CN106153710A - 一种测定石林形成年龄及反演江河形成时间的方法 - Google Patents

一种测定石林形成年龄及反演江河形成时间的方法 Download PDF

Info

Publication number
CN106153710A
CN106153710A CN201610528912.5A CN201610528912A CN106153710A CN 106153710 A CN106153710 A CN 106153710A CN 201610528912 A CN201610528912 A CN 201610528912A CN 106153710 A CN106153710 A CN 106153710A
Authority
CN
China
Prior art keywords
age
time
sampled point
rivers
stone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610528912.5A
Other languages
English (en)
Other versions
CN106153710B (zh
Inventor
白晓永
田义超
马凤杰
许燕
吴路华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geochemistry of CAS
Original Assignee
Institute of Geochemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geochemistry of CAS filed Critical Institute of Geochemistry of CAS
Priority to CN201610528912.5A priority Critical patent/CN106153710B/zh
Publication of CN106153710A publication Critical patent/CN106153710A/zh
Application granted granted Critical
Publication of CN106153710B publication Critical patent/CN106153710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种测定石林形成年龄及反演江河形成时间的方法,它包括:步骤1、选取待测河段A和石柱B;步骤2、在石柱B上确定采样点;不同高程等距离采样,从石柱底部开始每10cm为一个采样点,到石柱最上端时最后一段△hx<10cm时,如△hx>=3cm则需设立采样点;采样点为h0、h1、h2、h3……hx;步骤3、采集各采样点样品;步骤4、各采样点样品年代的测定;步骤5、根据各采样点测定的年代得到石柱形成时间和江河从开始发育到江河形成时间;解决了现有技术对河流形成时间的测定误差大,测量不准确等技术问题。

Description

一种测定石林形成年龄及反演江河形成时间的方法
技术领域:
本发明属于石林形成年龄及反演江河形成时间测定技术,尤其涉及一种测定石林形成年龄及反演江河形成时间的方法。
背景技术:
现在的研究中,有利用河流下切形成的河流阶地来测河流的形成时间,通过宇宙射线成因10Be、26Al及释光、古地磁的测年技术,可得到河流阶地形成演化的时段,但被切出的河流阶地被平衡的河流系统水量、搬运物质、河流纵剖面梯度等被扰乱,并且河流阶地80%的是那些质地不坚硬、易被风化、易被水蚀和被为生物松动的阶地层面,各层面的沉积物易随水流失或随水流进入不同的层面,各种不同年代的沉积物发生混合,导致河流阶地形成年代的测定不准确。再有就是利用层状洞穴或穿洞中的暗河沉积物-砂砾石层对河流的形成时间进行测定,所用的技术为ESR测年研究,洞穴的研究采样困难且危险,有些洞穴是由于特殊的地貌和钙质岩而形成,并非是河流的冲击和侵蚀后形成,有些层状洞穴可能在江河形成之前就已经形成,导致江河形成时间的判断错误。还有学者同样利用了钙华测试了石林的初始发育年龄,但他们就只是简单地利用钙华年代测试年的方法测出石林的初始发育,没有充分地利用石林的形成年龄来反演江河的形成时间或反演过去一些突发事件的发生。采样的时候是取位于水平溶洞内或干涸陡壁上凸出物的下方部位,虽然他的采样可以排除部分干扰,但难免一些流水流过造成的测量结果的影响。
发明内容:
本发明要解决的技术问题:提供一种测定石林形成年龄及反演江河形成时间的方法,以解决现有技术对河流形成时间的测定误差大,测量不准确等技术问题。
本发明技术方案:
一种测定石林形成年龄及反演江河形成时间的方法,它包括:
步骤1、选取待测河段A和石柱B;
步骤2、在石柱B上确定采样点;不同高程等距离采样,从石柱底部开始每10cm为一个采样点,到石柱最上端最后一段△hx<10cm且△hx>=3cm则设立采样点;采样点为h0、h1、h2、h3……hx
步骤3、采集各采样点样品;
步骤4、各采样点样品年代的测定;
步骤5、根据各采样点测定的年代得到石柱形成时间。
它还包括步骤6、根据石林形成时间得到江河从开始发育到江河形成时间;
步骤3所述的采集各采样点样品时,均要钻开表层石柱1cm后进行采样。
步骤4所述的各采样点样品年代的测定方法包括36Cl沉积年代或钙华沉积年代,利用加速器质谱AMS技术测定36Cl沉积年代,利用不平衡铀系法、14C法、热释光法或ESR法测定钙华沉积年代。步骤6所述根据各采样点测定的年代得到石柱形成时间的方法包括:
步骤5.1、根据每段高程的数据得出△h1=h1-h0,△h2=h2-h1,△h3=h3-h2……△hx=hx-hx-1
步骤5.2、不同高程处采样测得的时间年限为:h0为t0,h1为t1,h2为t2,h3为t3,hx为tx
步骤5.3、不同高程段对应时间计算,△t1=t1-t0。△t2=t2-t1,△t3=t3-t2……△tx=tx-tx-1
步骤5.4、当其中一段或多段石柱形成年龄△t小于5年,则判断为当时发生突发事件;
步骤5.5、当各段石柱形成年龄△t小于5年,则此段石柱形成的时间便是河流形成的时间;
步骤5.6、当各段石柱形成年龄△t大于5年,则石柱的年龄便是江河从开始发育到江河形成的时间。
本发明的有益效果:
本发明特点:第一,能测出整个石林的初始发育年龄;第二,可以测出某段石林生长速率;第三,能够反演过去有还是没有突发事件的发生;第四,不仅可以测样品中的钙华沉积年代来确定石林的年龄,还可以测样品中的36Cl沉积年代来确定石林的年龄,两个的测量结果进行对比后还可以判断石林的形成年龄是否准确;第五,在样品的采集过程中,本发明的采样点均设在钻开石柱1cm深处采样,既考虑了各点的可比性,也排除了一些水流的流过带来的测量结果的影响。第六,石林质地坚硬,不易被风化水蚀,易保存,易测量。
本发明不仅可测算石林,整个石林或某段时间内增长的石林的形成年龄,而且可以反演江河的形成时间。还可以反映过去自然突发事件的发生,如反演具有周期性的自然突发事件的发生,给人类充分的时间为预防突发事件的发生做准备,减少突发事件带来的危害和破坏;解决了现有技术对河流形成时间的测定误差大,测量不准确等技术问题。
说明书附图:
图1为本发明对采样点标注示意图。
具体实施方式:
一种测定石林形成年龄及反演江河形成时间的方法,它包括:
步骤1、选取待测河段A和石柱B;
步骤2、在石柱B上确定采样点;不同高程等距离采样,从石柱底部开始每10cm为一个采样点,到石柱最上端时最后一段△hx<10cm时,如△hx>=3cm则需设立采样点;采样点为h0、h1、h2、h3……hx;△hx<3cm则不设置采样点。
步骤3、采集各采样点样品;
步骤3所述的采集各采样点样品时,均要钻开表层石柱1cm后进行采样。目的是为了能采集到准确反映石林年代的样品,避开外界因素的干扰采样点
步骤4、各采样点样品年代的测定;
步骤4所述的各采样点样品年代的测定方法包括36Cl沉积年代或钙华沉积年代,利用加速器质谱AMS技术测定36Cl沉积年代,利用不平衡铀系法、14C法、热释光法或ESR法测定钙华沉积年代。
测定原理:36Cl的宇宙成因形成,当地球表面的36Cl被沉积埋藏而构成“封闭体系”之后,36Cl的计时时钟立刻启动,36Cl沉积年龄测定的机理也由此产生。钙华样是地表或地下水中载带的HCO- 3离子,在温度、压力或流动状态改变时,使CO2挥发,析出碳酸盐沉淀,同时将环境中的放射性元素带入钙华中,停止与与环境中的放射性元素交换,处于封闭的地球化学体系,钙华沉积年代测定机理也由此产生。
步骤5、根据各采样点测定的年代得到石柱形成时间。
步骤6、根据石柱形成时间可得到江河从开始发育到江河形成时间;
步骤6所述根据各采样点测定的年代得到石柱形成时间和江河从开始发育到江河形成时间其方法包括:
步骤5.1、根据每段高程的数据得出△h1=h1-h0,△h2=h2-h1,△h3=h3-h2……△hx=hx-hx-1
步骤5.2、不同高程处采样测得的时间年限为:h0为t0,h1为t1,h2为t2,h3为t3,hx为tx
步骤5.3、不同高程段对应时间计算,△t1=t1-t0。△t2=t2-t1,△t3=t3-t2……△tx=tx-tx-1
步骤5.4、当其中一段或多段石柱形成年龄△t小于5年,则判断为当时发生突发事件;
步骤5.5、当各段石柱形成年龄△t小于5年,则此段石柱形成的时间便是河流形成的时间;
步骤5.6、当各段石柱形成年龄△t大于5年,则石柱的年龄便是江河从开始发育到江河形成的时间。

Claims (5)

1.一种测定石林形成年龄及反演江河形成时间的方法,它包括:
步骤1、选取待测河段A和石柱B;
步骤2、在石柱B上确定采样点;不同高程等距离采样,从石柱底部开始每10cm为一个采样点,到石柱最上端最后一段△hx<10cm且△hx>=3cm则设立采样点;采样点为h0、h1、h2、h3……hx
步骤3、采集各采样点样品;
步骤4、各采样点样品年代的测定;
步骤5、根据各采样点测定的年代得到石柱形成时间。
2.根据权利要求1所述的一种测定石林形成年龄及反演江河形成时间的方法,其特征在于:它还包括步骤6、根据石林形成时间得到江河从开始发育到江河形成时间。
3.根据权利要求1所述的一种测定石林形成年龄及反演江河形成时间的方法,其特征在于:步骤3所述的采集各采样点样品时,均要钻开表层石柱1cm后进行采样。
4.根据权利要求1所述的一种测定石林形成年龄及反演江河形成时间的方法,其特征在于:步骤4所述的各采样点样品年代的测定方法包括36Cl沉积年代或钙华沉积年代,利用加速器质谱AMS技术测定36Cl沉积年代,利用不平衡铀系法、14C法、热释光法或ESR法测定钙华沉积年代。
5.根据权利要求2所述的一种测定石林形成年龄及反演江河形成时间的方法,其特征在于:步骤6所述根据各采样点测定的年代得到石柱形成时间的方法包括:
步骤5.1、根据每段高程的数据得出△h1=h1-h0,△h2=h2-h1,△h3=h3-h2……△hx=hx-hx-1
步骤5.2、不同高程处采样测得的时间年限为:h0为t0,h1为t1,h2为t2,h3为t3,hx为tx
步骤5.3、不同高程段对应时间计算,△t1=t1-t0。△t2=t2-t1,△t3=t3-t2……△tx=tx-tx-1
步骤5.4、当其中一段或多段石柱形成年龄△t小于5年,则判断为当时发生突发事件;
步骤5.5、当各段石柱形成年龄△t小于5年,则此段石柱形成的时间便是河流形成的时间;
步骤5.6、当各段石柱形成年龄△t大于5年,则石柱的年龄便是江河从开始发育到江河形成的时间。
CN201610528912.5A 2016-07-07 2016-07-07 一种测定石林形成年龄及反演江河形成时间的方法 Active CN106153710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610528912.5A CN106153710B (zh) 2016-07-07 2016-07-07 一种测定石林形成年龄及反演江河形成时间的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610528912.5A CN106153710B (zh) 2016-07-07 2016-07-07 一种测定石林形成年龄及反演江河形成时间的方法

Publications (2)

Publication Number Publication Date
CN106153710A true CN106153710A (zh) 2016-11-23
CN106153710B CN106153710B (zh) 2020-09-18

Family

ID=58061437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610528912.5A Active CN106153710B (zh) 2016-07-07 2016-07-07 一种测定石林形成年龄及反演江河形成时间的方法

Country Status (1)

Country Link
CN (1) CN106153710B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106846475A (zh) * 2017-02-08 2017-06-13 长江水利委员会长江科学院 一种河流历史形态数字复原方法
CN110161215A (zh) * 2019-06-06 2019-08-23 中国科学院地球环境研究所 一种利用大气成因10Be和26Al双核素联用比值法测定黄土沉积物年龄的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994533B1 (ko) * 2010-03-10 2010-11-15 주식회사 오션 자연석을 이용한 친환경 바다 숲 조성방법
CN103575864A (zh) * 2013-11-07 2014-02-12 合肥工业大学 一种韧性剪切带形成年代的界定方法
CN106198535A (zh) * 2015-05-04 2016-12-07 中国石油天然气股份有限公司 碳酸盐矿物的鉴定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994533B1 (ko) * 2010-03-10 2010-11-15 주식회사 오션 자연석을 이용한 친환경 바다 숲 조성방법
CN103575864A (zh) * 2013-11-07 2014-02-12 合肥工业大学 一种韧性剪切带形成年代的界定方法
CN106198535A (zh) * 2015-05-04 2016-12-07 中国石油天然气股份有限公司 碳酸盐矿物的鉴定方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PENG JIAN等: "Relating aerial erosion, soil erosion and sub-soil erosion to the evolution of Lunan Stone Forest,China", 《EARTH SURFACE PROCESSES AND LANDFORMS》 *
彭建: "中国石林发育研究进展", 《中国岩溶》 *
李玉辉: "滇中路南石林的发育年代", 《中国区域地质》 *
梁永宁: "Age Measurement and significance of calcareous Tufa of Lunan Stone forest ,yunnan,Chian", 《云南地质》 *
池永翔等: "基于测年法的永安石林形成年代及发育演化过程研究", 《福州大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106846475A (zh) * 2017-02-08 2017-06-13 长江水利委员会长江科学院 一种河流历史形态数字复原方法
CN106846475B (zh) * 2017-02-08 2018-03-23 长江水利委员会长江科学院 一种河流历史形态数字复原方法
WO2018145557A1 (zh) * 2017-02-08 2018-08-16 长江水利委员会长江科学院 一种河流历史形态数字复原方法
CN110161215A (zh) * 2019-06-06 2019-08-23 中国科学院地球环境研究所 一种利用大气成因10Be和26Al双核素联用比值法测定黄土沉积物年龄的方法

Also Published As

Publication number Publication date
CN106153710B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
Reheis et al. Pluvial lakes in the Great Basin of the western United States—a view from the outcrop
Bogena et al. A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes
Li et al. Optical dating of Holocene dune sands from the Hulun Buir Desert, northeastern China
Luetscher et al. Holocene glacier history from alpine speleothems, Milchbach cave, Switzerland
Stevens et al. Abrupt last glacial dust fall over southeast England associated with dynamics of the British-Irish ice sheet
Bhatia et al. Seasonal evolution of water contributions to discharge from a Greenland outlet glacier: insight from a new isotope-mixing model
CN106846475B (zh) 一种河流历史形态数字复原方法
CN106770928B (zh) 生态脆弱矿区植被约束下地下水位变化阈限的测定方法
Mecchia et al. Geochemistry of surface and subsurface waters in quartz-sandstones: significance for the geomorphic evolution of tepui table mountains (Gran Sabana, Venezuela)
Litt et al. Hydrologic tracers and thresholds: A comparison of geochemical techniques for event-based stream hydrograph separation and flowpath interpretation across multiple land covers in the Panama Canal Watershed
Groves Hydrological methods
Gonzalez-Lemos et al. Holocene flood frequency reconstruction from speleothems in northern Spain
Harrison et al. Glaciar León, Chilean Patagonia: Late-Holocene chronology and geomorphology
Bateman et al. The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues
CN106153710A (zh) 一种测定石林形成年龄及反演江河形成时间的方法
Gómez-Paccard et al. Environmental response of a fragile, semiarid landscape (Bardenas Reales Natural Park, NE Spain) to Early Holocene climate variability: A paleo-and environmental-magnetic approach
CN106932842A (zh) 一种基于伽玛全谱方法的降雨定量信息化实时监测方法
Adams et al. Exhumation and incision history of the Lahul Himalaya, northern India, based on (U–Th)/He thermochronometry and terrestrial cosmogenic nuclide methods
Malík et al. Recharge, delayed groundwater-level rise and specific yield in the Triassic karst aquifer of the Kopa Mountain, in the Western Carpathians, Slovakia
Lyon et al. Monitoring the timing of snowmelt and the initiation of streamflow using a distributed network of temperature/light sensors
CN108196318B (zh) 积雪深度确定方法
Faraji et al. Accurate chronological construction for two young stalagmites from the tropical South Pacific
Fujita et al. Glaciological observations on the plateau of Belukha Glacier in the Altai Mountains, Russia from 2001 to 2003
Salley et al. Hydrology of a hydroperiod: Assessing recharge to the High Plains aquifer through a playa in western Kansas
Miklavič et al. Holocene relative sea level history from phreatic overgrowths on speleothems (POS) on Minami Daito Island, Northern Philippine Sea

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant