CN106124166B - 一种大口径光栅衍射效率的测量装置和测量方法 - Google Patents

一种大口径光栅衍射效率的测量装置和测量方法 Download PDF

Info

Publication number
CN106124166B
CN106124166B CN201610427140.6A CN201610427140A CN106124166B CN 106124166 B CN106124166 B CN 106124166B CN 201610427140 A CN201610427140 A CN 201610427140A CN 106124166 B CN106124166 B CN 106124166B
Authority
CN
China
Prior art keywords
optical
heavy
grating
diffraction efficiency
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610427140.6A
Other languages
English (en)
Other versions
CN106124166A (zh
Inventor
邵建达
刘世杰
王圣浩
王微微
张志刚
周游
徐天柱
鲁棋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201610427140.6A priority Critical patent/CN106124166B/zh
Publication of CN106124166A publication Critical patent/CN106124166A/zh
Application granted granted Critical
Publication of CN106124166B publication Critical patent/CN106124166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明专利提出了一种大口径光栅衍射效率的测量装置和测量方法,包括光源、单色器、传输光纤、分束镜、二维扫描机构、样品台、参考光探测器和测试光探测器,根据测量光强度和参考光光强的比值,以及衍射光强度和参考光强度的比值,计算得到大口径光栅单个位置处的衍射效率值,接着利用二维扫描机构在水平和垂直方向扫描光纤测量头,依次得到大口径光栅各个位置处的衍射效率值,从而完成大口径光栅衍射效率的测量。本发明实现了大口径光栅衍射效率的测量,降低了测量系统的构建成本,消除了测量过程中的安全隐患,显著加快了大口径光栅衍射效率的测量速度,同时能保证大口径光栅衍射效率的测量数据具有较好的重复性和复现性。

Description

一种大口径光栅衍射效率的测量装置和测量方法
技术领域
本发明涉及光栅衍射效率的测量领域,特别是一种大口径光栅衍射效率的测量装置和测量方法。
背景技术
大口径光栅(对角线尺寸达到米级)在基于惯性约束核聚变的高功率啁啾脉冲放大系统中、在大口径天文望远镜中、在精密位移测量中、在纳米压印光刻以及其他诸多科学技术领域中起着至关重要的作用,而衍射效率是大口径光栅最重要的性能指标之一,大口径内衍射效率的准确测量对于评价大口径光栅的性能、改进大口径光栅的加工工艺有着重要的意义。
目前国际上普遍采用的大口径光栅衍射效率测量装置的光路结构如图1所示[1,2],主要包括光源1、单色器2,光阑3、分束镜4、偏振片5、参考光探测器6、测试光探测器7、样品二维扫描机构8和待测光栅9,图2所示是样品二维扫描机构8的三维结构示意图,主要由样品放置台10、竖直方面的光学精密位移台11和水平方向的光学精密位移台12组成,基于该测量系统,大口径光栅衍射效率测量的主要步骤如下:
①使测试光直接被测试光探测器收集,然后同时测量测试光的强度和参考光的强度,计算测试光强和参考光强的比值。
②使光栅的衍射光直接被测试光探测器收集,然后同时测量衍射光的强度和参考光的强度,计算衍射光强和参考光强的比值。
③根据步骤①获得的测试光强和参考光强的比值,和步骤②得到的衍射光强和参考光强的比值,计算大口径光栅在单个位置处的衍射效率值。
④利用样品二维扫描机构,移动大口径光栅样品到下一个测量点的位置,重复步骤②和③,计算大口径光栅在下一个测量位置处的衍射效率值。
⑤重复步骤④,使扫描路径覆盖大口径光栅的整个工作区域,从而完成大口径光栅衍射效率的测量。
这种测量大口径光栅衍射效率装置和方法的主要缺点是:
(1)测量系统构建成本较高。由于系统的是通过二维扫描大口径光栅来实现衍射效率测量的,而大口径光栅的对角线尺寸往往在米量级左右,重量往往在200公斤以上,为了实现超重负载二维扫描的功能,二维扫描机械机构需要花费较高的成本。
(2)测量过程安全隐患较大。测量过程中由于需要持续不断的二维扫描大口径光栅样品,而大口径光栅的对角线尺寸往往在米量级左右,重量往往在200公斤以上,因而在二维扫描超重负载的测量过程中,具有较大的安全隐患。
(3)测量速度较慢,工作效率低。测量过程中由于需要二维扫描大口径光栅样品,而大口径光栅的对角线尺寸往往在米量级左右,重量往往在200公斤以上,因而在二维移动大口径光栅的时候,需要非常缓慢平稳的移动光栅(加速度、最高速度和减速度需要控制的非常小),这使得大口径光栅衍射效率的测量时间非常漫长,如测量一块尺寸大小为430mm×350mm的光栅的衍射效率,需要长达6个多小时的时间[1],在长时间的测量过程中,测量环境会发生很多未知的变化,进而会带来不可忽略的测量误差,同时测量时间较长也降低了测量系统的工作效率。
(4)测试重复性和复现性较差。测量过程中由于需要二维扫描大口径光栅样品,而大口径光栅的对角线尺寸往往在米量级左右,重量往往在200公斤以上,因而在重复性扫描过程中,大光栅的重复定位精度较差,进而使得测试数据的重复性和复现性难以得到保障。
参考文献:
[1]X.W.Zhou,X.Wang,Z.K.Liu,X.D.Xu,and S.J.Fu,"A new System forMeasuring the Diffraction Efficiency of Large Aperture Gratings,"5thInternational Symposium on Advanced Optical Manufacturing And TestingTechnologies:Design,Manufacturing,And Testing Of Micro-And Nano-OpticalDevices And Systems,vol.7657,2010.
[2]X.W.Zhou,Y.Liu,X.D.Xu,K.Q.Qiu,Z.K.Liu,Y.L.Hong,et al.,"Diffractionefficiency measurement of large aperture multilayer dielectric grating andits application in the fabrication process,"Acta Physica Sinica,vol.61,Sep2012.
发明内容
为了解决现有大口径光栅衍射效率测量装置和方法中存在的问题,本发明提供了一种轻巧便捷实现大口径光栅衍射效率测量的装置和方法。
本发明的技术解决方案如下:
一种大口径光栅衍射效率的测量装置,包括光源、单色器、光阑、聚焦镜、光纤耦合装置、传输光纤、二维扫描机构、测试光探测器、供待测光栅放置的样品台,以及固定在所述的二维扫描机构上的光纤准直镜、分束镜、参考光探测器和偏振片;
所述的光源发出的光束经所述的单色器形成测量所需波长的单色光束,通过光阑过滤掉单色光束中的杂散光,同时调节光束口径大小后经所述的聚焦镜聚焦后的光束通过光纤耦合装置进入到传输光纤中,经传输光纤的传输后,在传输光纤出射端经过光纤准直镜的准直作用后成为平行光束,该平行光束经过分束镜形成一束参考光和一束测量光,所述的参考光照射在参考光探测器上,所述的测试光经过偏振片形成测量所需的线偏振光,并照射在待测光栅上,待测光栅固定在样品台上。
所述的二维扫描机构由载物台、光学精密旋转台、竖直方向的光学精密位移台和水平方向的光学精密位移台组成,竖直方向的光学精密位移台安装在水平方向的光学精密位移台上,并可在水平方向移动,光学精密旋转台安装在竖直方向的光学精密位移台上并可在竖直方向移动,载物台安装在光学精密旋转台上,并可绕垂直方向旋转;
所述的测试光探测器和参考光探测器分别经数据采集器与计算机相连。所述的水平方向的光学精密位移台、竖直方向的光学精密位移台和光学精密旋转台分别经步进电机控制器与计算机相连。
工作原理:
在测量过程中,首先使测试光束直接被测试光探测器收集,接着用数据采集器同时采集参考光和测试光的光强信号值,分别记为I1和I2,然后把待测光栅放置于测试光路中,使衍射光束照射在测试光探测器上,利用数据采集器同时采集参考光和衍射光的光强信号值,分别记为则大口径光栅样品在该点位置处的衍射效率η可按照公式(1.1)计算得到:
按照图5所示的扫描路径完成大光栅样品全口径内衍射效率的测量,根据公式(1.2)计算大口径内光栅衍射效率的平均值
其中为大口径内光栅衍射效率的平均值,ηi,j为单点位置处的衍射效率,N为水平方向的采样点数,M为竖直方向的采样点数。
根据如下公式(1.3)计算大口径内光栅衍射效率的峰谷值PV:
PV=ηmaxmin (1.3)
其中PV为大口径内光栅衍射效率峰谷值,ηmax为大口径内光栅衍射效率的最大值,ηmin为大口径内光栅衍射效率的最小值。
根据公式(1.4)计算大口径内光栅衍射效率的相对峰谷值ξ:
其中为大口径内光栅衍射效率的相对峰谷值,PV为大口径内光栅衍射效率的峰谷值,为大口径内光栅衍射效率的平均值。
根据公式(1.5)计算大口径内光栅衍射效率的标准差σ:
其中σ为大口径内光栅衍射效率的标准差,为大口径内光栅衍射效率的平均值,ηi,j为单点位置处的衍射效率,N为水平方向的采样点数,M为竖直方向的采样点数。
根据公式(1.6)计算大口径内光栅衍射效率的标准差率χ:
其中χ为大口径内光栅衍射效率的标准差率,σ为大口径内光栅衍射效率的标准差,为大口径内光栅衍射效率的平均值。
一种大口径光栅衍射效率的测量方法,包括以下步骤:
①通过旋转光学精密旋转台以及细微调节准直镜上的俯仰左右偏摆量,使测量激光束正入射在待测光栅上(结合带小孔的纸片,根据反射光斑与入射光斑是否重合进行判断),然后对光学精密旋转台的坐标进行清零操作。
②转动光学精密旋转台到一定的角度,使测量激光照射在待测光栅上,并使衍射光斑打在测试光探测器上,在光栅平面内调节样品台的倾斜角度,使入射光斑和衍射光斑的高度相等,从而使光栅的刻线垂直于入射面。
③通过调节样品台的俯仰偏摆量,使二维扫描机构在水平和竖直方向反复扫描光栅的整个待测量区域的过程中,衍射光斑在参测试光探测器上的位置基本保持不变。
④使光学精密旋转台的坐标回归零位,并结合光纤准直镜上的俯仰偏摆调节旋钮,使入射激光光线正入射在待测光栅上(结合带小孔的纸片,根据反射光斑与入射光斑是否重合进行判断),然后再按照测量所需要的入射角,旋转二维扫描机构上的光学精密旋转台到对应的角度方向。
⑤将测试光探测器从二维扫描机构的载物台上拆下,并固定在样品台上,使测试光直接照射在测试光探测器上,测试光探测器和偏振片之间的距离要和测量光栅衍射效率时两者之间的距离相等,同时使探测器的接收面垂直于入射光线。
⑥用遮光板挡住激光光束,对测试光探测器和参考光探测器进行暗场背景校正。
⑦打开遮光板,对测试光探测器和参考光探测器进行明场背景校正。
⑧把测试光探测器固定在二维扫描机构的载物台上,使衍射光斑打在测试光探测器的接收面上,并使衍射光束垂直于测试光探测器的感应面。移动二维扫描机构竖直方向的光学精密位移台和水平方向的光学精密位移台,使入射光斑照射在待测光栅的起始点或者是标记位置上。
⑨利用参考光探测器和测试光探测器同时测量参考光和衍射光的强度,计算衍射光强和参考光强的比值。根据步骤⑥和步骤⑦获得的暗场背景信号和明场背景信号,计算大口径光栅在该测量位置处的衍射效率值。
⑩利用二维扫描机构竖直方向的光学精密位移台和水平方向的光学精密位移台,移动入射光斑到大口径光栅下一个测量点的位置,重复步骤⑨,计算大口径光栅在下一个测量位置处的衍射效率值。
重复步骤⑩,使扫描路径覆盖大口径光栅的整个工作区域,从而完成大口径光栅衍射效率的测量。
本发明的优点:
与传统大口径光栅衍射效率的测量技术相比,本发明专利提出的测量装置和测量方法主要具有以下优点:
(1)测量系统构建成本较低。由于系统的是通过二维扫描轻巧便捷的光纤测量头来实现大口径光栅衍射效率测量的,与传统测量技术中采用的二维扫描大口径光栅(对角线尺寸在米量级,重量200公斤以上)的方案相比,本发明专利采用的测量系统的构建成本得到了大大的降低。
(2)测量过程安全性较高。由于系统的是通过二维扫描轻巧便捷的光纤测量头来实现大口径光栅衍射效率测量的,与传统测量技术中采用的二维扫描大口径光栅(对角线尺寸在米量级,重量200公斤以上)的方案相比,在基于本发明专利的扫描测量过程中,安全性隐患较低。
(3)测量速度较快。由于系统是通过二维扫描轻巧便捷的光纤头来实现大口径光栅衍射效率测量的,与传统测量技术中采用的二维扫描大口径光栅(对角线尺寸在米量级,重量200公斤以上)的方案相比,基于本发明专利的扫描测量速度较快,面对同样尺寸大小的光栅样品,在选取同样采样点数的情况下,大口径光栅衍射效率测量所需要的时间可以降低到传统方法的30%以下。
(4)测试数据重复性和复现性较好。由于系统是通过二维扫描轻巧便捷的光纤头(对角线尺寸在20厘米左右,重量4公斤左右)来实现大口径光栅衍射效率测量的,与传统测量技术中采用的二维扫描大口径光栅(对角线尺寸在米量级,重量200公斤以上)的方案相比,在大口径光栅衍射效率数据重复性和复现性的测量过程中,光纤测量头具有较高的重复定位精度,进而能够保证较好的测试重复性和复现性。
附图说明
图1是利用传统方法测量大口径光栅衍射效率装置的光路结构图。
图2是传统测量系统中样品二维扫描机构的三维结构图。
图3是本发明中大口径光栅衍射效率装置的光路结构图。
图4是本发明中所采用的二维扫描机构的三维结构图。
图5是本发明采用的用于大口径光栅衍射效率测量的二维扫描路线示意图。
图6是测量得到的一个大口径光栅衍射效率的轮廓图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明,但不应以此限制本发明的保护范围。
实施例:
一种大口径光栅衍射效率测量的装置,其光路结构如图3所示,该装置包括光源13,单色器14,光阑15,聚焦镜16,光纤耦合装置17,传输光纤18,光纤准直镜19,分束镜20,参考光探测器21,二维扫描机构22,测试光探测器23,偏振片24,样品台25和待测光栅26。图4所示是二维扫描机构22的三维结构图,主要由载物台27、光学精密旋转台28、竖直方向的光学精密位移台29和水平方向的光学精密位移台30组成。
光源13发出的光束经过单色器14后形成测量所需波长的单色光束,光阑15用于过滤掉单色光束中的杂散光,同时可用于调节光束口径的大小,聚焦镜16起到对平行光束进行聚焦的作用,聚焦后的光束经过光纤耦合装置17后进入到传输光纤18中,经过光纤18的传输后,在光纤出射端经过光纤准直镜19的准直作用后成为平行光束(光纤准直镜19上安装有俯仰偏摆调节旋钮),平行光束经过分束镜20后形成一束参考光和一束测量光,参考光束照射在参考光探测器21上,测试光束经过偏振片24后形成测量所需的线偏振光,线偏振光照射在待测光栅26上,待测光栅26固定在样品台25上,经光栅衍射的衍射光束被测试光探测器23收集,准直镜19、分束镜20、参考光探测器21、测试光探测器23和偏振片24均固定在载物台27上,二维扫描机构22用于在水平和竖直两个方向分别移动准直镜19、分束镜20、参考光探测器21、测试光探测器23和偏振片24,图5所示为大口径光栅衍射效率测量时采用的二维扫描路线示意图。
光源13采用FemtoPower FP1060-20高功率超快光纤激光器,可出射宽波段的复色连续光,单色器14采用Photon etc公司的光栅单色器,其波长工作范围为500nm—1200nm,光阑15采用Thorlabs公司的ID20接杆安装式可变光阑,聚焦镜16和准直镜19均由Thorlabs公司定制而成,光纤耦合装置17、样品台25均由上海联谊光纤激光器公司加工制作,样品台25具有俯仰偏摆调节功能,传输光纤18采用Nufern芯层数值孔径为0.12的单模光纤,偏振片24采用Thorlabs公司的LPVIS050-MP2形线偏振片,消光比可达到10000以上,分束器20采用Thorlabs公司的CM1-BP145B2笼式立方体安装的薄膜分束器,分束比近似等于1:1,参考光探测器21和测试光探测器23均采用卓立汉光的Dsi200硅光电二极管探测器。图4是二维扫描机构22的三维结构图,载物台27、光学精密旋转台28、竖直方向的光学精密位移台29、水平方向的光学精密位移台30均由上海联谊光纤激光器公司加工制作。
图6所示是基于本实施例的测量系统测量得到的一个大口径光栅衍射效率的轮廓图,其中大口径光栅的固有参数以及大口径光栅衍射效率的测试条件为:(1)光栅长度=400mm,(2)光栅宽度=200mm,(3)光栅周期=574.7nm,(4)测试波长=1054nm,(5)入射角=70°,(6)偏振态=S,(7)衍射级次=-1级。大口径光栅衍射效率测量的扫描参数为:(1)水平运动步长=10mm,(2)水平暂停时间=200ms,(3)水平采样点数=38,(4)竖直运动步长=-10mm,(5)竖直暂停时间=200ms,(6)竖直采样点数=18,(7)单点采样次数=5。大口径光栅衍射效率测量的数值统计结果为:(1)平均衍射效率=94.35%,(2)衍射效率最大值=95.40%,(3)衍射效率最小值=92.62%,(4)衍射效率峰谷值=2.781%,(5)衍射效率相对峰谷值=2.95%,(6)衍射效率标准差=0.0057,(7)衍射效率标准差率=0.61%。
表1所示为基于实施例1的大口径光栅衍射效率的测量系统,所进行的重复性实验的测量结果。从表1中可以看出,在两次大口径光栅衍射效率测量的数值统计结果中,衍射效率平均值的相对偏差为0.049%,衍射效率最大值的相对偏差为0.015%,衍射效率最小值的相对偏差为0.181%,衍射效率峰谷值的相对偏差为0.111%,衍射效率相对峰谷值的相对偏差为0.062%,衍射效率标准差的相对偏差为0.642%,衍射效率标准差率的相对偏差为0.689%,所有采样点衍射效率的相对偏差为0.101%(其计算公式为:),这说明本实施例中的大口径光栅衍射效率测量系统具有较高的数据重复性和复现性。
表1.大口径光栅衍射效率的重复性测量结果
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种大口径光栅衍射效率的测量装置,其特征在于,包括光源(13)、单色器(14)、光阑(15)、聚焦镜(16)、光纤耦合装置(17)、传输光纤(18)、二维扫描机构(22)、测试光探测器(23)、供待测光栅(26)放置的样品台(25),以及固定在所述的二维扫描机构(22)上的光纤准直镜(19)、分束镜(20)、参考光探测器(21)和偏振片(24);
所述的光源(13)发出的光束经所述的单色器(14)形成测量所需波长的单色光束,通过光阑(15)过滤掉单色光束中的杂散光,同时调节光束口径大小后经所述的聚焦镜(16)聚焦后的光束通过光纤耦合装置(17)进入到传输光纤(18)中,经传输光纤(18)的传输后,在传输光纤出射端经过光纤准直镜(19)的准直作用后成为平行光束,该平行光束经过分束镜(20)形成一束参考光和一束测量光,所述的参考光照射在参考光探测器(21)上,所述的测试光经过偏振片(24)形成测量所需的线偏振光,并照射在待测光栅(26)上,待测光栅(26)固定在样品台(25)上。
2.根据权利要求1所述的大口径光栅衍射效率的测量装置,其特征在于,所述的二维扫描机构(22)由载物台(27)、光学精密旋转台(28)、竖直方向的光学精密位移台(29)和水平方向的光学精密位移台(30)组成,竖直方向的光学精密位移台(29)安装在水平方向的光学精密位移台(30)上,并可在水平方向移动,光学精密旋转台安装在竖直方向的光学精密位移台(29)上并可在竖直方向移动,载物台(27)安装在光学精密旋转台(28)上,并可绕垂直方向旋转。
3.根据权利要求1所述的大口径光栅衍射效率的测量装置,其特征在于,所述的测试光探测器(23)和参考光探测器(21)分别经数据采集器与计算机相连。
4.根据权利要求2所述的大口径光栅衍射效率的测量装置,其特征在于,所述的水平方向的光学精密位移台(30)、竖直方向的光学精密位移台(29)和光学精密旋转台(28)分别经步进电机控制器与计算机相连。
5.一种利用权利要求2所述的测量装置进行大口径光栅衍射效率的测量方法,其特征在于,包括以下步骤:
①通过旋转光学精密旋转台(28)以及细微调节准直镜(19)上的俯仰左右偏摆量,使测量激光束正入射在待测光栅(26)上,然后对光学精密旋转台(28)的坐标进行清零操作;
②转动光学精密旋转台(28)到一定的角度,使测量激光照射在待测光栅(26)上,并使衍射光斑打在测试光探测器(23)上,在光栅平面内调节样品台(25)的倾斜角度,使入射光斑和衍射光斑的高度相等,从而使光栅的刻线垂直于入射面;
③通过调节样品台(25)的俯仰偏摆量,使二维扫描机构(22)在水平和竖直方向反复扫描待测光栅(26)的整个待测量区域的过程中,衍射光斑在参测试光探测器(23)上的位置保持不变;
④使光学精密旋转台(28)的坐标回归零位,并结合光纤准直镜(19)上的俯仰偏摆调节旋钮,使入射激光光线正入射在待测光栅(26)上,然后按照测量所需要的入射角,旋转二维扫描机构(22)上的光学精密旋转台(28)到对应的入射角方向;
⑤将测试光探测器(23)从二维扫描机构(22)的载物台(27)上拆下,并固定在样品台(25)上,使测试光直接照射在测试光探测器(23)上,测试光探测器(23)和偏振片(24)之间的距离要和待测光栅(26)衍射效率时两者之间的距离相等,同时使测试光探测器(23)的接收面垂直于入射光线;
⑥用遮光板挡住激光光束,对测试光探测器(23)和参考光探测器(21)进行暗场背景校正;
⑦打开遮光板,对测试光探测器(23)和参考光探测器(21)进行明场背景校正;
⑧将测试光探测器(23)从样品台(25)拆下,并固定在二维扫描机构(22)的载物台(27)上,使衍射光斑打在测试光探测器(23)的接收面上,并使衍射光束垂直于测试光探测器(24)的感应面;移动二维扫描机构(22)竖直方向的光学精密位移台(29)和水平方向的光学精密位移台(30),使入射光斑照射在待测光栅(26)的起始点或者是标记位置上;
⑨利用参考光探测器(21)和测试光探测器(23)同时测量参考光和衍射光的强度,计算衍射光强和参考光强的比值,根据步骤⑥和步骤⑦获得的暗场背景信号和明场背景信号,计算大口径光栅在该测量位置处的衍射效率值;
⑩利用二维扫描机构(22)竖直方向的光学精密位移台(29)和水平方向的光学精密位移台(30),移动入射光斑到大口径光栅下一个测量点的位置,重复步骤⑨,计算大口径光栅在下一个测量位置处的衍射效率值;
重复步骤⑩,使扫描路径覆盖大口径光栅的整个工作区域,从而完成大口径光栅衍射效率的测量。
CN201610427140.6A 2016-06-16 2016-06-16 一种大口径光栅衍射效率的测量装置和测量方法 Active CN106124166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610427140.6A CN106124166B (zh) 2016-06-16 2016-06-16 一种大口径光栅衍射效率的测量装置和测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610427140.6A CN106124166B (zh) 2016-06-16 2016-06-16 一种大口径光栅衍射效率的测量装置和测量方法

Publications (2)

Publication Number Publication Date
CN106124166A CN106124166A (zh) 2016-11-16
CN106124166B true CN106124166B (zh) 2018-07-13

Family

ID=57470593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610427140.6A Active CN106124166B (zh) 2016-06-16 2016-06-16 一种大口径光栅衍射效率的测量装置和测量方法

Country Status (1)

Country Link
CN (1) CN106124166B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596058B (zh) * 2016-11-21 2018-11-20 中国科学院上海光学精密机械研究所 光栅衍射效率光谱测量装置和测量方法
CN106841065B (zh) * 2017-01-03 2020-09-15 中国科学院上海光学精密机械研究所 紫外-可见光-近红外透反射光谱测量装置和测量方法
CN107577065B (zh) * 2017-06-26 2019-09-27 天津大学 一种基于波前分析的眼镜片检测方法和装置
CN107621443A (zh) * 2017-10-20 2018-01-23 四川威斯派克科技有限公司 一种二维运动式样品全域扫描台及光谱扫描方法
CN109187575A (zh) * 2018-08-16 2019-01-11 中国科学院上海光学精密机械研究所 大口径双折射晶体的体内缺陷探测装置和探测方法
CN109186945A (zh) * 2018-09-12 2019-01-11 武汉理工大学 大口径光栅衍射效率光谱及其均匀性的测量装置和方法
CN109959502A (zh) * 2019-04-10 2019-07-02 深圳市计量质量检测研究院(国家高新技术计量站、国家数字电子产品质量监督检验中心) 一种光斑关键参数的测量装置和测量方法
CN111006854B (zh) * 2019-12-25 2022-04-19 中国科学院光电技术研究所 一种微纳结构透镜衍射效率测试装置与方法
CN114152194B (zh) * 2021-11-16 2022-10-04 华中科技大学 一种基于反射光栅的微位移测量装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349000B1 (en) * 1997-09-24 2002-02-19 Matsushita Electric Industrial Co., Ltd. Device for calculating diffraction efficiencies of a diffraction lens, lens with grating element, and optical system for reading
CA2416026A1 (en) * 2002-01-16 2003-07-16 Sumitomo Electric Industries, Ltd. Apparatus and method of measuring optical properties of diffractive optical element
CN103245488A (zh) * 2013-04-02 2013-08-14 中国科学院长春光学精密机械与物理研究所 一种宽波段大尺寸平面光栅衍射效率测试仪
CN103245487A (zh) * 2012-02-07 2013-08-14 中国科学院微电子研究所 一种测试透射光栅绝对衍射效率的方法
CN104568391A (zh) * 2015-01-21 2015-04-29 中国科学院上海技术物理研究所 双光路切换互参考高精度aotf性能测试方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522616B2 (ja) * 2008-09-04 2014-06-18 株式会社ニデック 眼内レンズ検査装置及び眼内レンズ検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349000B1 (en) * 1997-09-24 2002-02-19 Matsushita Electric Industrial Co., Ltd. Device for calculating diffraction efficiencies of a diffraction lens, lens with grating element, and optical system for reading
CA2416026A1 (en) * 2002-01-16 2003-07-16 Sumitomo Electric Industries, Ltd. Apparatus and method of measuring optical properties of diffractive optical element
CN103245487A (zh) * 2012-02-07 2013-08-14 中国科学院微电子研究所 一种测试透射光栅绝对衍射效率的方法
CN103245488A (zh) * 2013-04-02 2013-08-14 中国科学院长春光学精密机械与物理研究所 一种宽波段大尺寸平面光栅衍射效率测试仪
CN104568391A (zh) * 2015-01-21 2015-04-29 中国科学院上海技术物理研究所 双光路切换互参考高精度aotf性能测试方法及装置

Also Published As

Publication number Publication date
CN106124166A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106124166B (zh) 一种大口径光栅衍射效率的测量装置和测量方法
CN104034279B (zh) 一种利用小孔衍射波面拼接测量面形的检测装置及方法
CN106404794B (zh) 一种大口径材料表面散射的高速测量装置和方法
CN100451540C (zh) 采用热靶技术对大型光电测控设备三轴平行性检测的装置
CN107340689B (zh) 一种测量套刻误差的装置和方法
JP5609696B2 (ja) 電磁波イメージング装置
KR20130060351A (ko) 결함 검사 방법, 미약광 검출 방법 및 미약광 검출기
CN109186945A (zh) 大口径光栅衍射效率光谱及其均匀性的测量装置和方法
CN105066910B (zh) 电光晶体z轴偏离角测量装置及测量方法
CN103076092B (zh) 一种提高光谱分辨率的干涉成像光谱装置及方法
CN101916040A (zh) 一种适用于投影光刻系统的检焦系统及检焦方法
US8853642B2 (en) Beam regulating apparatus for an EUV illumination beam
CN102607461A (zh) 一种光学元件面形误差的高精度测试装置及方法
CN107505121A (zh) 电光晶体通光面法线与晶体光轴的夹角测量装置和方法
CN102736428B (zh) 一种调焦调平装置及方法
KR20230069194A (ko) 정확한 라만 분광법
JP2014186035A (ja) 欠陥検査方法および欠陥検査装置
US9923339B2 (en) Tunable amplified spontaneous emission (ASE) laser
CN205537546U (zh) 基于psd和楔形平晶微分干涉法的晶圆表面检测装置
US9614346B2 (en) Organic laser for measurement
CN110031100B (zh) 一种多维度短波红外光谱成像检测装置
TWI582449B (zh) 用於決定飛行物體軌跡的測量配置
CN203881681U (zh) 二维分辨扫描成像红外调制光致发光光谱测试装置
CN103673928A (zh) 一种高精度光学反射镜微曲率的测量装置
CN110426397B (zh) 光学检测系统、装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant