CN106059972B - 一种基于机器学习算法的mimo相关信道下的调制识别方法 - Google Patents

一种基于机器学习算法的mimo相关信道下的调制识别方法 Download PDF

Info

Publication number
CN106059972B
CN106059972B CN201610353881.4A CN201610353881A CN106059972B CN 106059972 B CN106059972 B CN 106059972B CN 201610353881 A CN201610353881 A CN 201610353881A CN 106059972 B CN106059972 B CN 106059972B
Authority
CN
China
Prior art keywords
matrix
follows
signal
antenna
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610353881.4A
Other languages
English (en)
Other versions
CN106059972A (zh
Inventor
赵成林
刘晓凯
王鹏彪
许方敏
李斌
章扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201610353881.4A priority Critical patent/CN106059972B/zh
Publication of CN106059972A publication Critical patent/CN106059972A/zh
Application granted granted Critical
Publication of CN106059972B publication Critical patent/CN106059972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明一种基于机器学习算法的MIMO相关信道下的调制识别方法,属于通信领域;具体步骤为:首先,将通信发射端的每个数据流分别采用空时编码,每个码字分别通过Nt根发射天线发射出去;然后,根据接收端的相关矩阵和发射端的相关矩阵计算MIMO信道矩阵H;根据MIMO信道矩阵H,计算每个接收天线上的接收信号并进行修正;最后,每根接收天线分别对修正后的信号进行特征提取,针对提取的特征值进行训练测试,计算出该样本属于的调制识别模式;优点在于:对非高斯信道的鲁棒性和泛化能力较强,通过参数迭代可实现更加复杂环境下的调制体制识别;通过提取高阶矩和高阶累积量的特征,在较高信噪比下,信号特征差异明显,便于机器学习算法的分类。

Description

一种基于机器学习算法的MIMO相关信道下的调制识别方法
技术领域
本发明属于通信领域,具体是一种基于机器学习算法的MIMO相关信道下的调制识别方法。
背景技术
在无线通信中,为了充分利用通信资源,通信信号的体制和调制的样式越来越多样化、复杂化,导致通信环境也在不断的变化,空间传播的通信信号也采取了各种各样的调制方式。在许多应用中,需要监视通信信号的活动情况,区分信号的性质,甚至截获传输的信息内容;比如:在民用方面,有关职能部门需要监视民用通信信号,以实现干扰识别和电磁频谱管理。在军事应用中,通信情报系统作为通信电子战、信息站的重要手段,对战场的电磁频谱活动进行识别,从而更好的选择电子干扰策略,截取有用情报信息。调制方式是区分不同性质信号的一个重要特征,预想截获信息内容,监管设备必须知道信号的调制方式和调制参数。
传统SISO信道的信号识别方法,主要应用于单天线通信系统,信道环境相对单一,识别难度较小,目前虽然也取得了一定的研究成果,但多天线的系统还待进一步研究。
MIMO(Multiple-Input Multiple-Output)技术是4G的关键技术之一,指在发射端和接收端分别使用多个发射天线和多个接收天线,使信号通过发射端与接收端的多个天线传送和接收,在不增加系统带宽和天线发射功率的情况下,成倍的提高系统信道容量,使空间资源得到充分利用,从而改善通信质量。它通过多个天线实现多发多收,显示出明显的优势、被视为下一代移动通信的核心技术。在多天线的MIMO相关信道中,由于天线相关性、多径时延、信道噪声的存在,给接收端信号识别带来困难。尤其是天线相关性的存在,对接收端的信号调制识别带来了严峻的考验。
发明内容
本发明针对MIMO相关信道的信号调制识别的问题,提出了一种基于机器学习算法的MIMO相关信道下的调制识别方法。
具体步骤如下:
步骤一、将通信发射端的每个数据流分别采用空时编码,每个码字分别通过Nt根发射天线发射出去,得到一个n行Nt列的转置矩阵;
发射端数据流有n个,为[x1,x2,…,xk,...,xn];第k个数据流经过空时编码后的码字其中Nt表示发射天线的数目,Nr表示接收天线的数目。n个数据流经过空时编码后的码字组成一个n行Nt列的转置矩阵T。
步骤二、根据接收端的相关矩阵和发射端的相关矩阵计算MIMO信道矩阵H;
信道矩阵H为M×N的矩阵,计算公式如下:
其中,为接收端的相关矩阵,为发射端的相关矩阵,Aiid为独立同分布的瑞利衰落信道。
的具体公式推导如下:
首先,通过TDL延迟线,窄带MIMO信道的时延矩阵H(τ)表示为:
其中(τ-τl)表示时间的偏移量;L表示从单个发射天线到单个接收天线之间的所有路径;所有路径表示为:1,2,...,l,...L;L为整数;Al表示第l条路径上,时延为τl的复信道增益矩阵;
是第M根发射天线和第N根接收天线在第l条路径的系数;M的值与BS端(基站端,Base Station)的发射天线数量相等;N的值与MS端(移动端,Mobile Station)的接收天线数量相等;M和N均为整数。
然后,针对下行MIMO系统,对于两根不同的接收天线n1和n2的系数表示为:
其中,运算公式: 表示第m根发射天线和第n1根接收天线在第l条路径的系数;表示第m根发射天线和第n2根接收天线在第l条路径的系数;
最后,MS端所有接收天线的系数组成的系数矩阵RMS为:
RMS也就是接收端的相关矩阵
同理的具体公式推导如下:
针对下行MIMO系统,对于两根不同的发射天线m1和m2的系数表示为:
表示第m1根发射天线和第n根接收天线在第l条路径的系数;表示第m2根发射天线和第n根接收天线在第l条路径的系数;
最后,BS端所有发射天线的系数组成的系数矩阵RBS为:
RBS也就是发射端的相关矩阵
根据接收端的相关矩阵和发射端的相关矩阵从而得到MIMO相关信道矩阵H。
步骤三、发射端的每个数据流均发射到Nr个接收天线上,根据MIMO信道矩阵H,计算每个接收天线上的接收信号并进行修正;
针对发射端的第k个数据流,接收端的接收信号y(k)计算公式如下:
y(k)=Hx(k)+n(k)
其中,y(k)表示第k个接收信号,
n(k)是复高斯噪声,n(k)服从复高斯分布: 表示复高斯分布的方差;表示接收天线的单位矩阵。
在接收端增加信号处理模块对接收信号y(k)进行迫零均衡修正,得到估计出来的发送信号
公式如下:
WZF表示修正接收信号的失真程度;计算公式如下:
WZF=(HHH)-1HH
HH为信道矩阵H的共轭转置矩阵;
针对发射端的n个数据流,每根天线的接收点进行迫零均衡修正后,得到估计出来的发送信号为:
步骤四、每根接收天线分别对修正后的信号xr进行特征提取,提取九种不同的高阶累积量特征值;
每根接收天线均收到n个码字,形成信号xr
r={1,2,...Nr};
针对信号xr,选取N个采样点数计算信号特征:高阶矩和高阶累积量;
根据离散信号的特征,高阶矩Mpq表示为:
高阶累积量Cpq表示为:
p为高阶矩或者高阶累积量的阶数,q为高阶累积量中自变量的实际取值,q≤n。其中,
S表示集合{1,...α};ν表示集合S的子集,α为集合S中元素的个数。
提取的九种不同的信号高阶累积量特征值,包括:p=2,q=0时的高阶统计量C20(xr);p=2,q=1时的高阶统计量C21(xr);p=4,q=0时的高阶统计量C40(xr);p=4,q=1时的高阶统计量C41(xr);p=4,q=2时的高阶统计量C42(xr);p=6,q=0时的高阶统计量C60(xr);p=6,q=1时的高阶统计量C61(xr);p=6,q=2时的高阶统计量C62(xr);p=6,q=3时的高阶统计量C63(xr);
步骤五、将每根接收天线提取的高阶累积量特征值作为一组样本进行训练测试,计算出该样本属于的调制识别模式;
具体步骤如下:
步骤501、将每根接收天线提取的高阶累积量特征值作为一组样本,随机选取2A组,并分成训练数据样本和测试数据样本;
训练数据样本用来生成机器学习中的网络参数和向量,测试数据样本用来测试系统的鲁棒性和泛化能力;训练数据样本和测试数据样本各为A组。
步骤502、将A组训练数据样本输入到单层神经网络中,采用机器学习算法进行学习;
训练数据样本用向量矩阵表示为:
其中,xI=[C20(xI),C21(xI),...,C63(xI)]为九种高阶累积量特征值作为输入特征向量;Y为A组训练样本学习过程后输出的数据,yI是由0和1组成的n0维向量;如果训练样本xI属于某一个调制识别模式,在该训练样本对应的yI中某位模式位置输出为1,且n0维向量其余模式位置为0,n0为整数。
步骤503、根据单层神经网络训练网络参数的时间长短进行判断,如果机器学习算法需要实时调制识别模式,进入步骤504;否则,机器学习算法给予神经网络一定的时间冗余,进入步骤505;
步骤504、将三个网络参数输入权重wi,输出权重βi和偏置阈值bi带入激励函数g(x;θ),计算输出权重βi的值,进入步骤506;
其中,θ={a,b}为映射函数参数。
网络参数输入层和隐藏层的输入权重wi和偏置阈值bi随机生成,带入激励函数g(x;θ):
为隐藏层的神经网络节点数目,隐藏层和输出层的输出权重输入层和隐藏层的输入权重oI为调制识别输出模式,和输出类别yI一一对应。
将公式(25)进一步简化为:
训练过程中的实际输出: 为误差偏移向量。
在训练过程中令输出值和真实值的均方误差最小,则:
其中,C为误差的补偿系数,no为输出层的神经元个数。
进一步转化:
的广义逆矩阵。
结果如下:
从而进一步计算输出权重βi的值。
步骤505、采取自适应极限学习算法,迭代更新最佳输入权重wi和输出偏置阈值bi,得到最优对应的L组网络参数;
令随机生成组合:
uk,G=θk,G+F(θbest,Gk,G)
F为调节权重系数,取值为0到1;θbest,G为训练过程中性能最好的θk,G;θk,G为输入权重wi和偏置阈值bi的成对集合,k为集合θk,G生成的次数,每一次都迭代G次;G为迭代次数;L为输入权重wi和偏置阈值bi的成对值;
针对每一组输入权重wi和偏置阈值bi,得到:
为Hk,G的广义逆矩阵;T为输出结果的逆矩阵。
由最小均方误差公式可以求解出每一组的均方误差:
在求解出均方误差后,对wi和bi进行更新,并比较迭代结果是否符合误差范围:
根据迭代次数G结束,寻求wi和bi最优解,得到最优对应的L组wi和bi以及βi
步骤506、针对步骤504随机生成的网络参数或者步骤505的L组网络参数中选出一组,将网络参数带入每组测试数据样本进行测试,根据识别结果oI与实际结果yI进行对比,得到该组测试数据属于的调制识别模式。
本发明的优点是:
1)、一种基于机器学习算法的MIMO相关信道下的调制识别方法,对非高斯信道的鲁棒性和泛化能力较强,通过参数迭代可实现更加复杂环境下的调制体制识别。
2)、一种基于机器学习算法的MIMO相关信道下的调制识别方法,通过提取高阶矩和高阶累积量实现信号的特征提取,在较高信噪比下,信号特征差异明显,便于机器学习算法的分类。
3)、一种基于机器学习算法的MIMO相关信道下的调制识别方法,采用机器学习算法中的极限学习机对信号进行特征分类和学习记忆。算法复杂度低,用时少,性能优良。
4)、一种基于机器学习算法的MIMO相关信道下的调制识别方法,具有较强的鲁棒性和泛化能力,在调试识别方面取得了很好的效果。
附图说明
图1是本发明基于机器学习算法的MIMO相关信道下的调制识别方法的系统原理图;
图2是本发明基于机器学习算法的MIMO相关信道下的调制识别方法流程图;
图3是本发明对每组特征值样本计算归属调制识别模式的方法流程图。
具体实施方式
下面将结合附图对本发明作进一步的详细说明。
一种基于机器学习算法的MIMO相关信道下的调制识别方法,如图1所示,设计并应用了极限学习机对该信道的性能仿真验证。首先将调制信号分为三类,φ1={BPSK,QPSK,8PSK},φ2={16QAM,64QAM},φ3={φ12};其中φ1和φ2分别代表同一类别的信号,φ3代表不同类别的混合信号;其次,将信号通过MIMO相关信道,在接收端提取信号的参数特征;最后,机器学习算法完成对信号的调制分类。本发明验证了机器学习算法在信号盲识别、MIMO信道引起的多径效应、以及不同MIMO配置下的系统性能。[x1,x2,…,xk,...,xn]个数据流经过在发射端分别采用空时编码,分别通过Nt根发射天线发射出去;信号经过MIMO相关信道,每个接收天线上对信号进行接收,经过MIMO信号处理模块进行修正;每根接收天线分别对修正后的信号进行特征提取,通过提取信号的高阶矩和高阶累积量实现信号的特征提取,在机器学习部分,通过可差分编译的极限学习机,对特征进行学习,对学习模型的参数进行更新,从而在信号盲识别过程中实现对信号的准确识别和分类。
机器学习是一门多领域的交叉科学,它是人工智能的核心,专门致力于计算机怎样模拟和实现人的活动,实现设备的智能化操作。在本发明中,设备对信号类型未知,通过设备的学习和推理策略,系统在学习部分即训练部分,实现信息转化,用能够理解的形式记忆下来,并从中获取对整个识别系统有用的信息。在测试应用部分,该设备可以利用已经掌握的信息,在推理策略的支撑下,对MIMO信号实现调制类型的预估。设备通过识别正确率来判断该算法的可靠性和有效性。
具体步骤如图2所示,包括以下:
步骤一、将通信发射端的每个数据流分别采用空时编码,得到的每个码字分别通过Nt根发射天线发射出去,得到一个n行Nt列的转置矩阵;
发射端数据流有n个,为[x1,x2,…,xk,...,xn];第k个数据流经过空时编码后的码字其中Nt表示发射天线的数目,Nr表示接收天线的数目。n个数据流经过空时编码后的码字组成一个n行Nt列的转置矩阵T。
步骤二、根据接收端的相关矩阵和发射端的相关矩阵计算MIMO信道矩阵H;
信号经过MIMO信道中,由于相关性适得信号到达接收端后,幅值和相位发生严重变化,变化程度根据发射端和接收端天线的影响因子来决定。
信道矩阵H为Nr×Nt的矩阵,相关MIMO信道模型,用矩阵表示窄带MIMO信道:计算公式如下:
其中,为接收端的相关矩阵,为发射端的相关矩阵,Aiid为独立同分布的瑞利衰落信道。
假设发射机的天线间隔和接收端的天线间隔比发射端和接收端距离小很多,这样发射端的相关矩阵和接收端的相关矩阵完全独立,也符合大多数的无线通信环境。在这一个假设下,可以调整相关矩阵产生各种类型的MIMO信道,当为单位矩阵时,产生一个完全的i.i.d信道。就本发明研究的相关MIMO信道模型,求解相关矩阵H的过程如下。
的具体公式推导如下:
首先,通过TDL延迟线,窄带MIMO信道的时延矩阵H(τ)表示为:
其中(τ-τl)表示时间的偏移量;在相关MIMO信道环境下,每根发射天线由于空间瑞利衰落信道的存在,会产生多径效应;L表示从单个发射天线到单个接收天线之间的所有路径;所有路径表示为:1,2,...,l,...L;L为整数;Al表示第l条路径上,时延为τl的复信道增益矩阵;
是第M根发射天线和第N根接收天线在第l条路径的系数;M的值与BS端(基站端,Base Station)的发射天线数量相等;N的值与MS端(移动端,Mobile Station)的接收天线数量相等;M和N均为整数。
然后,针对下行MIMO系统,对于两根不同的接收天线n1和n2的系数表示为:
表示第m根发射天线和第n1根接收天线在第l条路径的系数;表示第m根发射天线和第n2根接收天线在第l条路径的系数;
最后,MS端所有接收天线的系数组成的系数矩阵RMS为:
RMS也就是接收端的相关矩阵
同理的具体公式推导如下:
针对下行MIMO系统,对于两根不同的发射天线m1和m2的系数表示为:
表示第m1根发射天线和第n根接收天线在第l条路径的系数;表示第m2根发射天线和第n根接收天线在第l条路径的系数;
最后,BS端所有发射天线的系数组成的系数矩阵RBS为:
RBS也就是发射端的相关矩阵
根据接收端的相关矩阵和发射端的相关矩阵从而得到MIMO相关信道矩阵H。
相关的MIMO矩阵可以由以下式子表示:
步骤三、发射端的每个数据流均发射到Nr个接收天线上,根据MIMO信道矩阵H,计算每个接收天线上的接收信号并进行修正;
针对发射端的n个数据流,根据MIMO信道矩阵H,计算接收端的接收信号并分别进行修正;考虑BS端有Nt根发射天线,MS端有Nr根接收天线,其中Nr≥Nt,如果假定MIMO信道为平坦时不变衰落,接收端可以用以下模型表示:
针对发射端的第k个数据流,接收端的接收信号y(k)计算公式如下:
y(k)=Hx(k)+n(k) (6)
其中,y(k)表示第k个接收信号,
n(k)是复高斯噪声,n(k)服从复高斯分布: 表示复高斯分布的方差;表示接收天线的单位矩阵。
在接收端增加信号处理模块,该信号处理模块可以实现对信道的估计和跟踪,在完成信道估计的过程中,引入迫零均衡算法对信道进行迫零均衡。如果采用信道估计,该识别装置为半监督学习,如果在信号处理模块部分,不采用对信道的估计和跟踪,该装置为无监督学习,对应的识别算法为盲识别算法。
在接收端增加信号处理模块对接收信号y(k)进行迫零均衡修正,得到估计出来的发送信号
公式如下:
WZF表示修正接收信号的失真程度;计算公式如下:
WZF=(HHH)-1HH (8)
HH为信道矩阵H的共轭转置矩阵;
针对发射端的n个数据流,接收点进行迫零均衡修正后得到估计出来的发送信号为:
在本发明中,假设接收端已经知道了信道的状态,在此基础上通过信道的状态偏差来验证机器学习的鲁棒性和有效性。
步骤四、每根接收天线分别对修正后的信号xr进行特征提取,提取九种不同的高阶累积量特征值。
以随机变量x为例,其p阶高阶矩Mpq(x)为:
Mpq(x)=E[xp-q(x*)q] (9)
其中,p为高阶矩的阶数,q为变量x的取值。
同理,其p阶累积量的为:
其中,k为高阶累积量的阶数,q为变量x的取值。
每根接收天线均收到n个码字,形成信号xr
针对信号xr,选取N个采样点数计算信号特征:高阶矩和高阶累积量;
根据离散信号的特征,高阶矩Mpq表示为:
高阶累积量Cpq表示为:
p为高阶矩或者高阶累积量的阶数,q为高阶累积量中自变量的实际取值,q≤n。其中,
S表示集合{1,...α};ν表示集合S的子集,α为集合S中元素的个数。
提取的九种不同的信号高阶累积量特征值,包括:p=2,q=0时的高阶统计量C20(xr);p=2,q=1时的高阶统计量C21(xr);p=4,q=0时的高阶统计量C40(xr);p=4,q=1时的高阶统计量C41(xr);p=4,q=2时的高阶统计量C42(xr);p=6,q=0时的高阶统计量C60(xr);p=6,q=1时的高阶统计量C61(xr);p=6,q=2时的高阶统计量C62(xr);p=6,q=3时的高阶统计量C63(xr);
当p=2,q=0时,高阶统计量为:
当p=2,q=1时,高阶统计量为:
当p=4,q=0时,高阶统计量为:
当p=4,q=1时,高阶统计量为:
当p=4,q=2时,高阶统计量为:
当p=6,q=0时,高阶统计量为:
当p=6,q=1时,高阶统计量为:
当p=6,q=2时,高阶统计量为:
当p=6,q=3时,高阶统计量为:
步骤五、将每根接收天线提取的高阶累积量特征值作为一组样本进行训练测试,计算出该样本属于的调制识别模式;
将每根接收天线提取的高阶累积量特征值的一组数据组成一组样本向量,对同一调制体制类型的信号进行多次生成接收可以得到大量的数据样本向量。这些数据样本向量将对后面的机器学习算法提供有力的数据依据。
训练数据样本用来生成机器学习中的网络参数和向量,测试数据样本用来测试系统的鲁棒性和泛化能力;训练数据样本和测试数据样本各为A组。
如图3所示,具体过程如下:
步骤501、将每根接收天线提取的高阶累积量特征值作为一组样本,随机选取2A组,并分成训练数据样本和测试数据样本;
步骤502、将A组训练数据样本输入到单层神经网络中,采用机器学习算法进行学习;
本发明采用极限学习机的思想,来建立学习模型,极限学习机为单层神经网络,对于单层神经网络,例如训练数据样本用向量矩阵表示为:
其中,xI=[C20(xI),C21(xI),...,C63(xI)]为九种高阶累积量特征值作为输入特征向量,Y={y1,…,yI,...yA},Y为A组训练样本学习过程后输出的数据,代表n0种调制识别模式;yI是是机器学习分类的结果,由0和1组成n0维向量;如果训练样本xI属于某一个调制识别模式,在该训练样本对应的yI中某位模式位置输出为1,且n0维向量其余模式位置为0,n0为整数。
步骤503、根据单层神经网络训练网络参数的时间长短进行判断,如果机器学习算法需要实时调制识别模式,进入步骤504;否则,机器学习算法给予神经网络一定的时间冗余,进入步骤505;
步骤504、将三个网络参数输入权重wi,输出权重βi和偏置阈值bi带入激励函数g(x;θ),计算输出权重βi的值,进入步骤506;
考虑机器学习的单层神经网络结构,在学习过程中采用单层学习网络,当训练样本向量组xI=[C20(xI),C21(xI),...,C63(xI)]输入到网络中时,同时引进激励函数,经常用到的激励函数有2个,包括:
g(x;θ)=exp(-b||x-a||) (24)
其中,θ={a,b}为映射函数参数,||.||为表示欧几里得范数。激励函数多为非线性方程,目的是增加机器学习算法的适应能力。
本发明考虑单层的神经网络(SLFNs),将随机生成的输入权重wi和偏置阈值bi,带入激励函数g(x;θ),计算输出权重βi的值;
在训练数据对网络进行训练工程中,随机生成参数wi和bi后,由激励函数g(x;θ)可得:
g(x)为激励函数,可以选择高斯函数和S型函数。为隐藏层的神经网络节点数目,隐藏层和输出层的输出权重βi为训练过程中需要求解的数据。;输入层和隐藏层的输入权重bi为第i个隐藏节点的偏置。由以上等式公式可以确切知道的参数有随机生成参数wi和bi,激励函数g(x;θ),以及调制识别中的输出模式oI,和输出类别yI一一对应,此结果为训练数据在训练过程中归属的模式。由以上公式,可以得到未知参数βi
引用的机器学习算法,输入权重wi和偏置阈值bi随机生成,此算法避免了以往单层神经网络的迭代更新复杂性和局部最优的缺点。
在求解βi的过程中,将公式(25)进一步简化为:
f(xI)=h(xI)β,I=1,....,A (26)
训练过程中的实际输出: 为误差偏移向量。
单层神经网络学习的目标是使得输出的误差最小,在训练过程中需要输出值和真实值的均方误差最小,令
其中C为误差的补偿系数,no为输出层的神经元个数。
传统的一些基于梯度下降的算法,通过大量的迭代可以解决以上问题。而在极限学习机的算法中,一旦输入权重wi和隐层的偏置bi被随机确定,隐层的输出矩阵也被确定。假定误差为0,进一步将最小值问题转化为最小二乘法问题,即令:
为矩阵的Moore-Penrose广义逆矩阵,并且解唯一。
结果如下:
可以得到β为输出权重βi的网络输出矩阵,从而进一步计算输出权重βi的值。
步骤505、采取自适应极限学习算法,迭代更新最佳输入权重wi和输出偏置阈值bi,得到最优对应的L组网络参数;
针对系统性能不佳的情况,采取自适应极限学习算法,寻求最优输入权重wi和偏置阈值bi;系统采用以上极限学习机对MIMO调制体制识别后,由于在训练阶段wi和bi一旦随机生成之后,在学习过程中也不会改变,存在随机次数少,这样难免遗漏系统的最优解。如果在系统性能不佳的情况下,采取自适应极限学习算法,采用如下公式可以寻求最优的wi和bi。同时引进了以差分编译来实现输出权重和隐层偏置的更新,其更新过程如下:
确定一组输出权重和隐层偏置,令随机生成组合:
uk,G=θk,G+F(θbest,Gk,G) (31)
其中F为调节权重系数,取值为0到1;θbest,G为训练过程中性能最好的θk,G;θk,G为输入权重wi和偏置阈值bi的成对集合,k为集合θk,G生成的次数,每一次都迭代G次;G为迭代次数。L为输入权重wi和偏置阈值bi的成对值;
在集合中寻求集合的最优解,用来动态更改系统输入权重wi和偏置阈值bi。在每次迭代之后,计算输出权重和最小均方误差RMSE。针对每一组输入权重wi和偏置阈值bi,得到:
为Hk,G的广义逆矩阵;T为输出结果的逆矩阵。
Hk,G为:
由最小均方误差公式可以求解出每一组的均方误差。
在求解出均方误差后,再用一下公式对wi和bi进行更新:
更新的过程就是查看结果是否符合误差范围,如果符合,在G+1代的更新过程中,继续使用原来的值,即使用原来的θk,G,如果不符合,按照公式(35)来更新,更新的过程就是在并行的μk,G替换,直到G次迭代之后,更新的θk,G都为误差在本向量内是最小的。误差的判断标准用>ε·来表示。如果迭代结束了,可以得到最优的θk,G,同时更新k,寻求下次的最优解,直到k循环结束,就会找到一个最优解的矩阵,在学习的过程中,输入权重和偏执都是从最优的矩阵中选择生成,这样就克服了系统的局部最优的问题。
根据迭代次数G,直至结束,得到的最好的θbest,1寻求wi和bi最优解,得到对应的L组wi和bi以及βi
然后交叉编译,评估,待迭代结束后,获得最好的输出权重和输出偏置。此算法是以牺牲时间计算复杂度,来换取系统性能的提升,在时间要求不高的情况下,可以取得较好的效果。
步骤506、针对步骤504随机生成的网络参数或者步骤505的L组网络参数中选出一组,将网络参数带入每组测试数据样本进行测试,根据识别结果oI与实际结果yI进行对比,得到该组测试数据属于的调制识别模式。
在训练样本得到输出权重矩阵β后,根据测试步骤,将A组测试数据样本向量输入到网络中进行测试,wi和bi以及βi为训练过程中得到的参数,根据公式(25),可以求出在测试过程中的识别结果o={o1,…,oI,...oA},识别结果与实际结果对比,可以得到网络的正确识别概率,学习性能以及在不同信噪比的恶劣环境中的鲁棒性。
本发明一种基于机器学习算法的MIMO相关信道下的调制识别方法,实现了在MIMO相关信道下的信号盲识别,通过不同的相关系数,天线配置,路径配置,验证了鲁棒性和泛化能力,从而提高了MIMO相关信道下信号识别正确率。在MIMO相关信道智能识别中具有极其广泛的应用价值。

Claims (1)

1.一种基于机器学习算法的MIMO相关信道下的调制识别方法,其特征在于,包括如下步骤:
步骤一、将通信发射端的每个数据流分别采用空时编码,每个码字分别通过Nt根发射天线发射出去,得到一个n行Nt列的转置矩阵;
发射端数据流有n个,为[x1,x2,…,xk,...,xn];第k个数据流经过空时编码后的码字其中Nt表示发射天线的数目,n个数据流经过空时编码后的码字组成一个n行Nt列的转置矩阵T;
步骤二、根据接收端的相关矩阵和发射端的相关矩阵计算MIMO信道矩阵H;
信道矩阵H为M×N的矩阵,计算公式如下:
其中,为接收端的相关矩阵,为发射端的相关矩阵,Aiid为独立同分布的瑞利衰落信道;
具体公式推导如下:
首先,通过TDL延迟线,窄带MIMO信道的时延矩阵H(τ)表示为:
其中(τ-τl)表示时间的偏移量;L表示从单个发射天线到单个接收天线之间的所有路径;所有路径表示为:1,2,...,l,...L;L为整数;Al表示第l条路径上,时延为τl的复信道增益矩阵;
是第M根发射天线和第N根接收天线在第l条路径的系数;M的值与BS端的发射天线数量相等;N的值与MS端的接收天线数量相等;M和N均为整数;
然后,针对下行MIMO系统,对于两根不同的接收天线n1和n2的系数表示为:
其中,运算公式: 表示第m根发射天线和第n1根接收天线在第l条路径的系数;表示第m根发射天线和第n2根接收天线在第l条路径的系数;
最后,MS端所有接收天线的系数组成的系数矩阵RMS为:
RMS也就是接收端的相关矩阵
同理的具体公式推导如下:
针对下行MIMO系统,对于两根不同的发射天线m1和m2的系数表示为:
表示第m1根发射天线和第n根接收天线在第l条路径的系数;表示第m2根发射天线和第n根接收天线在第l条路径的系数;
最后,BS端所有发射天线的系数组成的系数矩阵RBS为:
RBS也就是发射端的相关矩阵
根据接收端的相关矩阵和发射端的相关矩阵从而得到MIMO相关信道矩阵H;
步骤三、发射端的每个数据流均发射到Nr个接收天线上,根据MIMO信道矩阵H,计算每个接收天线上的接收信号并进行修正;
针对发射端的n个数据流,每根天线的接收点进行迫零均衡修正后,得到估计出来的发送信号为:
针对发射端的第k个数据流,接收端的接收信号y(k)计算公式如下:
y(k)=Hx(k)+n(k)
其中,y(k)表示第k个接收信号,
n(k)是复高斯噪声,n(k)服从复高斯分布: 表示复高斯分布的方差;表示接收天线的单位矩阵;
在接收端对接收信号y(k)进行迫零均衡修正,得到估计出来的发送信号
WZF表示修正接收信号的失真程度;计算公式如下:WZF=(HHH)-1HH;HH为信道矩阵H的共轭转置矩阵;
步骤四、每根接收天线分别对修正后的信号xr进行特征提取,提取九种不同的高阶累积量特征值;
每根接收天线均收到n个码字,形成信号xr
针对信号xr,选取N个采样点数计算信号特征:高阶矩和高阶累积量;
根据离散信号的特征,高阶矩Mpq表示为:
高阶累积量Cpq表示为:
p为高阶矩或者高阶累积量的阶数,q为高阶累积量中自变量的实际取值,q≤n;其中,
S表示集合{1,...α};ν表示集合S的子集,α为集合S中元素的个数;
提取的九种不同的信号高阶累积量特征值,包括:p=2,q=0时的高阶统计量C20(xr);p=2,q=1时的高阶统计量C21(xr);p=4,q=0时的高阶统计量C40(xr);p=4,q=1时的高阶统计量C41(xr);p=4,q=2时的高阶统计量C42(xr);p=6,q=0时的高阶统计量C60(xr);p=6,q=1时的高阶统计量C61(xr);p=6,q=2时的高阶统计量C62(xr);p=6,q=3时的高阶统计量C63(xr);
步骤五、将每根接收天线提取的高阶累积量特征值作为一组样本进行训练测试,计算出该样本属于的调制识别模式;
具体为:
步骤501、将每根接收天线提取的高阶累积量特征值作为一组样本,随机选取2A组,并分成训练数据样本和测试数据样本;
训练数据样本和测试数据样本各为A组;
步骤502、将A组训练数据样本输入到单层神经网络中,采用机器学习算法进行学习;
训练数据样本用向量矩阵表示为:
其中,xI=[C20(xI),C21(xI),...,C63(xI)]为九种高阶累积量特征值作为输入特征向量;Y为A组训练样本学习过程后输出的数据,yI是由0和1组成的n0维向量;如果训练样本xI属于某一个调制识别模式,在该训练样本对应的yI中某位模式位置输出为1,且n0维向量其余模式位置为0,n0为整数;
步骤503、根据单层神经网络训练网络参数的时间长短进行判断,如果机器学习算法需要实时调制识别模式,进入步骤504;否则,机器学习算法给予神经网络一定的时间冗余,进入步骤505;
步骤504、将三个网络参数输入权重wi,输出权重βi和偏置阈值bi带入激励函数g(x;θ),计算输出权重βi的值,进入步骤506;
其中,θ={a,b}为映射函数参数;
网络参数输入层和隐藏层的输入权重wi和偏置阈值bi随机生成,带入激励函数g(x;θ):
为隐藏层的神经网络节点数目,隐藏层和输出层的输出权重输入层和隐藏层的输入权重oI为调制识别输出模式,和输出类别yI一一对应;
将上述公式进一步简化为:f(xI)=h(xI)β,I=1,....,A
训练过程中的实际输出: 为误差偏移向量;
在训练过程中令输出值和真实值的均方误差最小,则:
其中,C为误差的补偿系数,no为输出层的神经元个数;
进一步转化:
的广义逆矩阵;
结果如下:
从而进一步计算输出权重βi的值;
步骤505、采取自适应极限学习算法,迭代更新最佳输入权重wi和输出偏置阈值bi,得到最优对应的L组网络参数;
令随机生成组合:
uk,G=θk,G+F(θbest,Gk,G)
F为调节权重系数,取值为0到1;θbest,G为训练过程中性能最好的θk,G;θk,G为输入权重wi和偏置阈值bi的成对集合,k为集合θk,G生成的次数,每一次都迭代G次;G为迭代次数;L为输入权重wi和偏置阈值bi的成对值;
针对每一组输入权重wi和偏置阈值bi,得到:
为Hk,G的广义逆矩阵;T为输出结果的逆矩阵;
由最小均方误差公式可以求解出每一组的均方误差:
在求解出均方误差后,对wi和bi进行更新,并比较迭代结果是否符合误差范围:
根据迭代次数G结束,寻求wi和bi最优解,得到最优对应的L组wi和bi以及βi
步骤506、针对步骤504随机生成的网络参数或者步骤505的L组网络参数中选出一组,将网络参数带入每组测试数据样本进行测试,根据识别结果oI与实际结果yI进行对比,得到该组测试数据属于的调制识别模式。
CN201610353881.4A 2016-05-25 2016-05-25 一种基于机器学习算法的mimo相关信道下的调制识别方法 Active CN106059972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610353881.4A CN106059972B (zh) 2016-05-25 2016-05-25 一种基于机器学习算法的mimo相关信道下的调制识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610353881.4A CN106059972B (zh) 2016-05-25 2016-05-25 一种基于机器学习算法的mimo相关信道下的调制识别方法

Publications (2)

Publication Number Publication Date
CN106059972A CN106059972A (zh) 2016-10-26
CN106059972B true CN106059972B (zh) 2019-04-26

Family

ID=57175358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610353881.4A Active CN106059972B (zh) 2016-05-25 2016-05-25 一种基于机器学习算法的mimo相关信道下的调制识别方法

Country Status (1)

Country Link
CN (1) CN106059972B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108009642B (zh) * 2016-10-31 2021-12-14 腾讯科技(深圳)有限公司 分布式机器学习方法和系统
CN106680775A (zh) * 2016-12-12 2017-05-17 清华大学 一种自动识别雷达信号调制方式的方法和系统
CN107169469B (zh) * 2017-06-02 2020-06-19 南京理工大学 一种基于机器学习的mimo雷达的材料识别方法
CN107547460A (zh) * 2017-08-21 2018-01-05 西安电子科技大学 基于深度学习的无线通信调制信号识别方法
CN107994973B (zh) * 2017-12-04 2020-02-21 电子科技大学 一种自适应调制与编码方法
CN108462517B (zh) * 2018-03-06 2021-02-09 东南大学 一种基于机器学习的mimo链路自适应传输方法
CN108596204B (zh) * 2018-03-15 2021-11-09 西安电子科技大学 一种基于改进型scdae的半监督调制方式分类模型的方法
CN108540202B (zh) * 2018-03-15 2021-01-26 西安电子科技大学 一种卫星通信信号调制方式识别方法、卫星通信系统
CN108900454B (zh) * 2018-06-28 2020-02-18 北京邮电大学 一种基于机器学习的调制方式参数盲检方法及装置
WO2020067940A1 (en) * 2018-09-27 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Steering vector weighting for zf backhaul transmission
CN109547376A (zh) * 2018-12-17 2019-03-29 电子科技大学 一种基于调制特性的高斯混合模型的调制识别方法
CN109787926A (zh) * 2018-12-24 2019-05-21 合肥工业大学 一种数字信号调制方式识别方法
CN109922427B (zh) * 2019-03-06 2020-09-11 东南大学 利用大规模阵列天线的智能无线定位系统和方法
CN110300077B (zh) * 2019-04-15 2021-12-07 南京邮电大学 基于极端学习机的空间相关mimo系统的盲调制识别算法
CN110110794B (zh) * 2019-05-10 2021-06-29 杭州电子科技大学 基于特征函数滤波的神经网络参数更新的图像分类方法
US10826581B1 (en) * 2019-07-19 2020-11-03 Qualcomm Incorporated Machine-learning based method for MIMO detection complexity reduction
CN110798275A (zh) * 2019-10-16 2020-02-14 西安科技大学 一种矿井多模无线信号精确识别方法
CN112054832B (zh) * 2020-09-08 2021-10-15 西安交通大学 一种深度学习多输入多输出检测方法
CN113269425B (zh) * 2021-05-18 2022-06-07 北京航空航天大学 无监督条件下设备健康状态的定量评估方法及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1829137A (zh) * 2005-03-02 2006-09-06 株式会社日立制作所 无线数据通信系统及无线数据通信方法
CN102244564A (zh) * 2010-05-11 2011-11-16 中兴通讯股份有限公司 多输入多输出mimo系统的下行传输方法和基站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10080159B2 (en) * 2014-06-24 2018-09-18 Qualcomm Incorporated Dynamic bandwidth management for load-based equipment in unlicensed spectrum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1829137A (zh) * 2005-03-02 2006-09-06 株式会社日立制作所 无线数据通信系统及无线数据通信方法
CN102244564A (zh) * 2010-05-11 2011-11-16 中兴通讯股份有限公司 多输入多输出mimo系统的下行传输方法和基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Semi-blind Channel Estimation of MIMO-OFDM System Based on Extreme Learning Machine;Ling Yang,Binbin Xue,Mingming Nie等;《2013 Sixth International Symposium on Computational Intelligence and Design》;20131231;全文
时变MIMO信道卡尔曼追踪的改进算法;陈晓敏,朱江,赵成林等;《通信技术》;20081231;全文

Also Published As

Publication number Publication date
CN106059972A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN106059972B (zh) 一种基于机器学习算法的mimo相关信道下的调制识别方法
CN111630787B (zh) 基于深度学习的mimo多天线信号传输与检测技术
CN110365612B (zh) 一种基于近似消息传递算法的深度学习波束域信道估计方法
Ozpoyraz et al. Deep learning-aided 6G wireless networks: A comprehensive survey of revolutionary PHY architectures
CN107332598B (zh) 一种基于深度学习的mimo系统联合预编码和天线选择方法
CN110113288B (zh) 一种基于机器学习的ofdm解调器的设计和解调方法
CN109257309A (zh) 一种高性能的大规模mimo下行链路传输信道估计方法
WO2020253691A1 (zh) 一种基于共轭梯度下降法的深度学习信号检测方法
Yang et al. Deep multimodal learning: Merging sensory data for massive MIMO channel prediction
Dong et al. Framework on deep learning-based joint hybrid processing for mmWave massive MIMO systems
Elbir et al. Federated learning for physical layer design
CN110430150A (zh) 一种基于神经网络的蜂窝移动通信系统接收机设计方法
Yang et al. A learning-aided flexible gradient descent approach to MISO beamforming
Zhang et al. Pilot-assisted MIMO-V-OFDM systems: Compressed sensing and deep learning approaches
CN109547376A (zh) 一种基于调制特性的高斯混合模型的调制识别方法
Xia et al. Model-driven beamforming neural networks
Van Huynh et al. Generative AI for physical layer communications: A survey
Yang et al. Dynamic neural network for MIMO detection
CN109936399A (zh) 一种基于深度神经网络的不可信中继网络天线选择方法
Tato et al. Neural network aided computation of generalized spatial modulation capacity
ElMossallamy et al. Noncoherent MIMO codes construction using autoencoders
Omondi et al. Towards artificial intelligence-aided mimo detection for 6g communication systems: a review of current trends, challenges and future directions
Ro et al. Improved MIMO signal detection based on DNN in MIMO-OFDM system
CN113489545B (zh) 基于k均值聚类的光空间脉冲位置调制分步分类检测方法
Akyıldız et al. Search-free precoder selection for 5G new radio using neural networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant