CN106115772A - 一种调控SnS和SnS2形貌和结构转换的简易方法 - Google Patents

一种调控SnS和SnS2形貌和结构转换的简易方法 Download PDF

Info

Publication number
CN106115772A
CN106115772A CN201610176124.4A CN201610176124A CN106115772A CN 106115772 A CN106115772 A CN 106115772A CN 201610176124 A CN201610176124 A CN 201610176124A CN 106115772 A CN106115772 A CN 106115772A
Authority
CN
China
Prior art keywords
sns
nanometer sheet
rectangle
regulation
presoma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610176124.4A
Other languages
English (en)
Inventor
曹萌
高王升
张庆
王林军
沈悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610176124.4A priority Critical patent/CN106115772A/zh
Publication of CN106115772A publication Critical patent/CN106115772A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

本发明公开了一种方法,可以在仅调节前驱体SnCl2·2H2O和C2H5NS的摩尔比例且保持其它条件(反应温度、反应时间、溶剂油胺的量)不变的情况下,分别制备出纯相的SnS2六角形纳米片和SnS长方形纳米片,实现产物可控。在反应物前驱体SnCl2·2H2O和C2H5NS分别为0.48mmol和4.6mmol,油胺为8ml,反应温度为280℃,反应时间为30分钟的条件下生成SnS2六角形纳米片结构;在反应物前驱体SnCl2·2H2O和C2H5NS分别为1.44mmol和0.58mmol,油胺、反应温度和反应时间保持不变的条件下生成SnS长方形纳米片结构。本发明的优点在于:在同时需要SnS和SnS2两种材料时,不需要更换原材料仅通过调节其摩尔比例就可以获得。且采用湿化学法,原材料均为地球丰富资源,方法简单易操作且制备成本较低。

Description

一种调控SnS和SnS2形貌和结构转换的简易方法
技术领域
本发明涉及一种可作为薄膜型太阳能电池吸收层的IV-VI族半导体纳米片的制备工艺,还涉及到一种相关材料的结构和形貌控制的方法,以及一种在相同前驱体条件下自由控制产物类型的方法。
背景技术
金属硫化物作为一类典型的半导体材料,尤其是后过渡金属硫化物,在非线性光学、电子学、发光、催化、能量储存和转换等方面有广泛的应用.锡的硫化物包括SnS,Sn2S3,Sn3S4,Sn4S5和SnS2.SnS和SnS2是目前研究较多的一种.硫化亚锡(SnS)是一种重要的半导体材料,其光学直接带隙和间接带隙宽度分别为1.2~1.5 eV和1.0~1.1 eV,与太阳辐射有很好的光谱匹配,因而非常适合作为太阳能电池中的光吸收层,另外在电致发光显示器的近红外探测器和光电压器件中也有很好的应用。
二硫化锡(SnS2)是CdI2结构,具有六角形的结构,硫原子紧密堆积形成两个层,锡离子夹在两层中间形成八面体结构。禁带宽度大约为2.35eV,所以可用作太阳能电池材料,也可应用为全息记录系统和电转换系统,同时,人们普遍认为SnS2 与锂离子的反应与SnO2相似:在首次放电(嵌锂) 过程中,SnS2 首先同锂离子反应分解为Sn和Li2S,分解得到的Sn随后继续同锂离子反应,生成Li-Sn合金,再进行可逆的脱嵌锂反应。Li2S的作用是作为一个非活性的缓冲相,形成非活性Li2S/活性Sn体系,缓解Sn在脱嵌锂过程中的体积膨胀。因此也可以作为锂离子电池取代石墨电极的阴极材料。
纳米薄片晶体以其独特的结构具有许多奇异的物理化学和电学性能,具有重要的科学研究意义和广泛的应用前景,其研究引起了极大的关注。SnS2纳米薄片晶体,结果显示SnS2纳米薄片晶体电化学贮锂容量可以达到645 mAh/g,并具有稳定的循环性能。Kim等用SnCl4与硫或硫脲的水热反应合成了SnS2纳米片,研究发现所合成SnS2纳米片的电化学贮锂初始可逆容量为450~520mAh/g,50次循环以后没有明显的容量降低。上述研究显示了SnS2纳米薄片晶体作为锂离子电池负极材料具有良好的应用前景。
在同一反应条件下,仅通过调节前驱体比例实现产物可控,保持相对较纯的物相,这对SnS2材料和SnS材料的合成机理和材料性质也是一种补充。同时,采用湿化学法制SnS和SnS2纳米薄片晶体,工艺简单,成本较低,不需要昂贵的高真空设备,且原材料的利用率非常高,不失为制备SnS和SnS2材料的一种最佳方法。
发明内容
本发明的目的是提供一种制备方法,可以在仅调节前驱体SnCl2·2H2O和C2H5NS的摩尔比例且保持其它条件(反应温度、反应时间、溶剂油胺的量)不变的情况下,分别制备出纯相的SnS2六角形纳米片和SnS长方形纳米片。这一制备方法相对简单且易操作,原料来源广泛价格低廉且皆为地球的大量元素,所合成的SnS和SnS2材料都是太阳能电池中很重要的吸收层材料。
一种调控SnS长方形纳米片和SnS2六角形纳米片形貌和结构转换的简易方法,其特征在于有如下控制方法和反应过程:
a.在磁力搅拌下,将反应前躯体0.48mmol-1.44mmol SnCl2·2H2O和4.6mmol-0.58mmol C2H5NS加入100ml的四颈烧瓶中,再加入8ml油胺,将烧瓶固定在恒温磁力搅拌器上,并以550转/分钟的转速使转子保持转动;
b.在惰性气体保护下,将步骤a的反应体系在70-80ºC时保持20-30分钟后升温至170-180ºC保持20-30分钟,再升温至280-300ºC保持20-30分钟后降至室温;
c.用甲苯和无水乙醇作为清洗剂将产物用离心机离心清洗三遍,离心机的转速设定为12000转/分钟,收集下层沉淀物,即得六角形SnS2或长方形SnS纳米片。
本发明的优点在于:在同时需要SnS和SnS2两种材料时,不需要更换原材料仅通过调节其摩尔比例就可以获得。且采用湿化学法,方法简单易操作,原材料均为地球丰富资源,制备成本较低。
附图说明
下面结合附图对本发明作进一步详细说明。
图1是本发明的SnS2六角形纳米片的XRD图谱。
图2是本发明的SnS2六角形纳米片的EDS扫描图谱。
图3是本发明的SnS2六角形纳米片的SEM图。
图4是本发明的SnS长方形纳米片的XRD图谱。
图5是本发明的SnS长方形纳米片的EDS扫描图谱。
图6是本发明的SnS长方形纳米片的SEM图。
具体实施方式
下面给出本发明的较佳实施例,使能更好地理解本发明的过程。
实施例1
依次将磁子,反应前驱体0.48mmol SnCl2·2H2O、4.6mmol C2H5NS和8ml油胺加入到100ml的四颈烧瓶中,将烧瓶固定在恒温磁力搅拌器上,并以550转/分钟的转速使转子保持转动,装上热电偶,温度计,冷凝管,通入Ar气且气流稍大,在70ºC时保持30分钟,减小气流后升温至180ºC保持30分钟,再升温至280ºC保持30分钟后降至室温,用甲苯和无水乙醇作为清洗剂将产物用离心机离心清洗三遍,离心机的转速设定为12000转/分钟,收集下层沉淀物,即得SnS2六角形纳米片。
实施例2
再用反应物前驱体SnCl2·2H2O和C2H5NS分别为1.44mmol和0.58mmol,依次将磁子、反应前驱体和油胺加入到100ml的四颈烧瓶中,将烧瓶固定在恒温磁力搅拌器上,并以550转/分钟的转速使转子保持转动,装上热电偶,温度计,冷凝管,通入Ar气且气流稍大,在70ºC时保持30分钟,减小气流后升温至180ºC保持30分钟,再升温至280ºC保持30分钟后降至室温,用甲苯和无水乙醇作为清洗剂将产物用离心机离心清洗三遍,离心机的转速设定为12000转/分钟,收集下层沉淀物,得到的产物是SnS长方形纳米片。
有关本发明的仪器测试所得附图的解释说明
图1中标注的衍射峰(001)、(100)、(002)、(101)、(102)、(003)、(110)、(111)、(103)、(004)、(113)分别对应衍射角14.92º、28.42º、30.14º、31.99 º、41.55 º、46.12 º、49.89º、52.22 º、54.98 º、62.93 º、70.34 º,与SnS2的标准PDF卡片JCPDS#22-0951匹配较好。其次,如表1所示,通过EDS能谱分析数据可得,产物中Sn元素和S元素的摩尔比例为33.16:66.84,基本接近1:2。再由图2中产物的能谱图可看出,除Sn和S的峰位外没有其它杂峰。由此可得出产物是纯相的SnS2
图3是产物SnS2的SEM图,可以清晰的看出产物SnS2的形貌是六角形片状结构,且尺寸较为均匀。
图4中标注的衍射峰(110)、(120)、(101)、(111)、(131)、(210)、(002)、(211)、(151)、(061)、(042)、(212)、(080)分别对应的衍射角为22º、26º、30.36º、31.82º、38.96º、42.52º、45.34º、48.72º、51.24º、54.18º、56.48º、64.14º、66.58º,与SnS的标准PDF卡片JCPDS#39-0354的衍射峰角度匹配较好。通过能谱仪测试其元素组分,由图5中产物的能谱图可看出,除Sn和S的峰位外没有其它杂峰。再如表2所示,Sn:S=51.20:48.80,组分比例接近1:1,因此可以认为产物是纯相的SnS。
图6是产物SnS的SEM图,可以清晰的看出产物SnS的形貌是长方形状结构,结晶性较好且没有其它杂相。

Claims (3)

1.一种调控SnS长方形纳米片和SnS2六角形纳米片形貌和结构转换的简易方法,其特征在于有如下控制方法和反应过程:
a.在磁力搅拌下,将反应前躯体0.48mmol-1.44mmol SnCl2·2H2O和4.6mmol-0.58mmolC2H5NS加入100ml的四颈烧瓶中,再加入8ml油胺,将烧瓶固定在恒温磁力搅拌器上,并以550转/分钟的转速使转子保持转动;
b.在惰性气体保护下,将步骤a的反应体系在70-80ºC时保持20-30分钟后升温至170-180ºC保持20-30分钟,再升温至280-300ºC保持20-30分钟后降至室温;
c.用甲苯和无水乙醇作为清洗剂将产物用离心机离心清洗三遍,离心机的转速设定为12000转/分钟,收集下层沉淀物,即得六角形SnS2或长方形SnS纳米片。
2.根据权利1要求所述的一种调控SnS长方形纳米片和SnS2六角形纳米片形貌和结构转换的简易方法,其特征在于:所述的反应物前驱体氯化亚锡可以用醋酸亚锡代替。
3.根据权利1要求所述的一种调控SnS长方形纳米片和SnS2六角形纳米片形貌和结构转换的简易方法,其特征在于:所述的反应物前驱体硫代乙酰胺可以用硫脲代替。
CN201610176124.4A 2016-03-26 2016-03-26 一种调控SnS和SnS2形貌和结构转换的简易方法 Pending CN106115772A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610176124.4A CN106115772A (zh) 2016-03-26 2016-03-26 一种调控SnS和SnS2形貌和结构转换的简易方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610176124.4A CN106115772A (zh) 2016-03-26 2016-03-26 一种调控SnS和SnS2形貌和结构转换的简易方法

Publications (1)

Publication Number Publication Date
CN106115772A true CN106115772A (zh) 2016-11-16

Family

ID=57269803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610176124.4A Pending CN106115772A (zh) 2016-03-26 2016-03-26 一种调控SnS和SnS2形貌和结构转换的简易方法

Country Status (1)

Country Link
CN (1) CN106115772A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686125A (zh) * 2017-08-29 2018-02-13 哈尔滨工业大学 一种Al掺杂分等级结构二硫化锡气敏材料的制备方法
CN109721095A (zh) * 2019-03-18 2019-05-07 洛阳师范学院 一种硫化亚锡纳米粒子的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844799A (zh) * 2010-06-17 2010-09-29 安阳师范学院 六角形二硫化锡纳米片的制备方法
CN102219192A (zh) * 2011-05-17 2011-10-19 东华大学 非注射法高温液相合成太阳能电池材料SnS纳米晶
CN102897827A (zh) * 2012-10-09 2013-01-30 东华大学 一步法相控合成SnS、SnS2或SnS/SnS2异质结纳米晶材料的方法
CN103819098A (zh) * 2014-03-17 2014-05-28 上海交通大学 制备硫化亚锡纳米片阵列薄膜的方法
CN104874408A (zh) * 2015-06-15 2015-09-02 桂林理工大学 一种二硫化锡超薄纳米片光催化剂的制备方法
CN105253910A (zh) * 2015-09-17 2016-01-20 上海大学 一步合成大尺寸SnS纳米片的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844799A (zh) * 2010-06-17 2010-09-29 安阳师范学院 六角形二硫化锡纳米片的制备方法
CN102219192A (zh) * 2011-05-17 2011-10-19 东华大学 非注射法高温液相合成太阳能电池材料SnS纳米晶
CN102897827A (zh) * 2012-10-09 2013-01-30 东华大学 一步法相控合成SnS、SnS2或SnS/SnS2异质结纳米晶材料的方法
CN103819098A (zh) * 2014-03-17 2014-05-28 上海交通大学 制备硫化亚锡纳米片阵列薄膜的方法
CN104874408A (zh) * 2015-06-15 2015-09-02 桂林理工大学 一种二硫化锡超薄纳米片光催化剂的制备方法
CN105253910A (zh) * 2015-09-17 2016-01-20 上海大学 一步合成大尺寸SnS纳米片的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686125A (zh) * 2017-08-29 2018-02-13 哈尔滨工业大学 一种Al掺杂分等级结构二硫化锡气敏材料的制备方法
CN107686125B (zh) * 2017-08-29 2019-07-02 哈尔滨工业大学 一种Al掺杂分等级结构二硫化锡气敏材料的制备方法
CN109721095A (zh) * 2019-03-18 2019-05-07 洛阳师范学院 一种硫化亚锡纳米粒子的制备方法

Similar Documents

Publication Publication Date Title
Bhosale et al. Influence of copper concentration on sprayed CZTS thin films deposited at high temperature
Yang et al. Microwave-assisted synthesis of Cu2ZnSnS4 nanocrystals as a novel anode material for lithium ion battery
Zhou et al. Solar cell material Cu2FeSnS4 nanoparticles synthesized via a facile liquid reflux method
Yang et al. Synthesis and characterizations of Cu2MgSnS4 thin films with different sulfuration temperatures
Habibi et al. Effect of the annealing temperature on crystalline phase of copper oxide nanoparticle by copper acetate precursor and sol–gel method
CN102709351A (zh) 一种择优取向生长的硫化二铜薄膜
Safdar et al. Quantum confinement and size effects in Cu2ZnSnS4 thin films produced using solution processed ultrafine nanoparticles
Chen et al. Study on the synthesis and formation mechanism of flower-like Cu3SbS4 particles via microwave irradiation
Kumar et al. Synthesis of pyramidal and prismatic hexagonal MoO 3 nanorods using thiourea
CN106115772A (zh) 一种调控SnS和SnS2形貌和结构转换的简易方法
Wang et al. Incorporation of Rb cations into Cu2FeSnS4 thin films improves structure and morphology
Xia et al. Synthesis and characterization of Cu 2 ZnSnS 4 nanocrystals by hot-injection method
Hsiang et al. CuInSe2 nano-crystallite reaction kinetics using solid state reaction from Cu2Se and In2Se3 powders
Kumar et al. Deposition of Cu2ZnSnS4 thin film at different solution flow rates
Zhang et al. Synthesis of CdZnS buffer layer and its impact on Cu2ZnSn (S, Se) 4 thin film solar cells
Loginov et al. Study of thermal decomposition of hexahydroxostannates (IV) MSn (OH) 6,(M= Mg, Sr, Ca)
Yan et al. Solvothermal synthesis of CuInS 2 powders and CuInS 2 thin films for solar cell application
CN105428217A (zh) 一种制备Cu掺杂硫化铟薄膜的方法
CN107134507A (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
Nkuissi Tchognia et al. Solution-based deposition of wurtzite copper zinc tin sulfide nanocrystals as a novel absorber in thin film solar cells
Cui et al. Solvothermal approach to synthesize wurtzite structure Cu2SnS3 nanocrystals and their application to fabricate Cu2ZnSn (S, Se) 4 thin film
CN106098814A (zh) 一种氧化物纳米颗粒制备太阳能电池吸收层CTSSe薄膜的方法
Wang et al. Novel solution process for synthesis of CIGS nanoparticles using polyetheramine as solvent
Jayasree et al. Growth of Cu 2 SnS 3 thin films by a two-stage process: structural, microstructural and optical properties
Kalimuldina et al. Electrochemical characterization of non-stoichiometric Cu 2 S x cathode for lithium batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161116