步骤D包括如下步骤:
步骤D1:若1<l<L,判断当前目标节点nt在连续两次迭代中的位置估计变化情况是否满足迭代终止条件
| | x ^ t ( l ) - x ^ t ( l - 1 ) | | ≤ ϵ
其中,ε为预设的迭代终止阈值,表示第l-1次迭代中得到的对nt的估计位置;若在第l次迭代中,nt的估计位置满足了迭代终止条件,则迭代过程停止,即为nt的最终估计位置,成为已定位的目标节点,进入步骤D2继续执行;若l等于L,即达到了最大迭代次数,则终止迭代过程,并将第l次迭代中nt的估计位置作为其最终估计位置,流程结束;
步骤D2:设定l自增1,返回步骤B继续执行。
与现有技术相比,本发明具有如下的有益效果:
1、本发明提出的高效协作定位方法中每个位置估计样本的随机方向服从均匀分布,且随机方向的取值范围逐渐缩小,因此本发明提出的方法需要较少的样本数目即可满足目标节点的定位需求,因而能够降低目标节点定位过程的计算复杂度,实现对目标节点的高效协作定位,同时能够保证较高的定位精度。
2、本发明提出的方法中随着当前目标节点协作定位迭代过程的进行能够针对某一参考节点对当前目标节点生成的位置估计样本,利用了其他参考节点对这些样本与该目标节点实际位置的偏差程度进行评估,进而可以获得每个样本的合理权重值,从而有助于筛选出针对该目标节点的合理位置估计样本,即可以使得每个参考节点针对该目标节点生成位置估计样本时的随机方向取值范围快速缩小,进而使得参考节点的估计位置快速地向真实位置靠拢,在满足收敛条件时终止针对该目标节点的协作定位迭代过程并获得对该目标节点的最终估计位置,同时该目标节点成为已定位目标节点,能够成为其他待被定位目标节点的参考节点。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为移动自组织网络中高效协作定位方法的总体架构示意图;
图2为移动自组织网络中高效协作定位方法与非参数化置信传播算法在不同样本数目条件下定位误差方面结果对比图;
图3为移动自组织网络中高效协作定位方法与非参数化置信传播算法在计算时间消耗方面结果对比图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
根据本发明提供的移动自组织网络中高效协作定位方法,针对每个目标节点的协作定位过程为迭代过程,其中每次迭代包括当前目标节点每个参考节点(可以为锚节点或其他已定位目标节点)与目标节点之间距离测量信息以及参考节点自身的位置计算出参考节点针对当前目标节点的位置估计样本,并作为信息发送给该目标节点;当前目标节点根据所接收到的信息,对其中包含的样本对应权重信息进行更新计算;针对每个参考节点产生的样本,依据样本的新权重值进行筛选,并根据每个参考节点对应保留的样本确定在下一次迭代中该参考节点针对当前目标节点生成位置估计样本时的随机方向取值范围;当前目标节点归一化所有保留样本的权重值,并更新当前迭代中自身的置信度情况及对应的估计位置;在连续两次迭代中,当前目标节点判断自身位置估计变化情况是否满足迭代收敛条件,在迭代收敛条件被满足时,该目标节点成为已定位目标节点并终止自身定位迭代过程,进而可以成为其他待定位目标节点的参考节点;若当前目标节点的定位迭代过程达到最大迭代次数,该目标节点的定位迭代过程同样终止并以最后一次迭代得到的位置估计作为其最终估计位置。本发明中提出方法能够使各个参考节点每次迭代过程中生成样本时的随机方向取值范围快速缩小,从而使得目标节点定位迭代过程能够快速收敛,并能够以较少的样本数取得较高的定位精度,同时降低计算复杂度。
具体地,包括如下步骤:
步骤A:针对当前的目标节点,根据其的通信范围,确定其参考节点(包括锚节点与已定位的目标节点)集合,并与其参考节点进行测距通信;初始化每个参考节点针对该目标节点生成位置估计样本时的随机方向取值范围;并在至此之后开始当前目标节点的定位迭代过程;
步骤B:每个参考节点依据其与当前目标节点之间的距离测量值,以及测距误差模型随机生成一定数目的对目标节点位置的估计样本,连同参考节点自身的位置信息一起作为信息发送给当前目标节点;
步骤C:当前目标节点对所接收到信息中的位置估计样本对应的权重值分别进行更新计算,并根据权重值对每个参考节点生成的位置估计样本分别进行筛选,并利用每个参考节点对应被保留的样本,得到该参考节点在下一次迭代时针对当前目标节点生成位置估计样本时的随机方向取值范围;当前目标节点归一化所有被保留样本的权重值之后,将这些样本作为本次迭代得到的自身置信度,并计算出本次迭代中自身估计位置;
步骤D:判断当前目标节点的迭代过程是否收敛或达到最大迭代次数,若二者满足其一,则终止迭代过程,且将最后一次迭代得到的估计位置作为该目标节点的最终估计位置。特别地,若目标节点的迭代过程收敛,则说明其被很好地定位,则可以成为其他待被定位目标节点的参考节点。
所述的步骤A包括如下步骤:
步骤A1:若当前目标节点nt与网络中某个节点nt′之间的距离dtt′不大于nt的最大通信距离R,则nt与nt′互为邻近节点,进而可以得到nt的邻近节点集合Γt
步骤A2:处于Γt中的锚节点或者已定位的目标节点即为nt在协作定位过程中所需要参考的参考节点,这些节点组成nt的参考节点集合
步骤A3:将中的每个参考节点针对nt生成位置估计样本时的随机方向取值范围初始化为[0,2π],其中表示中参考节点的数目;分别为第1次迭代时针对nt生成位置估计样本时的随机方向取值范围的最小值与最大值;另外,将网络中任一个节点ni的二维位置表示为xi=[xi,yi]T
步骤A4:进入目标节点位置估计迭代过程,设定最大迭代次数为L。
所述的步骤B包括如下步骤:
步骤B1:在第l(1≤l≤L)次迭代中,当前目标节点nt的邻近参考节点集合中每个参考节点根据其与nt之间的距离测量值对nt的位置进行估计,并得到M个位置估计样本
x r i t ( l j ) = x r i + d r i t ( l j ) · [ s i n ( θ r i t ( l j ) ) , c o s ( θ r i t ( l j ) ) ] T , j = 1 , ... , M ,
其中,为随机方向值,并服从均匀分布 分别为第l次迭代时针对nt生成位置估计样本时的随机方向取值范围的最小值与最大值;表示与nt之间的一个带噪声的距离测量值,即
d r i t ( l j ) = | | x r i - x t | | + v r i t ( l j ) ,
其中,与nt之间的实际距离;为距离测量误差,其分布服从pv为测距误差分布模型;
步骤B2:将产生的每个位置估计样本对应的权重值初始化为1/M,并将对应的随机方向值连同及其权重值一起组合为权重样本
步骤B3:将产生的所有权重样本连同的位置作为信息发送给nt
所述的步骤C包括如下步骤:
步骤C1:当前目标节点nt对其收到的信息中每一个权重样本 进行权重值更新计算
ω r i t ( l j ) = ω r i t ( l j ) Π n r j ∈ Γ t r \ n r i p v ( d r j t ′ , d r j t ′ - d r j t ) ,
其中,与参考节点之间的实际距离;为nt之间带噪声的距离测量值;为了评估与nt的实际位置xt之间的偏差,将假设为nt之间的实际距离,然后假设为nt的实际位置,则可看作与nt之间的一个带噪声的距离测量值,因而即为的距离测量误差值,进而即体现了从的角度对与xt之间偏差程度的估计;
步骤C2:nt根据已更新的样本权重值,将每个参考节点发送的样本分别进行筛选:针对由参考节点产生的M个权重样本,选择出个具有最大权重值的样本,其中的向下取整值(若则需要在某一个参考节点产生的样本中额外保留出个样本),记录相应被保留的样本中随机方向值,可以得到这些随机方向值对应的范围Sθ=[θminmax],并将在下一次迭代时针对nt生成位置估计样本时的随机方向取值范围设为Sθ
步骤C3:针对nt,将其保留的M个位置估计样本(所有参考节点对应被保留样本的集合)即进行权重值归一化处理,即
ω t ( l k ) = ω t ( l j ) Σ k = 1 M ω t ( l k ) ;
步骤C4:针对目标节点nt,对其自身的置信度进行更新计算,并计算其在当前迭代中的估计位置
x ^ t ( l ) = Σ k = 1 M x t ( l k ) ω t ( l k ) .
所述的步骤D包括如下步骤:
步骤D1:若1<l<L,判断当前目标节点nt在连续两次迭代中的位置估计变化情况是否满足迭代终止条件
| | x ^ t ( l ) - x ^ t ( l - 1 ) | | ≤ ϵ ,
其中,ε为预设的迭代终止阈值;若在第l次迭代中,nt的估计位置满足了迭代终止条件,则迭代过程停止,即为nt的最终估计位置,同时也说明nt在本次协作定位过程中被很好地定位,成为已定位的目标节点,并在接下来的迭代过程中可以作为其他未被定位目标节点的参考节点;若l等于L,即达到了最大迭代次数,则终止迭代过程,并将第l次迭代中nt的估计位置作为其最终估计位置,同时说明nt在本次定位过程中未被很好地定位;
步骤D2:设定l=l+1,重复执行步骤B-步骤D。
图1示意了本发明的总体流程图。本发明所考虑的移动自组织网络中,锚节点分布已确定。针对网络中每一个目标节点的协作定位迭代过程中,首先当前目标节点的每个参考节点根据其与该目标节点之间的距离测量信息计算出发送给该目标节点的信息(包括带权重的位置估计样本集合及参考节点自身的位置信息);然后,当前目标节点对所接到信息中的位置估计样本的权重进行更新计算,并对每个参考节点所生成的样本依据权重值分别进行筛选,进而对各个参考节点被保留的样本对应随机方向值进行记录以得到该参考节点在下一次迭代中针对该目标节点生成位置估计样本时的随机方向取值范围;最后,当前目标节点通过归一化所有被保留样本的权重值,对当前迭代中自身置信度进行更新,并计算相应的估计位置;在迭代过程达到最大迭代次数或满足收敛条件时,当前目标节点的协作定位迭代过程终止,并以最后一次迭代得到的估计位置作为其最终估计位置;特别地,在满足迭代条件的情况下,当前目标节点成为已定位目标节点,并成为其他待被定位目标节点的参考节点。
更为具体地,在本发明的一个优选例中,本发明是通过以下技术方案实现的,本发明包括以下步骤:
第一步:执行移动自组织网络中目标节点的协作定位迭代过程相关初始化操作。本优选例中,移动自组织网络由150个节点构成,其中包括18个锚节点与132个目标节点,节点部署区域为100m×100m正方形区域,并选择部署区域内选择近似均匀分布的18个节点作为锚节点;设定网络内节点的最大通信距离为30m,进而根据网络内节点之间的距离,可以获得每个目标节点的初始参考节点集合(参考节点可以为锚节点或已定位目标节点,初始时仅包括锚节点);初始化每个参考节点针对目标节点生成位置估计样本时的随机方向取值范围为[0,2π];设置每个目标节点协作定位迭代过程的最大迭代次数为10次,开始针对每个目标节点的协作定位迭代过程。对于网络内每一个目标节点,其协作定位迭代过程是一致的,因而在下面步骤中仅针对一个目标节点的协作定位迭代过程进行说明。
第二步:当前目标节点的参考节点根据其与该目标节点之间的距离测量信息,计算出发送给该目标节点的信息即一定数目的位置估计样本与参考节点自身的位置信息;为了评估每个参考节点针对目标节点产生的位置估计样本数目对本发明提出方法的影响,本优选例中分别选用了50、100、200与500等数值作为样本数目。
第三步:当前目标节点在接收到其所有参考节点发送的信息之后,对其中包含的位置估计样本的权重信息进行更新,其中采用的测距误差模型为文献“New efficientindoor cooperative localization algorithm with empirical rang-ing errormodel”中提出的一种非对称双指数模型(根据实际定位系统中测距数据获得的测距误差模型),即
p v ( r , x ) = 1 λ P ( r ) + λ N ( r ) e x λ N ( r ) , x ≤ 0 , 1 λ P ( r ) + λ N ( r ) e - x λ P ( r ) , x > 0 ,
λP(r)=aP·r+bPN(r)=aN·r+bN,
其中,r为节点之间的距离测量值;x为该测量值对应的误差值;aP,bP,aN,bN为定位环境相关的参数,在本优选例中选择与该文献中一致的参数,即aP=0.058,bP=0.01,aN=0.19,bN=0.21。然后该目标节点针对每个参考节点发送的样本根据其权重值分别进行筛选,并利用这些被保留样本,对每个参考节点在下一次迭代针对该目标节点生成位置估计样本时的随机方向取值范围进行更新;另外,该目标节点根据所有被保留的样本计算当前迭代时自身的置信度及对应的估计位置。
第四步:首先判断当前目标节点的定位迭代过程是否达到了最大迭代次数,若达到则终止迭代过程,并将最后一次迭代得到的估计位置作为对该目标节点的最终估计位置,同时说明该目标节点并未被很好地定位;否则,判断该目标节点协作定位迭代过程的收敛条件是否被满足,若满足收敛条件则终止迭代过程,并将最后一次迭代得到的估计位置作为对该目标节点的最终估计位置,同时说明该目标节点被很好地定位,可以成为其他待被定位的目标节点的参考节点。
最后,为了评估本发明提出的移动自组织网络中高效协作定位方法的性能,在本优选例中在不同样本数目(50、100、200及500)的情况下,将其与非参数化置信传播算法在定位误差方面进行了比较,其中,定位误差由均方根误差(root mean square error,RMSE)进行表示,RMSE的定义为
R M S E = Σ n t ∈ S t | | x t - x ^ t | | N t 2 ,
其中,Nt为网络中目标节点的数目;St为网络中目标节点的集合;xt为目标节点nt的实际位置;为目标节点nt协作定位过程获得的最终估计位置。图2列举了在样本数目为100、200及500的情况下,本发明提出的方法(图2中简称为本发明方法)与非参数化置信传播算法(图2中简称为NBP)在定位误差(RMSE)方面的累积分布(cumulative distributionfunction,CDF)情况,从图中可以看出在相同的样本数目情况下,本发明提出的方法能够取得比非参数化置信传播算法更低的定位误差,并且样本数目的变化对本发明提出的方法在定位误差方面所造成的影响远小于其对非参数化置信传播算法造成的影响。另外,图2还列举了在样本数目为50的情况下,本发明提出的方法在定位误差方面的表现,结合其他曲线,可以看出本发明提出方法在样本数目较少的情况下取得的定位误差表现比非参数化置信传播算法在样本数目较多的情况下的定位误差表现更好,进而也说明了本发明提出的方法的高效性与高定位精度性能。进一步地,在本优选例中,对本发明提出的方法与非参数化置信传播算法在计算时间消耗方面的性能进行了评估,并以归一化的中央处理器(centralprocessing unit,CPU)运行时间作为评价标准。图3列举了在不同样本数目情况下,两种方法(相应的简称同图2)实现对网络中所有目标节点进行定位所需的归一化CPU运行时间情况,可以看出本发明提出方法的计算时间消耗远低于非参数化置信传播算法,这一结果也更加证实了本发明提出方法的高效性。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (5)

1.一种移动自组织网络中高效协作定位方法,其特征在于,包括如下步骤:
步骤A:针对当前的目标节点,根据目标节点的通信范围确定对应的参考节点,所述参考节点包括:锚节点与已定位的目标节点;并将当前的目标节点与对应参考节点进行测距通信;初始化每个参考节点对应的目标节点,生成位置估计样本时的随机方向取值范围;
步骤B:将每个参考节点与当前目标节点之间的距离测量值、测距误差模型随机生成的关于目标节点位置的若干位置估计样本,以及参考节点自身的位置信息一起发送给当前目标节点;
步骤C:更新计算关于目标节点位置的若干位置估计样本所对应的权重值;并根据权重值对每个参考节点生成的位置估计样本分别进行筛选,通过每个参考节点对应的被保留的位置估计样本得到该参考节点在下一次迭代时针对当前目标节点生成位置估计样本时的随机方向取值范围;当前目标节点归一化所有被保留的位置估计样本的权重值之后,将所述被保留的位置估计样本作为本次迭代得到的自身置信度,并计算出本次迭代中目标节点自身的估计位置;
步骤D:判断当前目标节点的迭代过程是否满足收敛或达到最大迭代次数,若满足,则终止迭代过程,且将最后一次迭代得到的估计位置作为该目标节点的最终估计位置。
2.根据权利要求1所述的移动自组织网络中高效协作定位方法,其特征在于,所述步骤A包括如下步骤:
步骤A1:若当前目标节点nt与网络中某个节点nt′之间的距离dtt′不大于nt的最大通信距离R,则nt与nt′互为邻近节点,其中,nt′表示第t′个节点,所述nt′包括:目标节点或锚节点;进而得到nt的邻近节点集合Γt
步骤A2:处于Γt中的锚节点或者已定位的目标节点即为nt在协作定位过程中所需要参考的参考节点,这些节点组成nt的参考节点集合
步骤A3:将中的每个参考节点针对nt生成位置估计样本时的随机方向取值范围初始化为[0,2π],其中表示中参考节点的数目, 分别为第1次迭代时针对nt生成位置估计样本时的随机方向取值范围的最小值与最大值;另外,将网络中任一个节点ni的二维位置表示为xi=[xi,yi]T
步骤A4:进入目标节点位置估计迭代过程,设定最大迭代次数为L。
3.根据权利要求1所述的移动自组织网络中高效协作定位方法,其特征在于,所述步骤B包括如下步骤:
步骤B1:在第l次迭代中,当前目标节点nt的邻近参考节点集合中每个参考节点根据当前目标节点nt与nt之间的距离测量值对nt的位置进行估计,并得到M个位置估计样本其中:1≤l≤L;
x r i t ( l j ) = x r i + d r i t ( l j ) · [ s i n ( θ r i t ( l j ) ) , c o s ( θ r i t ( l j ) ) ] T , j = 1 , ... , M ,
式中,为随机方向值,并服从均匀分布 分别为第l次迭代时针对nt生成位置估计样本时的随机方向取值范围的最小值与最大值;表示的二维位置坐标,ri表示第ri个参考节点,下标i的取值范围为下标t表示当前时刻,表示与nt之间的一个带噪声的距离测量值,即
d r i t ( l j ) = || x r i - x t || + v r i t ( l j ) ,
其中,与nt之间的实际距离,xt表示nt的二维位置坐标;为距离测量误差,分布服从pv为测距误差分布模型;
步骤B2:将产生的每个位置估计样本对应的权重值初始化为1/M,并将对应的随机方向值连同所对应的权重值一起组合为权重样本
步骤B3:将产生的所有权重样本连同的位置作为信息发送给nt,其中j=1,...,M。
4.根据权利要求1所述的移动自组织网络中高效协作定位方法,其特征在于,所述步骤C包括如下步骤:
步骤C1:当前目标节点nt对收到每一个权重样本进行权重值更新计算
ω r i t ( l j ) = ω r i t ( l j ) Π n r j ∈ Γ t r \ n r i p v ( d r j t ′ , d r j t ′ - d r j t ) ,
其中,与参考节点之间的实际距离,且 为nt之间带噪声的距离测量值;为了评估与nt的实际位置xt之间的偏差,将假设为nt之间的实际距离,并假设为nt的实际位置,则作为与nt之间的一个带噪声的距离测量值,即为的距离测量误差值,进而体现了从的角度对与xt之间偏差程度的估计;
步骤C2:nt根据已更新的样本权重值,将每个参考节点发送的样本分别进行筛选:针对由参考节点产生的M个权重样本,选择出个具有最大权重值的样本,其中的向下取整值;
则需要在某一个参考节点产生的样本中额外保留出个样本,记录相应被保留的样本中随机方向值,得到这些随机方向值对应的范围Sθ=[θminmax],并将在下一次迭代时针对nt生成位置估计样本时的随机方向取值范围设为Sθ
步骤C3:针对nt,将nt保留的M个位置估计样本,即进行权重值归一化处理,其中:k=1,...,M,表示第k个位置估计样本的二维位置坐标,表示第k个位置估计样本对应的随机方向值,表示第k个位置估计样本对应的权重值;归一化公式如下:
ω t ( l k ) = ω t ( l j ) Σ k = 1 M ω t ( l j ) ;
步骤C4:针对目标节点nt,对目标节点nt自身的置信度进行更新计算,并计算在当前迭代中的估计位置计算公式如下:
x ^ t ( l ) = Σ k = 1 M x t ( l k ) ω t ( l k ) ;
式中:表示第l次迭代中得到的对nt的估计位置。
5.根据权利要求1所述的移动自组织网络中高效协作定位方法,其特征在于,所述步骤D包括如下步骤:
步骤D1:若1<l<L,判断当前目标节点nt在连续两次迭代中的位置估计变化情况是否满足迭代终止条件
|| x ^ t ( l ) - x ^ t ( l - 1 ) || ≤ ϵ
其中,ε为预设的迭代终止阈值,表示第l-1次迭代中得到的对nt的估计位置;若在第l次迭代中,nt的估计位置满足了迭代终止条件,则迭代过程停止,即为nt的最终估计位置,成为已定位的目标节点,进入步骤D2继续执行;若l等于L,即达到了最大迭代次数,则终止迭代过程,并将第l次迭代中nt的估计位置作为其最终估计位置,流程结束;
步骤D2:设定l自增1,返回步骤B继续执行。
CN201610532034.4A 2016-07-07 2016-07-07 移动自组织网络中高效协作定位方法 Active CN106162869B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610532034.4A CN106162869B (zh) 2016-07-07 2016-07-07 移动自组织网络中高效协作定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610532034.4A CN106162869B (zh) 2016-07-07 2016-07-07 移动自组织网络中高效协作定位方法

Publications (2)

Publication Number Publication Date
CN106162869A true CN106162869A (zh) 2016-11-23
CN106162869B CN106162869B (zh) 2020-03-06

Family

ID=58062116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610532034.4A Active CN106162869B (zh) 2016-07-07 2016-07-07 移动自组织网络中高效协作定位方法

Country Status (1)

Country Link
CN (1) CN106162869B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134640A (zh) * 2017-12-12 2018-06-08 浙江大学 一种基于节点运动状态约束的协作定位系统和方法
CN108156658A (zh) * 2016-12-06 2018-06-12 华为技术有限公司 基于协作节点的定位方法、待定位节点及协作节点
CN108347694A (zh) * 2018-02-10 2018-07-31 北京理工大学 一种基于边界条件的节点定位方法及系统
CN108414974A (zh) * 2018-01-26 2018-08-17 西北工业大学 一种基于测距误差矫正的室内定位方法
CN108810840A (zh) * 2018-04-18 2018-11-13 天津大学 协作定位中基于efim和距离协作的节点选择方法
CN109951855A (zh) * 2019-01-18 2019-06-28 清华大学 利用非视距状态空间相关性的定位方法及装置
CN110267198A (zh) * 2019-06-26 2019-09-20 河南大学 一种基于双层因子图置信度传递的分布式协作定位方法
CN114501310A (zh) * 2022-01-17 2022-05-13 中国科学院国家授时中心 一种同时定位和跟踪的协同定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711244A (zh) * 2012-06-18 2012-10-03 北京中防视信科技有限公司 一种基于无线传感器网络的协作节点定位方法
CN103826298A (zh) * 2014-03-05 2014-05-28 浙江农林大学 一种协作式迭代优化的无线传感器网络定位计算方法
US20140256353A1 (en) * 2011-10-17 2014-09-11 Commissariat A L'energie Atomique Et Aux Ene Alt Channel-type supervised node positioning method for a wireless network
CN104394573A (zh) * 2014-11-26 2015-03-04 北京邮电大学 一种无线传感器网络协作定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140256353A1 (en) * 2011-10-17 2014-09-11 Commissariat A L'energie Atomique Et Aux Ene Alt Channel-type supervised node positioning method for a wireless network
CN102711244A (zh) * 2012-06-18 2012-10-03 北京中防视信科技有限公司 一种基于无线传感器网络的协作节点定位方法
CN103826298A (zh) * 2014-03-05 2014-05-28 浙江农林大学 一种协作式迭代优化的无线传感器网络定位计算方法
CN104394573A (zh) * 2014-11-26 2015-03-04 北京邮电大学 一种无线传感器网络协作定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VLADIMIR SAVIC, ET AL.: "Sensor localization using nonparametric generalized belief propagation in network with loops", 《IEEE 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION 2009》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823840B2 (en) 2016-12-06 2020-11-03 Huawei Technologies Co., Ltd. Collaborative node-based positioning method, to-be-positioned node, and collaborative node
CN108156658A (zh) * 2016-12-06 2018-06-12 华为技术有限公司 基于协作节点的定位方法、待定位节点及协作节点
CN108134640B (zh) * 2017-12-12 2020-11-06 浙江大学 一种基于节点运动状态约束的协作定位系统和方法
CN108134640A (zh) * 2017-12-12 2018-06-08 浙江大学 一种基于节点运动状态约束的协作定位系统和方法
CN108414974A (zh) * 2018-01-26 2018-08-17 西北工业大学 一种基于测距误差矫正的室内定位方法
CN108347694B (zh) * 2018-02-10 2020-03-17 北京理工大学 一种基于边界条件的节点定位方法及系统
CN108347694A (zh) * 2018-02-10 2018-07-31 北京理工大学 一种基于边界条件的节点定位方法及系统
CN108810840A (zh) * 2018-04-18 2018-11-13 天津大学 协作定位中基于efim和距离协作的节点选择方法
CN108810840B (zh) * 2018-04-18 2021-02-19 天津大学 协作定位中基于efim和距离协作的节点选择方法
CN109951855A (zh) * 2019-01-18 2019-06-28 清华大学 利用非视距状态空间相关性的定位方法及装置
CN109951855B (zh) * 2019-01-18 2020-09-29 清华大学 利用非视距状态空间相关性的定位方法及装置
CN110267198A (zh) * 2019-06-26 2019-09-20 河南大学 一种基于双层因子图置信度传递的分布式协作定位方法
CN110267198B (zh) * 2019-06-26 2021-03-30 河南大学 一种基于双层因子图置信度传递的分布式协作定位方法
CN114501310A (zh) * 2022-01-17 2022-05-13 中国科学院国家授时中心 一种同时定位和跟踪的协同定位方法

Also Published As

Publication number Publication date
CN106162869B (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
CN106162869A (zh) 移动自组织网络中高效协作定位方法
CN104853317B (zh) 一种WiFi室内定位中指纹库的构建及更新方法
CN103401922B (zh) 无线传感器网络中基于博弈方法的分布式定位装置与方法
CN106646356A (zh) 一种基于卡尔曼滤波定位的非线性系统状态估计方法
CN104363653B (zh) 一种消除环境噪声的被动式定位方法
CN103139804B (zh) 无线传感器网络的节能传播自适应rls分布式检测方法
CN106093854A (zh) 一种基于rssi测距的空气质量监测点网络定位的方法
CN104363649B (zh) 带有约束条件的ukf的wsn节点定位方法
CN104581943A (zh) 用于分布式无线传感网络的节点定位方法
CN115776724B (zh) 面向电磁频谱地图测绘的传感器节点布局优化方法及系统
CN105301560A (zh) 一种基于2点rssi的动态加权进化定位系统及方法
CN104144499A (zh) 基于rssi向量相近度和广义逆的无线传感器网络定位方法
CN113411213B (zh) 基于物联网的自组网拓扑控制方法及协同监测方法
CN104394573B (zh) 一种无线传感器网络协作定位方法
CN107367710A (zh) 一种基于时延和多普勒的分布式自适应粒子滤波直接跟踪定位方法
CN106714301A (zh) 一种无线定位网络中的载波优化方法
CN105488581B (zh) 一种基于模拟退火算法的交通需求量估计方法
Yan et al. Accurate analytical-based multi-hop localization with low energy consumption for irregular networks
CN104080169B (zh) 一种水下无线传感器网络动态自适应定位方法
Jia et al. On the optimal performance of collaborative position location
CN102970677B (zh) 基于侦听的Gossip平均共识技术的无线通信方法
Numan et al. DNN-based indoor fingerprinting localization with WiFi FTM
CN103152751B (zh) 无线传感器网络的节能传播自适应lms分布式检测方法
Jia et al. A high accuracy localization algorithm with DV-Hop and fruit fly optimization in anisotropic wireless networks
Saha et al. An evolved algorithm for underwater acoustic sensor node localization enhancement using reference node

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant