CN106046410B - 与基底锚定的多孔膜的制备方法 - Google Patents

与基底锚定的多孔膜的制备方法 Download PDF

Info

Publication number
CN106046410B
CN106046410B CN201610413745.XA CN201610413745A CN106046410B CN 106046410 B CN106046410 B CN 106046410B CN 201610413745 A CN201610413745 A CN 201610413745A CN 106046410 B CN106046410 B CN 106046410B
Authority
CN
China
Prior art keywords
substrate
preparation
perforated membrane
anchoring
stable state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610413745.XA
Other languages
English (en)
Other versions
CN106046410A (zh
Inventor
刁华鑫
杨立功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Shichuang Energy Co Ltd
Original Assignee
Changzhou Shichuang Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Shichuang Energy Technology Co Ltd filed Critical Changzhou Shichuang Energy Technology Co Ltd
Priority to CN201610413745.XA priority Critical patent/CN106046410B/zh
Publication of CN106046410A publication Critical patent/CN106046410A/zh
Application granted granted Critical
Publication of CN106046410B publication Critical patent/CN106046410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2339/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2439/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种与基底锚定的多孔膜的制备方法,包括如下步骤:(1)将聚合物及偶联剂溶解于溶剂中,配置聚合物溶液;将基底置于紫外光下照射一定时间备用;(2)将所配聚合物溶液滴加至基底表面,并置于封闭容器中;(3)从基底下方向封闭容器中通入蒸汽,将相对湿度控制在稳定状态,将基底在稳定状态的湿度气氛中静置一定时间;(4)将基底从湿度气氛中取出,干燥后即可得到与基底锚定的有序多孔膜。本发明制备的有序多孔膜能与基底锚定。

Description

与基底锚定的多孔膜的制备方法
技术领域
本发明涉及与基底锚定的多孔膜的制备方法。
背景技术
已有的普通水滴模板法是一种可广泛适用于聚合物和纳米材料的动态可控的模板化自组装方法。不同于常规模板法的繁琐步骤,水滴模板法利用水作为介质可以实现一步法的制备过程,在化学、生物学、光学以及微电子学等领域具有巨大的应用潜力。但是目前通常使用的水滴模板法,所得到的多孔膜可以轻易地与基底剥离,即主要目的仅仅是为了获得多孔薄膜,基底只是生成此多孔薄膜的工具。
而有些领域,不仅需要在基底上生成多孔薄膜,还需要该生成的多孔薄膜能与基底锚定,故需要研发出能制备与基底锚定的多孔膜的新工艺。
发明内容
本发明的目的在于提供一种与基底锚定的多孔膜的制备方法,其制备的有序多孔膜能与基底锚定。
为实现上述目的,本发明的技术方案是设计一种与基底锚定的多孔膜的制备方法,包括如下步骤:
(1)将聚合物及偶联剂溶解于溶剂中,配置聚合物溶液;将基底置于紫外光下照射一定时间备用;
(2)将所配聚合物溶液滴加至基底表面,并置于封闭容器中;
(3)从基底下方向封闭容器中通入蒸汽,并通过控制蒸汽的流速、温度来调整封闭容器中的相对湿度,将相对湿度控制在稳定状态,将基底在稳定状态的湿度气氛中静置一定时间;所述稳定状态为相对湿度控制在预定范围或预定值的状态;
(4)将基底从湿度气氛中取出,干燥后即可得到与基底锚定的有序多孔膜。
优选的,所述基底为硅片、玻璃或聚酯薄膜。
优选的,所述聚合物选自聚苯乙烯、聚乳酸-羟基乙酸共聚物、聚乙烯吡咯烷酮、聚乙二醇、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物中的两种或两种以上;
所述偶联剂选自KH550、KH560、KH570、KH580、异氰酸丙基三甲氧基硅烷、异丁基三乙氧基硅烷、(3-巯基丙基)三甲氧基硅烷、十八烷基三氯硅烷、异丙基三(二辛基焦磷酰基)钛酸酯中的一种或几种;
所述溶剂选自三氯甲烷、二硫化碳、甲苯、四氢呋喃中的一种或几种。
优选的,所述基底置于紫外光下照射5~30分钟。
优选的,所述蒸汽由气体通过液体环境而产生。
优选的,所述气体为高纯氮气或压缩空气;所述液体环境选自去离子水、甲醇、乙醇、异丙醇、乙二醇、异丁醇中的一种或几种。
优选的,所述聚合物溶液中聚合物浓度为5~30mg/ml;所述稳定状态为相对湿度控制在30%~90%的状态;所述基底在稳定状态的湿度气氛中静置10~30分钟。
优选的,所述高纯氮气的纯度为90%~100%。
本发明的优点和有益效果在于:提供一种与基底锚定的多孔膜的制备方法,其制备的有序多孔膜能与基底锚定。
本发明对基底进行了紫外光照射预处理,通过紫外光照射可以打断原有基底表面的化学键,发生反应,从而改变基底表面性质;本发明聚合物溶液中还添加了偶联剂,偶联剂能起到链接聚合物溶液与基底的作用,偶联剂一端的基团与预处理后的基底表面紧密结合,另一端与溶液中的聚合物相关基团紧密结合,最终使多孔膜与基底紧密贴合。
本发明具有如下特点:
(1)本发明即可以提高多孔膜与基底的贴合性(锚定),又不会影响到多孔膜的有序性。
(2)本发明采用的紫外光照射工艺简单,成本低廉,且适用于大面积制备。
(3)本发明可以保证基底的原有功用,且基底表面覆上(锚定)多孔膜膜后,多孔膜与基底成为一体,成为覆膜基底,该覆膜基底相对于单一基底(未覆膜基底),可以有更好功用和应用前景。如覆膜硅片可应用于生物芯片、光电材料、航空航天等领域;覆膜玻璃可应用于吸震减震、消音、能量吸收等领域;覆膜(有序多孔膜)薄膜可应用于催化剂及载体、医药缓释、吸附及分离介质等领域。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明具体实施的技术方案是:
实施例1
与单晶硅片表面锚定的多孔膜的制备方法,包括如下步骤:
(1)将聚苯乙烯、聚乙烯吡咯烷酮、聚乙二醇和KH550溶解于二硫化碳中,配置聚合物浓度为10mg/ml的聚合物溶液;
(2)将单晶硅片基底置于254nm的紫外光灯下照射10分钟;
(3)将所配聚合物溶液滴加至单晶硅片表面,并置于封闭容器中;
(4)从单晶硅片下方向封闭容器中通入蒸汽,并通过控制蒸汽的流速、温度来调整封闭容器中的相对湿度,将相对湿度控制在80%,将单晶硅片在上述湿度气氛中静置10min;所述蒸汽由气体通过液体环境而产生;所述气体为高纯(纯度为90%或95%)氮气;所述液体环境包含去离子水、甲醇、异丙醇、异丁醇;
(5)将单晶硅片从湿度气氛中取出,干燥后即可得到与单晶硅片锚定的有序多孔膜。
本实施例所得的覆膜(有序多孔膜)硅片浸泡在80℃的40%KOH溶液中8分钟,有序多孔膜仍然锚定在基底上没有脱落。
本实施案例所得覆膜硅片可应用于生物芯片、光电材料、航空航天等领域。
实施例2
与玻璃表面锚定的多孔膜的制备方法,包括如下步骤:
(1)将聚乳酸-羟基乙酸共聚物和异氰酸丙基三甲氧基硅烷溶解于三氯甲烷中,配置聚合物浓度为25mg/ml的聚合物溶液;
(2)将玻璃基底置于310nm的紫外光灯下照射15分钟;
(3)将所配聚合物溶液滴加至玻璃片表面,并置于封闭容器中;
(4)从玻璃片下方向封闭容器中通入蒸汽,并通过控制蒸汽的流速、温度来调整封闭容器中的相对湿度,将相对湿度控制在60%,将玻璃片在稳定状态的湿度气氛中静置20min;所述蒸汽由气体通过液体环境而产生;所述气体为高纯(纯度为100%)氮气;所述液体环境包含去离子水、乙醇、乙二醇、异丁醇;
(5)将玻璃片从湿度气氛中取出,干燥后即可得到与基底锚定的有序多孔膜。
本实施案例所得覆膜(有序多孔膜)玻璃可应用于吸震减震、消音、能量吸收等领域。
实施例3
与聚酯薄膜表面锚定的多孔膜的制备方法,包括如下步骤:
(1)将聚苯乙烯、聚乙二醇和异丙基三(二辛基焦磷酰基)钛酸酯溶解于二硫化碳和四氢呋喃的混合溶剂中,配置聚合物浓度为20mg/ml的聚合物溶液;
(2)将聚酯薄膜基底置于366nm的紫外光灯下照射5分钟;
(3)将所配聚合物溶液滴加至聚酯薄膜表面,并置于封闭容器中;
(4)从聚酯薄膜下方向封闭容器中通入蒸汽,并通过控制蒸汽的流速、温度来调整封闭容器中的相对湿度,将相对湿度控制在60%,将聚酯薄膜在稳定状态的湿度气氛中静置30min;所述蒸汽由气体通过液体环境而产生;所述气体为压缩空气;所述液体环境包含去离子水、异丙醇、乙二醇、异丁醇;
(5)将聚酯薄膜从湿度气氛中取出,干燥后即可得到与基底锚定的有序多孔膜。
本实施案例所得覆膜(有序多孔膜)聚酯薄膜可应用于催化剂及载体、医药缓释、吸附及分离介质等领域。
实施例4
与单晶硅片表面锚定的多孔膜的制备方法,包括如下步骤:
(1)将聚苯乙烯、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物和KH560、KH570、异丁基三乙氧基硅烷溶解于甲苯中,配置聚合物浓度为30mg/ml的聚合物溶液;
(2)将单晶硅片基底置于400nm的紫外光灯下照射30分钟;
(3)将所配聚合物溶液滴加至单晶硅片表面,并置于封闭容器中;
(4)从单晶硅片下方向封闭容器中通入蒸汽,并通过控制蒸汽的流速、温度来调整封闭容器中的相对湿度,将相对湿度控制在30%,将单晶硅片在上述湿度气氛中静置15min;所述蒸汽由气体通过液体环境而产生;所述气体为高纯(纯度为90%或95%)氮气;所述液体环境包含去离子水、甲醇、异丙醇、异丁醇;
(5)将单晶硅片从湿度气氛中取出,干燥后即可得到与单晶硅片锚定的有序多孔膜。
本实施案例所得覆膜硅片可应用于生物芯片、光电材料、航空航天等领域。
实施例5
与多晶硅片表面锚定的多孔膜的制备方法,包括如下步骤:
(1)将聚苯乙烯、聚乙二醇和KH580、(3-巯基丙基)三甲氧基硅烷、十八烷基三氯硅烷溶解于二硫化碳中,配置聚合物浓度为5mg/ml的聚合物溶液;
(2)将多晶硅片基底置于180nm的紫外光灯下照射25分钟;
(3)将所配聚合物溶液滴加至多晶硅片表面,并置于封闭容器中;
(4)从多晶硅片下方向封闭容器中通入蒸汽,并通过控制蒸汽的流速、温度来调整封闭容器中的相对湿度,将相对湿度控制在90%,将多晶硅片在上述湿度气氛中静置15min;所述蒸汽由气体通过液体环境而产生;所述气体为高纯(纯度为90%或95%)氮气;所述液体环境包含去离子水、甲醇、异丙醇、异丁醇;
(5)将多晶硅片从湿度气氛中取出,干燥后即可得到与多晶硅片锚定的有序多孔膜。
本实施案例所得覆膜硅片可应用于生物芯片、光电材料、航空航天等领域。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.与基底锚定的多孔膜的制备方法,其特征在于,包括如下步骤:
(1)将基底置于紫外光下照射一定时间备用;将聚合物及偶联剂溶解于溶剂中,配制聚合物溶液;
(2)将所配聚合物溶液滴加至基底表面,并置于封闭容器中;
(3)从基底下方向封闭容器中通入蒸汽,并通过控制蒸汽的流速、温度来调整封闭容器中的相对湿度,将相对湿度控制在稳定状态,将基底在稳定状态的湿度气氛中静置一定时间;所述稳定状态为相对湿度控制在预定范围或预定值的状态;
(4)将基底从湿度气氛中取出,干燥后即可得到与基底锚定的有序多孔膜。
2.根据权利要求1所述的与基底锚定的多孔膜的制备方法,其特征在于,所述基底为硅片、玻璃或聚酯薄膜。
3.根据权利要求2所述的与基底锚定的多孔膜的制备方法,其特征在于,所述聚合物选自聚苯乙烯、聚乳酸-羟基乙酸共聚物、聚乙烯吡咯烷酮、聚乙二醇、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物中的两种以上;
所述偶联剂选自KH550、KH560、KH570、KH580、异氰酸丙基三甲氧基硅烷、异丁基三乙氧基硅烷、(3-巯基丙基)三甲氧基硅烷、十八烷基三氯硅烷、异丙基三(二辛基焦磷酰基)钛酸酯中的一种或几种;
所述溶剂选自三氯甲烷、二硫化碳、甲苯、四氢呋喃中的一种或几种。
4.根据权利要求3所述的与基底锚定的多孔膜的制备方法,其特征在于,所述基底置于紫外光下照射5~30分钟。
5.根据权利要求4所述的与基底锚定的多孔膜的制备方法,其特征在于,所述紫外光的波长范围在180~400nm。
6.根据权利要求5所述的与基底锚定的多孔膜的制备方法,其特征在于,所述蒸汽由气体通过液体环境而产生。
7.根据权利要求6所述的与基底锚定的多孔膜的制备方法,其特征在于,所述气体为高纯氮气或压缩空气;所述液体环境选自去离子水、甲醇、乙醇、异丙醇、乙二醇、异丁醇中的一种或几种。
8.根据权利要求7所述的与基底锚定的多孔膜的制备方法,其特征在于,所述聚合物溶液中聚合物浓度为5~30mg/ml;所述稳定状态为相对湿度控制在30%~90%的状态;所述基底在稳定状态的湿度气氛中静置10~30分钟。
9.根据权利要求8所述的与基底锚定的多孔膜的制备方法,其特征在于,所述高纯氮气的纯度为90%~100%。
CN201610413745.XA 2016-06-14 2016-06-14 与基底锚定的多孔膜的制备方法 Active CN106046410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610413745.XA CN106046410B (zh) 2016-06-14 2016-06-14 与基底锚定的多孔膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610413745.XA CN106046410B (zh) 2016-06-14 2016-06-14 与基底锚定的多孔膜的制备方法

Publications (2)

Publication Number Publication Date
CN106046410A CN106046410A (zh) 2016-10-26
CN106046410B true CN106046410B (zh) 2019-03-08

Family

ID=57169983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610413745.XA Active CN106046410B (zh) 2016-06-14 2016-06-14 与基底锚定的多孔膜的制备方法

Country Status (1)

Country Link
CN (1) CN106046410B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687219A (zh) * 2007-06-15 2010-03-31 Sba材料有限公司 低k介电材料
CN103411951A (zh) * 2013-07-17 2013-11-27 浙江大学 基于呼吸图有序多孔膜的表面增强拉曼散射基底的制备方法
CN103625142A (zh) * 2013-11-22 2014-03-12 中国科学院化学研究所 应用于液体转印的染料敏化的多孔聚合物疏水薄膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687219A (zh) * 2007-06-15 2010-03-31 Sba材料有限公司 低k介电材料
CN103411951A (zh) * 2013-07-17 2013-11-27 浙江大学 基于呼吸图有序多孔膜的表面增强拉曼散射基底的制备方法
CN103625142A (zh) * 2013-11-22 2014-03-12 中国科学院化学研究所 应用于液体转印的染料敏化的多孔聚合物疏水薄膜

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The influencing factors on the macroporous formation in polymer films by water droplet templating";Juan Peng et al.;《Polymer》;20041231(第45期);第447–452页
"Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach";Alexandra Munoz-Bonilla et al.;《Progress in Polymer Science》;20130822;第510-554页

Also Published As

Publication number Publication date
CN106046410A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
Feng et al. Hydrothermal stable ZIF-67 nanosheets via morphology regulation strategy to construct mixed-matrix membrane for gas separation
Mao et al. Novel MOF-capped halloysite nanotubes/PDMS mixed matrix membranes for enhanced n-butanol permselective pervaporation
CN105944748B (zh) 一种大比表面积石墨相氮化碳光催化剂及其制备方法和应用
JP5555225B2 (ja) 金属酸化物多孔質体の製造方法
Dimitrakakis et al. Top-down patterning of Zeolitic Imidazolate Framework composite thin films by deep X-ray lithography
Sneddon et al. Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large‐scale carbon capture technology
Lin et al. Mesoporous bis (trimethoxysilyl) hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO2 capture
Isahak et al. The formation of a series of carbonates from carbon dioxide: Capturing and utilisation
WO2013046975A1 (ja) ガス分離膜、その製造方法、それを用いたガス分離膜モジュール
JP2010126402A (ja) 酸化亜鉛薄膜の製造方法
CN107847837A (zh) 用于分离气体的聚合物膜
Nguyen et al. Facile synthesis of seed crystals and gelless growth of pure silica DDR zeolite membrane on low cost silica support for high performance in CO2 separation
Liu et al. SSZ-13 zeolite membranes on four-channel α-Al2O3 hollow fibers for CO2 separation
Abbasi et al. Amine functionalized radiation induced grafted polyolefin nanofibers for CO2 adsorption
CN105778145B (zh) 大面积有序多孔膜的制备方法
Mao et al. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53 (Al) synthesized via high efficiency solvent-controlled microwave
Taniguchi et al. Facile fabrication of a novel high performance CO2 separation membrane: Immobilization of poly (amidoamine) dendrimers in poly (ethylene glycol) networks
Ataeivarjovi et al. Study on CO2 desorption behavior of a PDMS–SiO2 hybrid membrane applied in a novel CO2 capture process
Ahmad et al. CO2 removal using membrane gas absorption with PVDF membrane incorporated with POSS and SAPO-34 zeolite
CN106046410B (zh) 与基底锚定的多孔膜的制备方法
Ataeivarjovi et al. Enhancement of CO2 desorption from a novel absorbent (dimethyl carbonate) by using a PDMS/TiO2 pervaporation membrane
WO2021246383A1 (ja) 酸性ガス吸着・脱離材料
Zhao et al. Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO2 separation
Hasan et al. Study on the recycling of zeolitic imidazolate frameworks and polymer Pebax® 1657 from their mixed matrix membranes applied to CO2 capture
Hung et al. Engineering gas separation property of metal–organic framework membranes via polymer insertion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Liyang City, Jiangsu province 213300 Li Cheng Zhen Wu Changzhou city Tandu Road No. 8

Patentee after: Changzhou Shichuang Energy Co., Ltd

Address before: Liyang City, Jiangsu province 213300 Li Cheng Zhen Wu Changzhou city Tandu Road No. 8

Patentee before: CHANGZHOU SHICHUANG ENERGY TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder