CN106076363A - 一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法 - Google Patents

一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法 Download PDF

Info

Publication number
CN106076363A
CN106076363A CN201610432534.0A CN201610432534A CN106076363A CN 106076363 A CN106076363 A CN 106076363A CN 201610432534 A CN201610432534 A CN 201610432534A CN 106076363 A CN106076363 A CN 106076363A
Authority
CN
China
Prior art keywords
tio
preparation
nano wire
coaxial heterogeneous
reacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610432534.0A
Other languages
English (en)
Other versions
CN106076363B (zh
Inventor
周小松
金蓓
徐旭耀
罗金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lingnan Normal University
Original Assignee
Lingnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lingnan Normal University filed Critical Lingnan Normal University
Priority to CN201610432534.0A priority Critical patent/CN106076363B/zh
Publication of CN106076363A publication Critical patent/CN106076363A/zh
Application granted granted Critical
Publication of CN106076363B publication Critical patent/CN106076363B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • B01J35/39
    • B01J35/40
    • B01J35/58
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明提供了一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法,所述方法包括如下步骤:S1.将银盐加入到乙二醇溶液中,然后加入含钛化合物,搅拌得混合液,加热反应,将所得产物得到过滤、洗涤、干燥,即得Ag/TiO2同轴异质纳米线;S2.将钴盐加入到乙醇溶液中,然后加入步骤S1所得Ag/TiO2同轴异质纳米线,加热反应,过滤、洗涤、干燥后即得所述光催化剂;本发明采用两步水热法制备出氧化钴修饰的Ag/TiO2同轴异质纳米线,避免了高温处理对TiO2产物的形貌和稳定性影响,并且避免了单质银被氧化,同时减少了能耗;且能够高效实现全水解。所述方法制备工艺简单,重复性好,具有较大的推广应用价值。

Description

一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备 方法
技术领域
本发明涉及无机材料制备技术领域,具体涉及制备一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法。
背景技术
能源危机和环境恶化是当前人类社会所面临的两个重大问题,随着经济的发展,人们对于生态环境和能源问题的关注日益增长,解决能源危机和环境污染的问题是提高我国人民生活质量、实现国家可持续发展的迫切需要。据环保部2014年报告,我国因经济发展而引发环境污染持续增长,人们生存环境持续恶化,仅此一年损失超过3.82万亿元。因此,开发清洁、有效的环境治理和能源技术已迫在眉睫。TiO2作为一种传统光催化材料因具有无毒、稳定性好、耐酸碱、光催化活性高等优点,不仅可直接利用降解工业废水和废气中的有机物和有毒物质,广泛应用于环境污染治理;而且还在太阳能电池、光解水制氢等新兴能源领域广泛使用。因此,TiO2基光催化材料的制备、光电性能及应用一直是国内外研究热点。
TiO2由于TiO2的能带隙为3.2 eV,能在波长低于380 nm以下的紫外光发生响应,而太阳光谱中紫外光不足5%,而波长为400~750 nm的可见光占到45%左右,这从根本上制约了TiO2光催化剂应用。由于贵金属表面等离子共振效应(Surface Plasmons Resonance,SPR)及与TiO2费米能级交错而形成的界面电荷分离,复合贵金属后,金属/TiO2复合光催化材料可实现对可见光响应,而且促进光生电荷有效分离,提高材料光电性能。Tada等人发现Au粒子的存在可以促进TiO2的表面电荷运输,而且Au粒子的SPR效应产生的“热电子”多少与其颗粒大小直接相关。Kamat等人设计的Ag/TiO2核壳结构,在紫外光激发下光生电子会从TiO2壳层转移到Ag核层存储起来,并通过还原C60等反应研究Ag核内电子的转移现象,这为新型金属/TiO2结构的设计及电荷分离和转移机理研究提供了参考模式。Xia等人发现Ag立方盒随颗粒的变小而吸收光谱发生红移,这为金属/TiO2复合光催化材料对可见光利用的选择性可调提供了新思路。助催化剂可以有效提高量子效率。据报道,使用适当的助催化剂将氧化活性中心和还原活性中心分开,量子效率可达100%。以贵金属作为助催化剂,不仅有利于半导体光激发电子快速转移,促进光生电荷分离,而且有利于H2的产生,从分子水平上探讨光催化过程中H2产生的机理。这些合理的设计理念为理性设计合成高效光催化剂提供了策略。
采用氧化钴修饰的Ag/TiO2同轴异质纳米线的方法促进其光催化全解水鲜有报道。因此,仍需研究一种制备氧化钴修饰Ag/TiO2同轴异质纳米线等离子体共振效应全解水光催化剂的制备方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种氧化钴修饰的Ag/TiO2同轴异质纳米线的制备方法,本发明提供的氧化钴修饰的Ag/TiO2同轴异质纳米线具有尺寸可控、大小均匀、量子效率高等优点。
本发明的另一目的在于提供上述制备方法制备得到的氧化钴修饰Ag/TiO2同轴异质纳米线。
本发明的另一目的在于提供上述氧化钴修饰的Ag/TiO2同轴异质纳米线在光催化全解水制备氢气和氧气、降解有机污染物等方面的应用。
本发明上述目的通过以下技术方案实现:
本发明提供了一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法,所述方法包括如下步骤:
S1.将银盐加入到乙二醇溶液中,然后加入含钛化合物,搅拌得混合液,加热反应,将所得产物得到过滤、洗涤、干燥,即得Ag/TiO2同轴异质纳米线;
S2.将钴盐加入到乙醇溶液中,然后加入步骤S1所得Ag/TiO2同轴异质纳米线,加热反应,过滤、洗涤、干燥后即得所述光催化剂;
所述银盐为醋酸银或硝酸银中的一种或两种;含钛化合物为钛酸丁酯或钛酸异丙酯中的一种或两种。
优选地,所述银盐与含钛化合物的反应摩尔比为1:(1~5)。
更优选地,所述银盐与含钛化合物的反应摩尔比为1:(1~3)。
优选地,所述S1中加热反应温度为180~220℃,反应时间为20~28h;所述S2中加热反应温度为100~140℃,反应时间为10~15h。
更优选地,所述S1中加热反应温度为200℃,反应时间为24h;所述S2中加热反应温度为120℃,反应时间为12h。
优选地,所述S1中银盐的加入量为满足其浓度在(0.02~0.05)mol/L;所述S2中氯化钴的加入量为满足其浓度在(0.01~0.04)mol/L。
优选地,所述S2中钴盐与Ag/TiO2同轴异质纳米线的反应质量比为1:(2~5)。
优选地,所述银盐为硝酸银,含钛化合物为钛酸丁酯。
优选地,所述S1和S2中加热反应为在水热反应釜中进行。
本发明提供的方法制备得到的氧化钴修饰Ag/TiO2同轴异质纳米线的尺寸可控、大小均匀,具有优异的可见光催化活性,在光催化全解水、降解有机污染物等领域具有广泛的应用前景。
本发明选用银盐作为原料,以在乙二醇中溶解性好的含钛化合物为钛源,采用乙二醇为溶剂,在溶剂热环境中发生反应,一步即可制备得到Ag/TiO2同轴异质纳米线;本发明采用溶剂法一步直接制备出晶化程度良好的Ag/TiO2同轴异质纳米线。所得产物无需高温处理,避免了高温处理对TiO2产物的形貌和稳定性的影响,同时也避免了单质Ag被氧化。本发明制备得到的Ag/TiO2同轴异质纳米线尺寸可控、大小均匀;Ag/TiO2同轴异质纳米线直径约为5nm以下,分布均匀,修饰量大小可控,而且制备得到的Ag/TiO2同轴异质纳米线具有优异的可见光催化活性,在光催化全解水、降解有机污染物等领域具有广泛的应用前景。
本发明提供的溶剂热法与其他溶剂热法存在明显区别,本发明选用乙二醇作为反应溶剂,乙二醇的沸点较高,为197℃,其可加热到200℃以上,在本发明提供的方法的反应过程中,乙二醇既作为溶剂又作为还原剂,其能够将Ag+还原成单质Ag,而无需添加任何还原剂。当选用乙醇或丙三醇等醇类作为反应溶剂,无法制备得到本发明相似效果的Ag/TiO2同轴异质纳米线;现有技术中在制备Ag/TiO2纳米线的过程中通常需要加入适量的还原剂,例如硼氢化钠,但是添加此类还原剂给产物的纯化带来了困难。本发明选用乙二醇作为反应溶剂,无需添加其它还原剂,还原得到的Ag纳米线直径约为50 nm以下,尺寸可控、大小均匀,修饰量大小可调,并且所得Ag/TiO2同轴异质纳米线的纯度高。
与现有技术相比,本发明具有以下有益效果:
(1)本发明采用两步法制备出氧化钴修饰Ag/TiO2同轴异质纳米线,所得产物无需高温处理,避免了高温处理对TiO2产物的形貌和稳定性影响,并且避免了单质银被氧化,同时减少了能耗;(2)高效利用太阳光。在太阳光(紫外-可见光)作用下,TiO2的价电子吸收紫外光激发到导带,并快速转移到外层贵金属纳米粒子上,形成负电活性中心,光催化过程中发生还原反应;产生的空穴转移到Co氧化物上,形成正电活性中心,光催化过程中发生氧化反应。而可见光甚至近红外光穿透TiO2层(20nm以下),激发Ag纳米线发生等离子体共振产生热电子,透过TiO2层转移到贵金属纳米粒子上,而产生的空穴转移到Co氧化物上。实现光催化过程中的氧化与还原反应分区域进行,从而降低了光生电子与空穴复合的概率,高效实现全水解(图1)。(3)助催化剂Co氧化物可以捕获空穴和降低氧过电位,改变水分子的吸附、解离、O-O双键生成、O2脱附等反应历程,快速有效分离光生电子-空穴对,促进光催化活性。(4)金属的形貌和粒径大小对等离子体共振效应产生很大的影响,对于较大纵横比的Ag纳米线而言,入射光在金属Ag被多次散射,增大光路长度和光吸收,提高太阳光的利用率。本发明提供的方法制备工艺简单,重复性好,具有较大的推广应用价值。
附图说明
图1为氧化钴修饰Ag/TiO2同轴异质结构(A)及其在太阳光作用下(B)电荷分离与分区域光催化氧化与还原反应示意图;
图2 为本发明制得的Ag/TiO2同轴异质纳米线扫描电子显微镜(SEM)和透射电镜(TEM)图:(a)Ag/TiO2纳米线SEM图;(b)Ag/TiO2纳米线TEM图;(c)Ag/TiO2纳米线HRTEM图;(d)钛元素映射图像(Elemental Mapping Images);(e)银元素映射图像;(f)氧元素映射图像;
图3 为本发明制得的Ag/TiO2纳米线光电子能谱(XPS)图谱:(a)全谱图;(b)Ag;(c)Ti;(d) O。
图4 为本发明实施例1制得的氧化钴修饰Ag/TiO2纳米线与对比例1制备的Ag/TiO2纳米颗粒在太阳光作用下光催化全解水效果图:(a)和(b)分别为实施例1中Ag/TiO2同轴异质纳米线产氢和产氧曲线、(c)和(d)分别为对比例1中Ag/TiO2纳米颗粒产氢和产氧曲线。
图5 为本发明实施例1制得的氧化钴修饰Ag/TiO2纳米线与对比例1制备的Ag/TiO2纳米颗粒在太阳光作用下光催化降解甲基橙效果图:(a)实施例1中氧化钴修饰Ag/TiO2纳米线催化效果图;(b) 对比例1制备的Ag/TiO2纳米颗粒催化效果图。
具体实施方式
下面结合说明书附图和具体实施例进一步说明本发明。下述实施例中所使用的实验方法如无特殊说明,均为常规方法:所使用原料、助剂等,如无特殊说明,均为可从常规市场购买等商业途径得到的原料和助剂。
实施例1 :光催化剂1的制备
在100 ml的烧杯中,将加入170 mg硝酸银(AgNO3)到盛有25 ml乙二醇(HO-CH2-CH2-OH,纯度≥99.5%)溶液中,充分搅拌后,缓慢滴入1 mmol ml钛酸丁酯(Ti(C4H9O)4,纯度≥99.0%)溶液,强烈搅拌30min,然后转移到50ml内衬四聚氟乙烯反应釜中200 ℃恒温保持24h,自然冷却到室温,所得产物经过滤,用蒸馏水、无水乙醇洗涤沉淀各三次,然后在60℃下,真空干燥24 h,制得Ag/TiO2同轴异质纳米线。
在含100mg氯化钴的乙醇溶液30ml,加入制备好的Ag/TiO2纳米线0.3 g,充分搅拌后,将其置于在50mL特氟隆密封高压釜,并保持在120℃反应12h。收集沉淀物,并用蒸馏水洗涤和无水乙醇三次,分别与烘箱干燥,在60℃真空干燥24h。制得氧化钴修饰的Ag/TiO2同轴异质纳米线。
采用此步骤制备Ag纳米线的长度约为50 nm,包裹TiO2层的厚度约为10nm,表面可明显看到存在氧化钴纳米颗粒。
实施例2 光催化剂2的制备
在100 ml的烧杯中,将加入340 mg硝酸银(AgNO3)到盛有25 ml乙二醇(HO-CH2-CH2-OH,纯度≥99.5%)溶液中,充分搅拌后,缓慢滴入1 mmol ml钛酸丁酯(Ti(C4H9O)4,纯度≥99.0%)溶液,强烈搅拌30min,然后转移到50ml内衬四聚氟乙烯反应釜中200 ℃恒温保持24h,自然冷却到室温,所得产物经过滤,用蒸馏水、无水乙醇洗涤沉淀各三次,然后在60℃下,真空干燥24 h,制得Ag/TiO2同轴异质纳米线。
在含100mg氯化钴的乙醇溶液30ml,加入制备好的Ag/TiO2纳米线0.3 g,充分搅拌后,将其置于在50mL特氟隆密封高压釜,并保持在120℃反应12h。收集沉淀物,并用蒸馏水洗涤和无水乙醇三次,分别与烘箱干燥,在60℃真空干燥24h。制得氧化钴修饰的Ag/TiO2同轴异质纳米线。
采用此步骤制备Ag纳米线的长度约为80 nm,包裹TiO2层的厚度约为10nm,表面可明显看到存在氧化钴纳米颗粒。
实施例3 光催化剂3的制备
在100 ml的烧杯中,将加入510 mg硝酸银(AgNO3)到盛有25 ml乙二醇(HO-CH2-CH2-OH,纯度≥99.5%)溶液中,充分搅拌后,缓慢滴入1 mmol ml钛酸丁酯(Ti(C4H9O)4,纯度≥99.0%)溶液,强烈搅拌30min,然后转移到50ml内衬四聚氟乙烯反应釜中200 ℃恒温保持24h,自然冷却到室温,所得产物经过滤,用蒸馏水、无水乙醇洗涤沉淀各三次,然后在60℃下,真空干燥24 h,制得Ag/TiO2同轴异质纳米线。
在含100mg氯化钴的乙醇溶液30ml,加入制备好的Ag/TiO2纳米线0.3 g,充分搅拌后,将其置于在50mL特氟隆密封高压釜,并保持在120℃反应12h。收集沉淀物,并用蒸馏水洗涤和无水乙醇三次,分别与烘箱干燥,在60℃真空干燥24h。制得氧化钴修饰的Ag/TiO2同轴异质纳米线。
采用此步骤制备Ag纳米线的长度约为50 nm,包裹TiO2层的厚度约为10nm,表面可明显看到存在氧化钴纳米颗粒。
对采用本发明方法制得的Ag/TiO2纳米线采用采用LEO1530VP型场发射扫描电子显微镜(SEM)(如说明书附图2)和日本电子公司JEOL-2010型透射电子显微镜进行形貌和结构分析(如说明书附图2)。结果表明:所得样品存在Cu、Ti、O等元素,Ag/TiO2呈线状结构,长度为1~2μm,直径约为50nm。
采用英国 VG ESM-LAB的光电能谱对制得的材料进行了XPS分析(如图3),结果表明产物中存在Ag、 Ti和O三种元素,其中Ag2p能级电子结合能为368.5 eV和374.5 eV,说明存在单质银。
对比例1 水热法制备Ag/TiO2纳米粉末光催化剂
将硝酸银(0.4g)完全溶解在75ml蒸馏水,然后逐滴加入4.5ml的钛酸丁酯,不断搅拌。然后将混合物在室温下搅拌2h,转移到一个100ml的聚四氟乙烯内衬不锈钢高压釜,在恒温干燥箱里到160 ℃恒温保持24h。自然冷却到室温,所得产物经过滤,用蒸馏水、无水乙醇洗涤沉淀各三次,然后在60℃下,真空干燥24 h。
实施例4:光催化活性评价
光催化全解水试验:光催化活性评价反应使用容积为100 ml石英玻璃反应器,在LABSOLAR-H2 (III)型反应装置上进行的(北京畅拓仪器设备有限公司)。使用300 W氙灯做为紫外-可见光光源。在一个典型的光解水实验中,将100 mg所得催化剂加入到80 ml 纯水中,先在暗室中超声分散20 min以得到较好的分散状态,为了达到脱附-吸附平衡,在开灯前,吹氮气通过反应器40分钟彻底去除溶解氧,确保反应器是在厌氧条件下。一个0.4毫升的气体是通过间歇采样间隔,采用气相色谱分析(GC-14C,岛津,日本,TCD)所得产物中的氢气和氧气。
光催化降解甲基橙试验:催化活性评价反应采用容积为200 ml玻璃反应器,在XPS-II型反应装置上进行的(南京胥江机电厂生产)。使用1000 W氙灯做为紫外-可见光光源,并使用自制滤液吸收紫外光源从而得到可见光光源,滤液采用NaNO3(2 M)来吸收波长低于400 nm以下的光。这一溶液层位于灯管与循环冷却水之间的夹层,这样经过水层进一步吸收紫外光后,使得紫外光吸收率达98%以上。将20 mg所得催化剂加入到200 ml 甲基橙(MO)溶液 (20 mg/l)中,先在暗室中超声分散15 min以得到较好的分散状态,为了达到脱附-吸附平衡,在开灯前,在通入200 ml/min 空气的情况下磁力搅拌吸附1 h,然后在室温下进行光催化反应。反应过程中,每隔一定时间取8 ml样一次,取得的悬浮液在高速离心机中离心 10 min以去除溶液中悬浮着的催化剂,取上层清液在日立 UV-3010分光光度计测试其浓度。甲基橙的脱色效率可以通过C = (A0-A)/A0×100%计算得到,其中A0是20 mg/lMO在465 nm处的吸光度,A是不同时间取出样品MO的吸光度。
对本发明实施例1的方法制得的氧化钴修饰Ag/TiO2同轴异质纳米线、和对照例1制备得到的Ag/TiO2纳米颗粒进行了光催化全解水的效果比较,具体可参看附图4,其中(a)和(b)分别为实施例1制备得到的Ag/TiO2同轴异质纳米线产氢和产氧曲线、(c)和(d)分别为对比例1制备得到的Ag/TiO2纳米颗粒产氢和产氧曲线。如图4对比可知,本发明制备得到的氧化钴修饰Ag/TiO2同轴异质纳米线,产氢产氧效率分别为234和117 mmol∙h-1, 对照例1制备的Ag/TiO2纳米颗粒,产氢产氧效率分别为138和69 mmol∙h-1
另外,太阳光作用下光催化降解甲基橙效果比较如图5所示,实施例1中氧化钴修饰Ag/TiO2同轴异质纳米线褪色率为96.8%,对比例1制备的Ag/TiO2纳米颗粒在同等条件下的褪色率仅为57%。由此可知,本发明制备得到的氧化钴修饰Ag/TiO2同轴异质纳米线具有更好的光催化活性。

Claims (10)

1.一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法,其特征在于,所述方法包括如下步骤:
S1.将银盐加入到乙二醇溶液中,然后加入含钛化合物,搅拌得混合液,加热反应,将所得产物得到过滤、洗涤、干燥,即得Ag/TiO2同轴异质纳米线;
S2.将钴盐加入到乙醇溶液中,然后加入步骤S1所得Ag/TiO2同轴异质纳米线,加热反应,过滤、洗涤、干燥后即得所述光催化剂;
所述银盐为醋酸银或硝酸银中的一种或两种;含钛化合物为钛酸丁酯或钛酸异丙酯中的一种或两种。
2.根据权利要求1所述的制备方法,其特征在于,所述银盐与含钛化合物的反应摩尔比为1:(1~5)。
3.根据权利要求2所述的制备方法,其特征在于,所述银盐与含钛化合物的反应摩尔比为1:(1~3)。
4.根据权利要求1所述的制备方法,其特征在于,所述S1中加热反应温度为180~220℃,反应时间为20~28h;所述S2中加热反应温度为100~140℃,反应时间为10~15h。
5.根据权利要求1所述的制备方法,其特征在于,所述S1中加热反应温度为200℃,反应时间为24h;所述S2中加热反应温度为120℃,反应时间为12h。
6.根据权利要求1所述的制备方法,其特征在于,所述S1中银盐的加入量为满足其浓度在(0.02~0.05)mol/L;所述S2中氯化钴的加入量为满足其浓度在(0.01~0.04)mol/L。
7.根据权利要求1所述的制备方法,其特征在于,所述S2中钴盐与Ag/TiO2同轴异质纳米线的反应质量比为1:(2~5)。
8.根据权利要求1所述的制备方法,其特征在于,所述银盐为硝酸银,含钛化合物为钛酸丁酯。
9.根据权利要求1所述的制备方法,其特征在于,所述S1和S2中加热反应为在水热反应釜中进行。
10.一种权利要求1至9任一所述的制备方法制备得到的氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂。
CN201610432534.0A 2016-06-17 2016-06-17 一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法 Active CN106076363B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610432534.0A CN106076363B (zh) 2016-06-17 2016-06-17 一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610432534.0A CN106076363B (zh) 2016-06-17 2016-06-17 一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN106076363A true CN106076363A (zh) 2016-11-09
CN106076363B CN106076363B (zh) 2019-03-12

Family

ID=57236518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610432534.0A Active CN106076363B (zh) 2016-06-17 2016-06-17 一种氧化钴修饰的Ag/TiO2同轴异质纳米线光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106076363B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107597167A (zh) * 2017-10-12 2018-01-19 上海师范大学 纳米Ag/CoO‑N催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513103A (zh) * 2011-11-14 2012-06-27 浙江大学 Ag/TiO2纳米异质结的光还原法表面活性剂诱导制备方法
JP2015071128A (ja) * 2013-10-02 2015-04-16 独立行政法人物質・材料研究機構 コア−シェル型光触媒の製造方法、コア−シェル型光触媒及びコア−シェル型光触媒を使用した水分解方法
CN104722302A (zh) * 2015-03-25 2015-06-24 浙江工业大学 酸化混晶TiO2纳米线负载型光催化剂及其制备与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513103A (zh) * 2011-11-14 2012-06-27 浙江大学 Ag/TiO2纳米异质结的光还原法表面活性剂诱导制备方法
JP2015071128A (ja) * 2013-10-02 2015-04-16 独立行政法人物質・材料研究機構 コア−シェル型光触媒の製造方法、コア−シェル型光触媒及びコア−シェル型光触媒を使用した水分解方法
CN104722302A (zh) * 2015-03-25 2015-06-24 浙江工业大学 酸化混晶TiO2纳米线负载型光催化剂及其制备与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FANG LI ET AL: ""Facile synthesis of Ag@TiO2 (B) hierarchical core–shell nanowires facile synthesis, growth mechanism and photocatalytic and antibacterial applications"", 《J MATER SCI: MATER ELECTRON》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107597167A (zh) * 2017-10-12 2018-01-19 上海师范大学 纳米Ag/CoO‑N催化剂及其制备方法和应用
CN107597167B (zh) * 2017-10-12 2020-04-28 上海师范大学 纳米Ag/CoO-N催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106076363B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
Cao et al. Engineering of Z-scheme 2D/3D architectures with Ni (OH) 2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution
Wei et al. Photocatalytic hydrogen evolution with simultaneous antibiotic wastewater degradation via the visible-light-responsive bismuth spheres-g-C3N4 nanohybrid: Waste to energy insight
Li et al. Boosting photocatalytic hydrogen production coupled with benzyl alcohol oxidation over CdS/metal–organic framework composites
Li et al. Construction of a ternary spatial junction in yolk–shell nanoreactor for efficient photo-thermal catalytic hydrogen generation
Gao et al. Enhanced moisture-resistance and excellent photocatalytic performance of synchronous N/Zn-decorated MIL-125 (Ti) for vaporous acetaldehyde degradation
Fang et al. Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting
Liu et al. Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation
CN101791565B (zh) 一种TiO2@石墨相氮化碳异质结复合光催化剂及其制备方法
Li et al. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis
CN106902810A (zh) 碳量子点修饰的单层钨酸铋纳米片复合光催化剂及其制备方法和应用
CN102500388B (zh) 铜、铋共掺杂的纳米二氧化钛光催化剂及其制备、应用
CN105921149B (zh) 一种溶剂热制备铜修饰二氧化钛纳米棒的方法
He et al. NH2-MIL-125 (Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution
Xu et al. MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2
CN112521618A (zh) 一种铋基金属有机框架材料及其制备方法和应用
Wang et al. Photocatalytic removal of MB and hydrogen evolution in water by (Sr0. 6Bi0. 305) 2Bi2O7/TiO2 heterostructures under visible-light irradiation
CN106362742B (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
Yang et al. Enhanced photocatalytic performance of C3N4 via doping with π-deficient conjugated pyridine ring and BiOCl composite heterogeneous materials
CN109985618A (zh) 一种H占据BiVO4-OVs的光催化材料、制备方法及其应用
Hou et al. Construction of an all-solid-state Z-scheme Ag@ Ag3PO4/TiO2-(F2) heterostructure with enhanced photocatalytic activity, photocorrosion resistance and mechanism insight
CN108339544B (zh) 富勒烯羧基衍生物修饰的光催化剂/超疏水膜复合材料
Jin et al. Enhanced photocatalytic performance of three-dimensional microstructure Bi2SiO5 by ionic liquid assisted hydrothermal synthesis
Liu et al. Construction of ternary hollow TiO2-ZnS@ ZnO heterostructure with enhanced visible-light photoactivity
Xie et al. Construction of a Z-scheme CdIn2S4/ZnS heterojunction for the enhanced photocatalytic hydrogen evolution
Zhu et al. Nanoflower-like CdS and SnS2 loaded TiO2 nanotube arrays for photocatalytic wastewater treatment and hydrogen production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant