CN106086025A - A kind of DNA fragmentation with promoter function and application thereof - Google Patents
A kind of DNA fragmentation with promoter function and application thereof Download PDFInfo
- Publication number
- CN106086025A CN106086025A CN201610430767.7A CN201610430767A CN106086025A CN 106086025 A CN106086025 A CN 106086025A CN 201610430767 A CN201610430767 A CN 201610430767A CN 106086025 A CN106086025 A CN 106086025A
- Authority
- CN
- China
- Prior art keywords
- nucleotide sequence
- seq
- sequence
- dna fragmentation
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013467 fragmentation Methods 0.000 title claims abstract description 21
- 238000006062 fragmentation reaction Methods 0.000 title claims abstract description 21
- 239000002773 nucleotide Substances 0.000 claims abstract description 35
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 35
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 23
- 230000014509 gene expression Effects 0.000 claims abstract description 22
- 244000063299 Bacillus subtilis Species 0.000 claims abstract description 9
- 230000027455 binding Effects 0.000 claims abstract description 8
- 230000000295 complement effect Effects 0.000 claims abstract description 6
- 210000004027 cell Anatomy 0.000 claims description 12
- 239000013613 expression plasmid Substances 0.000 claims description 12
- 102000004169 proteins and genes Human genes 0.000 claims description 11
- 241000193755 Bacillus cereus Species 0.000 claims description 4
- 108010005774 beta-Galactosidase Proteins 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 241000193419 Geobacillus kaustophilus Species 0.000 claims description 2
- 241000187747 Streptomyces Species 0.000 claims description 2
- 102000005936 beta-Galactosidase Human genes 0.000 claims description 2
- 210000002706 plastid Anatomy 0.000 claims description 2
- 230000026683 transduction Effects 0.000 claims description 2
- 238000010361 transduction Methods 0.000 claims description 2
- 241001655322 Streptomycetales Species 0.000 claims 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 claims 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims 1
- 235000014469 Bacillus subtilis Nutrition 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 6
- 239000000411 inducer Substances 0.000 abstract description 3
- 101150099105 alien gene Proteins 0.000 abstract description 2
- 102000004190 Enzymes Human genes 0.000 description 13
- 108090000790 Enzymes Proteins 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 11
- 239000012634 fragment Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 101150022994 bgaB gene Proteins 0.000 description 7
- 230000009182 swimming Effects 0.000 description 7
- 241000194108 Bacillus licheniformis Species 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 6
- 238000003559 RNA-seq method Methods 0.000 description 5
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 241000498991 Bacillus licheniformis DSM 13 = ATCC 14580 Species 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000589516 Pseudomonas Species 0.000 description 3
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- KUWPCJHYPSUOFW-YBXAARCKSA-N 2-nitrophenyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1[N+]([O-])=O KUWPCJHYPSUOFW-YBXAARCKSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000831652 Salinivibrio sharmensis Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 229930182470 glycoside Natural products 0.000 description 2
- 150000002338 glycosides Chemical class 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000009465 prokaryotic expression Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 108700023418 Amidases Proteins 0.000 description 1
- AILDTIZEPVHXBF-UHFFFAOYSA-N Argentine Natural products C1C(C2)C3=CC=CC(=O)N3CC1CN2C(=O)N1CC(C=2N(C(=O)C=CC=2)C2)CC2C1 AILDTIZEPVHXBF-UHFFFAOYSA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010047320 Pepsinogen A Proteins 0.000 description 1
- 244000308495 Potentilla anserina Species 0.000 description 1
- 235000016594 Potentilla anserina Nutrition 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241001495137 Streptomyces mobaraensis Species 0.000 description 1
- 235000009392 Vitis Nutrition 0.000 description 1
- 241000219095 Vitis Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 229950006790 adenosine phosphate Drugs 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 102000005922 amidase Human genes 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000012930 cell culture fluid Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 150000008195 galaktosides Chemical class 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003262 industrial enzyme Substances 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/104—Aminoacyltransferases (2.3.2)
- C12N9/1044—Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2468—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
- C12N9/2471—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/02—Aminoacyltransferases (2.3.2)
- C12Y203/02013—Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01023—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention discloses a kind of DNA fragmentation with promoter function and application thereof.This DNA fragmentation is following any sequence: (a) nucleotide sequence as shown in SEQ ID NO.1 or its complementary series;B () carry out one or more nucleotide replacement to the nucleotide sequence as shown in SEQ ID NO.1, lack or add and obtained, and has the nucleotide sequence as promoter function identical with the nucleotide sequence as shown in SEQ ID NO.1 or its complementary series;C nucleotide sequence as shown in SEQ ID NO.1 is added the sequence of one or more ribosome binding sites by ().This DNA fragmentation has the function of promoter, has the strongest specifically expressing activity, can realize the high expressed of exogenous gene, provide effective element especially for bacillus subtilis expression alien gene under conditions of need not add inducer.
Description
Technical field
The present invention relates to a kind of DNA fragmentation, be specifically related to a kind of DNA fragmentation with promoter function and application thereof.
Background technology
Protein expression system is the important research content of modern biotechnology, is widely used in food, pharmacy, detergent life
The fields such as product.Wherein, it is fast that prokaryotic expression system has growth, easily cultivates, and expression is high, and genetic background understands and molecule manipulation
Simple feature, and it is appropriate to the significant advantages such as engineered strain transformation, it is widely used in the expression of heterologous protein.Mesh
The prokaryotic expression system of front comparative maturity has escherichia coli and bud pole bacterium.Due to escherichia coli, to be not suitable as host extensive
Expressing heterologous albumen, and bud pole bacterium is the common system of large-scale production industrial enzyme preparation.The advantage of bud pole bacterium host is:
The safe bacterial strain generally acknowledged, secreting, expressing, without obvious codon bias.
In genetic engineering, often need to build the carrier of high expressed heterologous protein, the expression of exogenous gene is had by promoter
Extreme influence, is the important component of gene engineering expression carrier.Promoter is that RNA polymerase combination starts to transcribe synthesis
The place of mRNA, promoter is the key affecting enzyme gene expression with the joint efficiency of RNA polymerase.Research shows hay Pseudomonas
Containing abundant sigma factor (12 kinds), RNA polymerase and the specific binding of promoter depend on sigma factor, therefore spore Pseudomonas
The efficient promoter of middle search is more difficult.Report expresses the three class promoteres that have of recombiant protein for spore Pseudomonas at present, first
Being inducible promoter, need to add different inducers, its weakness is that starting efficiency is relatively low;Next to that it is relevant to growth stage
Promoter and enhancer, be activated in different growth stage, start intensity high, but can not continuous expression;It is finally that self-induction opens
Mover.Therefore, research promoter function is for understanding biological growth and development, inquiring into the mechanism of biological adaptation environment and realize external source
The high efficient expressions of gene etc. are the most significant.
Summary of the invention
The primary and foremost purpose of the present invention is to overcome the shortcoming of prior art with not enough, it is provided that a kind of have promoter function
DNA fragmentation.
Another object of the present invention is to provide the purposes of described DNA fragmentation.
The purpose of the present invention is achieved through the following technical solutions: a kind of DNA fragmentation with promoter function, described DNA
Fragment is following any sequence:
(a) nucleotide sequence as shown in SEQ ID NO.1 or its complementary series;
B () carries out one or more nucleotide replacement, lacks or add the nucleotide sequence as shown in SEQ ID NO.1
Obtained, be there is the nucleotide sequence as promoter function identical with the nucleotide sequence as shown in SEQ ID NO.1
Or its complementary series;
C nucleotide sequence as shown in SEQ ID NO.1 is added the sequence of one or more ribosome binding sites by ().
The sequence of described ribosome binding site is the nucleotide sequence as shown in SEQ ID NO.2.
The application in protein expression of the described DNA fragmentation with promoter function.
A kind of carrier, comprises the nucleotide sequence as shown in SEQ ID NO.1 and the ribosome as shown in SEQ ID NO.2
The sequence of binding site
Described carrier, containing the nucleotide sequence as shown in SEQ ID NO.10.
A kind of expression plasmid, comprise above-mentioned carrier and with this carrier be operatively connected to be positioned at this carrier downstream coding different
Source protein matter nucleotide sequence.
Described heterologous protein nucleotide sequence the most thermally bacillus cereus (Geobacillus kaustophilus) is compiled
The nucleotide sequence of the thermostable beta-galactosidase of code, or be streptomyces mobaraensis (Streptomyces mobaraensia) coding
The nucleotide sequence of T-5398.
A kind of recombined engineering cell, the cell obtained for above-mentioned carrier or above-mentioned Plastid transformation or transduction host cell
Strain.
Described host cell is bacillus cereus.
Described host cell is bacillus subtilis.
The present invention has such advantages as relative to prior art and effect:
The present invention relates to use the RNA-seq technical measurement Bacillus licheniformis full genome in the logarithmic growth later stage to transcribe
Group, the gene of screening high expressed, finds the gene that a transcriptional activity is high in Bacillus licheniformis.The high table that clone is screened
Reach the promoter sequence that gene pairs is answered, and be applied to the expression of thermostable beta-galactosidase gene (bgaB), by measuring bgaB
Activity, it was demonstrated that the promoter of screening has high activity in bacillus subtilis.It is applied to the table of T-5398 (MTG)
Reach, verify its protein expression by SDS-PAGE.
That is, the invention provides a kind of DNA fragmentation, this DNA fragmentation has the function of promoter, has the strongest specifically expressing
Activity, can realize the high expressed of exogenous gene, especially for bacillus subtilis under conditions of need not add inducer
Expression alien gene provides effective element.
Accompanying drawing explanation
Fig. 1 is that the Bacillus licheniformis growing late log phase in embodiment 2 extracts total serum IgE electrophoretogram;Wherein, swimming lane 1 and 2
The bacillus amyloliquefaciens being respectively growth late log phase extracts total serum IgE.
Fig. 2 is amplification P in embodiment 3glvAPCR primer electrophoretogram;Wherein, swimming lane M is DNA Marker;Swimming lane 1 is
PglvAPcr amplification product.
Fig. 3 is the PCR primer electrophoretogram expanding SamyQ signal peptide in embodiment 4;Wherein, swimming lane M is DNA Marker,
Swimming lane 1 is SamyQ signal peptide pcr amplification product.
Fig. 4 is the structure schematic diagram of embodiment 4 plasmid pBE-rbs-SamyQ-bgaB.
Fig. 5 is embodiment 4 expression plasmid pBE-PglvAThe structure schematic diagram of-SamyQ-bgaB.
Fig. 6 is amplification P in embodiment 5glvA-samyQ fragment electrophoretic figure;Wherein, swimming lane M is DNA Marker, and swimming lane 1 is
PglvA-samyQ amplified production.
Fig. 7 is embodiment 5 expression plasmid pBE-PglvAThe structure schematic diagram of-SamyQ-proMTG.
Fig. 8 is embodiment 6B.subtilis ATCC6051 (pBE-PglvA-SamyQ-bgaB) transformant bgaB enzyme live
Curve chart.
Fig. 9 is embodiment 6B.subtilis ATCC6051 (pBE-PglvA-SamyQ-proMTG) expression of transformant MTG
SDS-PAGE running gel figure.
Detailed description of the invention
Below in conjunction with embodiment, the present invention is described in further detail, but embodiments of the present invention are not limited to this.
Molecular biology experiment technology employed in following example includes PCR amplification, plasmid extraction, DNA fragmentation enzyme
Cut, connect, gel electrophoresis etc. referring specifically to " Molecular Cloning: A Laboratory guide " (third edition) (Sambrook J, Russell DW,
Janssen K, Argentine J. Huang training hall etc. is translated, and 2002, Beijing: Science Press).
From a bacillus licheniformis, (Bacillus licheniformis ATCC14580, is purchased from NBRC, and article No. is
NBRC12200) the production late log phase stage cultivated extracts bacteria RNA.Bacteria RNA is carried out transcript profile order-checking and builds storehouse, remove
Ribosomal RNA, carries out reverse transcription to mRNA and sets up cDNA library.Transcript profile complete to antibacterial is analyzed, and turns according to representing gene
The standardized data RPKM value of record level judges the gene that its expression level is higher, then analyzes its promoter region.By selected
Promoter access carrier, measure promoter bacillus subtilis, (B.subtilis ATCC6051, is purchased from NBRC, and article No. is
NBRC13719) activity in.
Embodiment 1
(1) cultivation of antibacterial: the taking-up of Bacillus licheniformis ATCC14580 (-80 DEG C) glycerol pipe is lined LB solid and puts down
Cultivating 16h for 37 DEG C on plate, picking list bacterium colony is in the LB fluid medium containing 1% final concentration starch of 10mL, and 37 DEG C, 200rpm trains
Support to OD60020~25 (spectrophotometer, Hitachi companies of Japan).
(2) extraction and the RNA-Seq of antibacterial total serum IgE checks order: the cell culture fluid 1mL that collection step (1) obtains is in 8000g
The most centrifugal 1min, is used for extracting antibacterial total serum IgE (see Fig. 1).Concrete extracting method is thin with reference to Omega Bio-tek company
Born of the same parents' antibacterial total RNA extraction reagent box.The sample prepared for RNA-Seq sequencing library is through Agilent Technologies
2100Bioanalyzer detection is qualified, processes the DNA molecular being mixed into through DNaseI (RNase Free), uses Ribo-Zero
(Gram-Positive Bacteria) kit (USA) removes and accounts for the most of rRNA of total serum IgE, the mRNA that purification obtains.Will
MRNA first interrupts the fragment into suitable size, with the mRNA of fragmentation as template, adds reverse transcription and random primer, and synthesis is double
Chain cDNA, then with the cDNA of test kit QIAquick PCR Purification Kit (Qiagen) purification synthesis.Filling-in
The sticky end of cDNA, then plus an adenylic acid on a chain, with this prominent A pairing containing prominent
The one-level joint sequence of T.PCR amplification is carried out, through too much matching respectively under conditions of the primer at one-level joint two ends exists
Secondary circulation, carry out PCR result gel electrophoresis and cut glue and reclaim the adhesive tape of predefined size, at this moment obtain plus secondary joint
The library of sequence composition carry out upper machine order-checking (by patent documentation: Pan Li etc. a kind of DNA fragmentation with promoter function with should
By .CN201510074949.0 [P] .2015. method).The order-checking in RNA-Seq library is by the Guangzhou limited public affairs of Ji Diao biotechnology
Department provides order-checking service.Respectively two ends are read (PE100), referred to as reads to the sequence information of the 100bp at center during order-checking,
The subsequent bio bioinformatics analysis such as annotation and expression calculating will be can be carried out in these reads comparisons to bacterial genomes.
(3) screening cloning promoter fragment: analyze Bacillus licheniformis transcript structures by RNA-Seq sequencing data
And Whole genome analysis contains the gene of positions transcription initiation, quantified by RPKM, screen the gene that a strain expression is high, its core
Nucleotide sequence is as follows:
agccctccggccaacccgtaccacaatggtttggattccctcagccacagccatacgagatagccgcccgcgatttc
agccaaacccgccagtaaaaataaaccgattgcgatcatcatcaacaacacactccaattcacgtgaattgtctcta
ttctacacgacataaaacggccgggaaagttcccgtttttcgggaaaataaacagaacgcgagtataggaactgtct
cccccgaacctgttggaacggctccttcagcatgatataagtaaattgtaaacgcttataagggggctt。
With the genomic DNA of Bacillus licheniformis (Bacillus licheniformis ATCC14580) as template, draw
Thing F-PglvA(5 '-cggaattcagccctccggccaacccgt-3 ') and R-PglvA(5’-
Ggactagtaagcccccttataagcgttt-3 ') carry out expanding the DNA fragmentation of 300bp size, i.e. PglvAPromoter fragment
(see Fig. 2), is consistent with purpose product size.Introduce restriction enzyme site EcoRI, SpeI.
(4) bgaB extracellular expression plasmid is built
With plasmid pBE-rbs-biobrick-bgaB (by patent documentation: Pan Li etc. a kind of DNA with promoter function
Fragment builds with application .CN201510074949.0 [P] .2015.) it is expression plasmid, with restricted enzyme SalI at enzyme action
Site is cut into linear plasmid, with F-rbs-SamyQ (5 '-
Aactgcaggtaagagaggaatgtcgacatgattcaaaaacgaaagcg-3 ') and R-rbs-SamyQ (5 '-
Attgaggataacacattcatggctgatgtttttgtaatcg-3 ') amplified signal peptide SamyQ is (such as SEQ ID NO.7 institute
Show) PCR primer (see Fig. 3) of about 150bp size, containing nucleotide sequence: caattataggtaagagaggaatgtcgac, for
The sequence of ribosome binding site.By In-fusion method, (concrete operation method is shown in the HiFi DNA of NEBuilder company
Assembly Master Mix) signal peptide and plasmid are connected, obtain pBE-rbs-SamyQ-bgaB plasmid (see Fig. 4).
Step (3) obtains band EcoRI, the P of SpeI restriction enzyme siteglvAPromoter fragment is through enzyme action, insert after purification
The above-mentioned pBE-rbs-SamyQ-bgaB plasmid construction cut with identical restricted enzyme EcoRI and SpeI obtains purpose and starts
The bgaB gene extracellular expression plasmid pBE-P of songlvA-SamyQ-bgaB (see Fig. 5).
(5) MTG extracellular expression plasmid is built
With plasmid pBEp43-proMTG (by patent documentation: Pan Li etc. the bacillus subtilis of a plant weight group and production thereof
Method .CN201210052578.2 [P] .2012. of T-5398 builds) it is expression plasmid, use restricted enzyme
The restriction enzyme site of EcoR I and BamH I.With pBE-PglvA-SamyQ-bgaB plasmid is template, primers F-PglvA(5’-
Cggaattcagccctccggccaacccgt-3 '), R-SamyQ (5 '-aaggatccggctgatgtttttgtaatcg-3 ') expands
Increasing 5 ' to hold with EcoR I restriction enzyme site, 3 ' ends are with the about 450bp P of BamH I restriction enzyme siteglvA-SamyQ fragment (see Fig. 6).
P is digested with restricted enzyme EcoR I and BamH IglvA-SamyQ fragment, reclaims, and inserts after purification and uses identical endonuclease digestion
The plasmid pBEp43-proMTG of position (patent documentation: Pan Li etc. bacillus subtilis and the production thereof of a plant weight group turn paddy ammonia
Method .CN201210052578.2 [P] .2012. of amidase), build and obtain MTG expression periplasm grain pBE-PglvA-
SamyQ-proMTG (see Fig. 7).Wherein: PglvA-SamyQ nucleotides sequence is classified as:
agccctccggccaacccgtaccacaatggtttggattccctcagccacagccatacgagatagccgcccgcgatttc
agccaaacccgccagtaaaaataaaccgattgcgatcatcatcaacaacacactccaattcacgtgaattgtctcta
ttctacacgacataaaacggccgggaaagttcccgtttttcgggaaaataaacagaacgcgagtataggaactgtct
cccccgaacctgttggaacggctccttcagcatgatataagtaaattgtaaacgcttataagggggcttcaattata
ggtaagagaggaatgtcgacatgattcaaaaacgaaagcggacagtttcgttcagacttgtgcttatgtgcacgctg
ttatttgtcagtttgccgattacaaaaacatcagcc。
(6) detection of promoter expression level
The bgaB expression plasmid pBE-P of purpose promoter that will buildglvA-SamyQ-bgaB and MTG expression plasmid
pBE-PglvA-SamyQ-proMTG first converts to escherichia coli (E.coli JM110) with chemical transformation, obtains positive colony
Son, extracts plasmid after order-checking, and the method that electricity consumption converts converts to bacillus subtilis B.subtilis ATCC6051, specifically
Method is with reference to non-patent literature record Natalia P, Zakataeva, Oksana V et al.A simple method to
introduce marker-free genetic modification into chromosome of naturally
nontransformable Bacillus amyloliquefaciens strains[J].Appl Microbiol
Biotechnol.2010,85:1201-1209), bacterial strain B.subtilis ATCC6051 (pBE-P must be convertedglvA-SamyQ-
And B.subtilis ATCC6051 (pBE-P bgaB)glvA-SamyQ-proMTG)。
The transformant B.subtilis ATCC6051 (pBE-P that will obtainglvA-SamyQ-bgaB) and B.subtilis
ATCC6051(pBE-PglvA-SamyQ-proMTG) it is incubated in 10mL LB culture medium (kanamycin 20 μ g/mL), 37 DEG C,
200rpm activates 12h, and the seed liquor of activation is inoculated in 50mL LB culture medium (kanamycin 20 μ g/mL, 1% glucose)
Inoculum concentration was 1% (volume ratio), 37 DEG C, and 200rpm always ferments 48h, every sampling in 6 hours.
The mensuration that β-glucose galactose glycosides enzyme enzyme is lived: by 32 μ L fermented supernatant fluids and 288 μ L 0.25%ONPG (o-
Nitrophenyl-β-D-Galactopyranoside, ortho-nitrophenyl β-D-synthesis) mixing, incubation at 55 DEG C
15min, reaction terminating adds the 10%Na of 320 μ L2CO3.Reaction, in chromogenic reaction, measures light absorption value under 405nm wavelength.Right
According to bacterial strain B.subtilis ATCC6051 (pBE-rbs-SamyQ-bgaB) without chromogenic reaction, under 405nm wavelength, measure extinction
Value is similar with blank (LB), without β-glucose galactose glycosides enzymatic activity.Result shows promoter PglvAStart β-Fructus Vitis viniferae
Sugar galactoside expression of enzymes, enzyme work is the highest in the expression of 30-48h, and wherein 48h reaches the highest enzyme 13.09U/mL (see Fig. 8) alive.
SDS-PAGE: by 48h fermentation liquid centrifuging and taking supernatant, supernatant runs SDS-PAGE electrophoresis, with wild type B spore
Bacillus B.subtilis ATCC6051 is as comparison, and albumin glue figure shows have band and MTG albumen size one at 44-46KDa
Cause, and wild type control in this magnitude range without band, experimental result illustrates that MTG pepsinogen is expressed (see Fig. 9).
Above-described embodiment is the present invention preferably embodiment, but embodiments of the present invention are not by above-described embodiment
Limit, the change made under other any spirit without departing from the present invention and principle, modify, substitute, combine, simplify,
All should be the substitute mode of equivalence, within being included in protection scope of the present invention.
Claims (10)
1. a DNA fragmentation with promoter function, it is characterised in that: described DNA fragmentation is following any sequence:
(a) nucleotide sequence as shown in SEQ ID NO.1 or its complementary series;
B () carry out one or more nucleotide replacement to the nucleotide sequence as shown in SEQ ID NO.1, lack or add obtain
, have the nucleotide sequence as promoter function identical with the nucleotide sequence as shown in SEQ ID NO.1 or
Its complementary series;
C nucleotide sequence as shown in SEQ ID NO.1 is added the sequence of one or more ribosome binding sites by ().
The most according to claim 1, there is the DNA fragmentation of promoter function, it is characterised in that: described ribosome binding site
Sequence be the nucleotide sequence as shown in SEQ ID NO.2.
3. there is described in claim 1 or 2 application in protein expression of the DNA fragmentation of promoter function.
4. a carrier, it is characterised in that: comprise the nucleotide sequence as shown in SEQ ID NO.1 and such as SEQ ID NO.2 institute
The sequence of the ribosome binding site shown.
Carrier the most according to claim 4, it is characterised in that: containing the nucleotide sequence as shown in SEQ ID NO.10.
6. an expression plasmid, it is characterised in that: comprise the carrier described in claim 4 or 5 and company operable with this carrier
Connect is positioned at this carrier downstream encoding heterologous protein nucleotide sequence.
Expression plasmid the most according to claim 6, it is characterised in that: described heterologous protein nucleotide sequence is the most thermally
The nucleotide sequence of the thermostable beta-galactosidase that bacillus cereus (Geobacillus kaustophilus) encodes, or be that cyclopentadienyl is former
The nucleotide sequence of the T-5398 that streptomycete (Streptomyces mobaraensia) encodes.
8. a recombined engineering cell, it is characterised in that: for the carrier described in claim 4 or 5 or claim 6 or 7 institute
The cell strain that the Plastid transformation stated or transduction host cell obtain.
Recombined engineering cell the most according to claim 8, it is characterised in that: described host cell is bacillus cereus.
Recombined engineering cell the most according to claim 9, it is characterised in that: described host cell is bacillus subtilis
Bacterium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610430767.7A CN106086025B (en) | 2016-06-15 | 2016-06-15 | DNA fragment with promoter function and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610430767.7A CN106086025B (en) | 2016-06-15 | 2016-06-15 | DNA fragment with promoter function and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106086025A true CN106086025A (en) | 2016-11-09 |
CN106086025B CN106086025B (en) | 2020-02-18 |
Family
ID=57236139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610430767.7A Expired - Fee Related CN106086025B (en) | 2016-06-15 | 2016-06-15 | DNA fragment with promoter function and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106086025B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106480036A (en) * | 2016-11-30 | 2017-03-08 | 华南理工大学 | A kind of DNA fragmentation with promoter function and its application |
CN106947766A (en) * | 2017-04-12 | 2017-07-14 | 华南理工大学 | A kind of bacillus subtilis has DNA fragmentation and its application of promoter function |
CN107119051A (en) * | 2017-04-12 | 2017-09-01 | 华南理工大学 | A kind of bacillus megaterium has DNA fragmentation and its application of promoter function |
CN107698668A (en) * | 2017-10-23 | 2018-02-16 | 华南理工大学 | A kind of bacillus subtilis can improve signal peptide and its application of secernment efficiency |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104630229A (en) * | 2015-02-11 | 2015-05-20 | 华南理工大学 | DNA fragment with promoter function and application |
-
2016
- 2016-06-15 CN CN201610430767.7A patent/CN106086025B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104630229A (en) * | 2015-02-11 | 2015-05-20 | 华南理工大学 | DNA fragment with promoter function and application |
Non-Patent Citations (3)
Title |
---|
WWW.NCBI.NLM.NIH.GOV/GENBANK: "Genbank Accession:CP000002.3", 《WWW.NCBI.NLM.NIH.GOV/GENBANK》 * |
余志强: "枯草芽孢杆菌麦芽糖启动子P△glvA整合表达载体的构建及启动子功能的初步探讨", 《中国优秀硕士学位论文全文数据库工程科技I辑》 * |
张辉 等: "《细胞生物学理论及发展研究》", 31 August 2015, 中国水利水电出版社 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106480036A (en) * | 2016-11-30 | 2017-03-08 | 华南理工大学 | A kind of DNA fragmentation with promoter function and its application |
CN106480036B (en) * | 2016-11-30 | 2019-04-09 | 华南理工大学 | A kind of DNA fragmentation and its application with promoter function |
CN106947766A (en) * | 2017-04-12 | 2017-07-14 | 华南理工大学 | A kind of bacillus subtilis has DNA fragmentation and its application of promoter function |
CN107119051A (en) * | 2017-04-12 | 2017-09-01 | 华南理工大学 | A kind of bacillus megaterium has DNA fragmentation and its application of promoter function |
CN106947766B (en) * | 2017-04-12 | 2020-08-18 | 华南理工大学 | Bacillus subtilis DNA fragment with promoter function and application thereof |
CN107119051B (en) * | 2017-04-12 | 2020-09-22 | 华南理工大学 | Bacillus megaterium DNA fragment with promoter function and application thereof |
CN107698668A (en) * | 2017-10-23 | 2018-02-16 | 华南理工大学 | A kind of bacillus subtilis can improve signal peptide and its application of secernment efficiency |
Also Published As
Publication number | Publication date |
---|---|
CN106086025B (en) | 2020-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vester et al. | Improved cultivation and metagenomics as new tools for bioprospecting in cold environments | |
Iqbal et al. | Biocatalysts and small molecule products from metagenomic studies | |
Vercruysse et al. | Stress response regulators identified through genome-wide transcriptome analysis of the (p) ppGpp-dependent response in Rhizobium etli | |
CN106947766A (en) | A kind of bacillus subtilis has DNA fragmentation and its application of promoter function | |
Golanowska et al. | Comparison of highly and weakly virulent Dickeya solani strains, with a view on the pangenome and panregulon of this species | |
Lin et al. | Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT | |
CN106086025A (en) | A kind of DNA fragmentation with promoter function and application thereof | |
Specht et al. | Synthetic oligonucleotide libraries reveal novel regulatory elements in Chlamydomonas chloroplast mRNAs | |
Zhan et al. | Complete genome sequence of Maribacter sp. T28, a polysaccharide-degrading marine flavobacteria | |
CN100439506C (en) | Escherichia coli self-cracking method and its dedicated carrier and application | |
Kimura | Novel biological resources screened from uncultured bacteria by a metagenomic method | |
CN104630229B (en) | A kind of DNA fragmentation and application with promoter function | |
Yamada et al. | Retrieval of entire genes from environmental DNA by inverse PCR with pre‐amplification of target genes using primers containing locked nucleic acids | |
Zou et al. | An improved, versatile and efficient modular plasmid assembly system for expression analyses of genes in Xanthomonas oryzae | |
Söderberg et al. | Aliivibrio wodanis as a production host: development of genetic tools for expression of cold-active enzymes | |
Ren et al. | Construction of a Stable Expression System Based on the Endogenous hbpB/hbpC Toxin–Antitoxin System of Halomonas bluephagenesis | |
Wadley et al. | Nanopore sequencing for detection and characterization of phosphorothioate modifications in native DNA sequences | |
Cebolla et al. | Improvement of recombinant protein yield by a combination of transcriptional amplification and stabilization of gene expression | |
Reimann et al. | Specificities and functional coordination between the two Cas6 maturation endonucleases in Anabaena sp. PCC 7120 assign orphan CRISPR arrays to three groups | |
Yin et al. | The hybrid strategy of Thermoactinospora rubra YIM 77501T for utilizing cellulose as a carbon source at different temperatures | |
Quixley et al. | Construction of a reporter gene vector for Clostridium beijerinckii using a Clostridium endoglucanase gene | |
Nemr et al. | Culture media based on leaf strips/root segments create compatible host/organ setup for in vitro cultivation of plant Microbiota | |
CN104789564B (en) | A kind of method of promoter and recombinant expression carrier and application thereof and expression foreign protein | |
CN104046635A (en) | Application and usage method of nfiS gene for specific response of adversity signal | |
CN107119051B (en) | Bacillus megaterium DNA fragment with promoter function and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200218 |
|
CF01 | Termination of patent right due to non-payment of annual fee |