CN106045552B - 一种三维石墨烯宏观体制备方法 - Google Patents

一种三维石墨烯宏观体制备方法 Download PDF

Info

Publication number
CN106045552B
CN106045552B CN201610353877.8A CN201610353877A CN106045552B CN 106045552 B CN106045552 B CN 106045552B CN 201610353877 A CN201610353877 A CN 201610353877A CN 106045552 B CN106045552 B CN 106045552B
Authority
CN
China
Prior art keywords
graphene
macroscopic body
dimensional
preparing
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610353877.8A
Other languages
English (en)
Other versions
CN106045552A (zh
Inventor
徐丽
刘双宇
陈新
韩钰
盛鹏
刘海镇
赵广耀
王博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Global Energy Interconnection Research Institute
State Grid Hubei Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Global Energy Interconnection Research Institute
State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Global Energy Interconnection Research Institute, State Grid Hubei Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201610353877.8A priority Critical patent/CN106045552B/zh
Publication of CN106045552A publication Critical patent/CN106045552A/zh
Application granted granted Critical
Publication of CN106045552B publication Critical patent/CN106045552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种三维石墨烯宏观体制备方法。本发明利用水热自组装构建三维宏观体,同时在石墨烯宏观体的层状结构之间原位合成MOFs。本申请制备的多级孔结构三维宏观体不仅具有高比表面积、还利于电解液离子的扩散与传输,且石墨烯和碳纳米管构建内交联结构作为导电网络利于电子的传输,有效降低了界面电阻,同时提高了超级电容器的比容量、倍率和循环性能。本发明制得的石墨烯基宏观体结构稳定,具有高比表面积、高导电性,可应用于超级电容器中。本发明的制备方法工艺简单,反应过程容易控制,设备投资少,不需要在真空高压条件下进行,可实现大规模生产。

Description

一种三维石墨烯宏观体制备方法
技术领域
本发明涉及一种超级电容器用石墨烯,具体讲,涉及一种电容器用具有多孔结构石墨烯和碳纳米管复合三维宏观体的制备方法。
背景技术
超级电容器具有高功率密度、可快速充放电、百万次级别长循环寿命和安全可靠等特性,在轨道交通、国防和航空航天等领域具有广阔的应用前景。但是,超级电容器能量密度较低的缺点制约着其快速发展,如商用活性炭超级电容器能量密度仅5~7Wh kg-1。因此,为了满足超级电容器不断增长的需求,开发出轻便并具有高能量密度、功率密度及良好循环稳定性的超级电容器是新能源领域的发展趋势之一。
石墨烯是经石墨剥离的由一层碳原子组成的二维晶体,它具有碳六元环组成的二维周期蜂窝状点阵结构,是构建其它维度碳质材料(如零维的富勒烯,一维的碳纳米管和三维石墨)的基本单元。石墨烯的独特二维结构和完美的晶体结构使其具有高导电性、高机械强度、高导热性和奇特的光学性质,已被广泛的应用于晶体管等信息器件。在纳米复合材料、电池及超级电容等领域,二维平面石墨烯层间的组装形式尤为重要。目前,三维多孔石墨烯不仅具有石墨烯的优良性状,同时其具有的高比表面积、优异的电导率和丰富的孔结构等特点,也成为了超级电容器的理想电极材料。
目前,采用现有的氧化还原法制备的三维石墨烯由于π-π作用、范德华力及疏水性,极易发生团聚和堆叠现象,不仅抑制了电解液的浸润和离子扩散,且显著降低了材料的比表面积。
因此,需要提供一种针对上述现有技术不足的改进技术方案。
发明内容
本发明的目的是针对上述问题,提出一种电容器用具有多孔结构石墨烯和碳纳米管复合三维宏观体的制备方法。本发明通过水热法自组装构建石墨烯宏观体,引入金属催化剂在石墨烯上生长碳纳米管,得到多孔石墨烯和碳纳米管复合电极。本发明的多级孔结构三维宏观体不仅具有高比表面积、利于电解液离子的扩散与传输,且石墨烯和碳纳米管构建内交联结构作为导电网络利于电子的传输,有效降低了界面电阻,同时提高了超级电容器的比容量、倍率和循环性能。
为实现上述目的,本发明采用以下技术方案:
一种石墨烯和碳纳米管复合宏观体,具有多孔结构。
一种石墨烯基宏观体的制备方法,所述方法包括以下步骤:
1)配制混合液:将氧化石墨烯溶液、镍盐与Zn(NO3)2·6H2O按比例混合后,经超声处理0.5~2h;加入2-甲基咪唑,搅拌,得混合液;
2)制备石墨烯水凝胶:于80~120℃下将步骤1)的混合液加热0.5~5h,得石墨烯水凝胶;
3)制备三维石墨烯宏观体:将步骤2)中的水凝胶冷冻干燥;再于惰性气氛中、650~1000℃下,反应1~5h;并用0.01~0.1mol L-1的酸浸渍1~10h后,反复用去离子水清洗,烘干,得石墨烯和碳纳米管复合宏观体。
进一步的,步骤1)中所述氧化石墨烯的浓度为0.1~5mg mL-1
进一步的,所述氧化石墨烯是采用鳞片石墨,用Hummers法制备得到。
进一步的,步骤1)中所述镍盐为氯化镍、乙酸镍、硝酸镍和硫酸镍中的一种或多种组合物。
进一步的,步骤1)中所述氧化石墨烯与镍盐的质量比为1:10~1:50。
进一步的,步骤1)中所述氧化石墨烯、Zn(NO3)2·6H2O和2-甲基咪唑的质量比为1:(10~50):(20~100)。
进一步的,步骤1)中的搅拌时间为5~20min。
进一步的,步骤3)中的酸为盐酸或硝酸。
进一步的,步骤3)中于氮气、1000℃下,反应5h。
进一步的,步骤3)中所得石墨烯基宏观体为层状、多孔的三维宏观体,该三维宏观体为石墨烯和碳纳米管的复合宏观体。
进一步的,本发明采用的氧化石墨烯是从鳞片石墨出发,采用Hummer法制备得到。
进一步的,本发明制备的的石墨烯基宏观体主要是从氧化石墨烯出发,利用水热自组装构建三维宏观体,同时在石墨烯宏观体的层状结构之间原位合成MOFs;由于氧化石墨烯表面官能团与金属离子的吸附作用,引入镍离子催化剂,高温条件下,被还原成镍原子具有催化活性,MOFs在高温条件下被镍原子催化生成碳纳米管。
进一步的,制备所得的石墨烯基宏观体用于超级电容器的应用。
与最接近的现有技术相比,本发明提供的技术方案具有如下优异效果:
1、本发明提供的技术方案制得的石墨烯和碳纳米管复合宏观体,具有多级孔、石墨烯和碳纳米管内交联的结构,利于电解液离子的扩散与传输,提高了电子的传输,显著降低了界面电阻,提高了超级电容器的比容量、倍率和循环性能。
2、本发明提供的采用自组装构建的三维多孔结构的制备方法,利于电解液离子的扩散与传输,石墨烯和碳纳米管相互交联的结构作为导电网络,提高了材料的导电性,利于电子的传输,从而提升材料的电化学性能。
3、本发明制得的石墨烯基宏观体结构稳定,具有高比表面积、高导电性,可应用于超级电容器中。
4、本发明的制备方法工艺简单,反应过程容易控制,设备投资少,不需要在真空高压条件下进行,可实现大规模生产。
附图说明
为了更清楚地说明本发明中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备的石墨烯和碳纳米管复合宏观体在25mV s-1扫速下的循环伏安曲线;
图2为实施例1制备的石墨烯和碳纳米管复合宏观体在1Ag-1电流密度下的恒流充放电曲线。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
取100ml浓度为3mg mL-1氧化石墨烯水溶液;按氧化石墨烯与镍盐质量比1:30,称取9g乙酸镍;按氧化石墨烯、Zn(NO3)2·6H2O和2-甲基咪唑的质量比为1:30:80,称取9g Zn(NO3)2·6H2O和24g 2-甲基咪唑;将氧化石墨烯溶液、镍盐与Zn(NO3)2·6H2O按比例配制后超声处理2h,再加入2-甲基咪唑,搅拌15min,得混合液;然后在100℃条件下加热5h,得石墨烯水凝胶;将制得的石墨烯水凝胶经冷冻干燥后得到石墨烯三维宏观体,然后在氮气环境下,1000℃反应5h,再将反应产物用0.1mol L-1的硝酸酸浸渍1~10h后反复用去离子水清洗,烘干,得到石墨烯和碳纳米管复合宏观体。
本实施例制备的石墨烯和碳纳米管复合宏观体在25mV/s扫速下的循环伏安曲线,如图1所示,从图1中可知该材料表现较好的双电层电容特性;再将制得的石墨烯和碳纳米管复合宏观体进行恒流充放电测试,如图2所示,可知该石墨烯和碳纳米管复合宏观体在1A/g的电流密度下具有的比容量达182F/g。
实施例2
取100ml浓度为5mg mL-1氧化石墨烯水溶液;按氧化石墨烯与镍盐质量比1:10,称取5g乙酸镍;按氧化石墨烯、Zn(NO3)2·6H2O和2-甲基咪唑的质量比为1:50:100,称取25gZn(NO3)2·6H2O和50g 2-甲基咪唑;将氧化石墨烯溶液、镍盐与Zn(NO3)2·6H2O按比例配制后超声处理2h,再加入2-甲基咪唑,搅拌20min,得混合液;在80℃条件下加热0.5h,得石墨烯水凝胶;将制得的石墨烯水凝胶经冷冻干燥后得到石墨烯三维宏观体,然后在氮气环境下,800℃反应1h,再将反应产物用0.1mol L-1的硝酸酸浸渍8h后反复用去离子水清洗,烘干,得石墨烯和碳纳米管复合宏观体。
实施例3
取100ml浓度为0.1mg mL-1氧化石墨烯水溶液;按氧化石墨烯与镍盐质量比1:50,称取0.5g乙酸镍;按氧化石墨烯、Zn(NO3)2·6H2O和2-甲基咪唑的质量比为1:10:20,称取0.1g Zn(NO3)2·6H2O和0.2g 2-甲基咪唑;将氧化石墨烯溶液、镍盐与Zn(NO3)2·6H2O按比例配制后超声处理1h,再加入2-甲基咪唑,搅拌15min,得混合液;在120℃条件下加热1h,得石墨烯水凝胶;将制得的石墨烯水凝胶经冷冻干燥后得到石墨烯三维宏观体,然后在氮气环境下,650℃反应5h,再将反应产物用0.1mol L-1的盐酸酸浸渍7h后反复用去离子水清洗,烘干,得石墨烯和碳纳米管复合宏观体。
实施例4
取100ml浓度为2mg mL-1氧化石墨烯水溶液;按氧化石墨烯与镍盐质量比1:40,称取8g氯化镍;按氧化石墨烯、Zn(NO3)2·6H2O和2-甲基咪唑的质量比为1:20:50,称取4g Zn(NO3)2·6H2O和10g 2-甲基咪唑;将氧化石墨烯溶液、镍盐与Zn(NO3)2·6H2O按比例配制后超声处理0.5h,再加入2-甲基咪唑,搅拌5min,得混合液;在90℃条件下加热3h,得石墨烯水凝胶;将制得的石墨烯水凝胶经冷冻干燥后得到石墨烯三维宏观体,然后在氮气环境下,750℃反应2h,再将反应产物用0.05mol L-1的盐酸酸浸渍6h后反复用去离子水清洗,烘干,得石墨烯和碳纳米管复合宏观体。
实施例5
取100ml浓度为1mg mL-1氧化石墨烯水溶液;按氧化石墨烯与镍盐质量比1:50,称取5g乙酸镍;按氧化石墨烯、Zn(NO3)2·6H2O和2-甲基咪唑的质量比为1:30:40,称取3g Zn(NO3)2·6H2O和4g 2-甲基咪唑;将氧化石墨烯溶液、镍盐与Zn(NO3)2·6H2O按比例配制后超声处理2h,再加入2-甲基咪唑,搅拌10min,得混合液;在110℃条件下加热2h,得石墨烯水凝胶;将制得的石墨烯水凝胶经冷冻干燥后得到石墨烯三维宏观体,然后在氮气环境下,800℃反应1h,再将反应产物用0.08mol L-1的硝酸酸浸渍9h后反复用去离子水清洗,烘干,得石墨烯和碳纳米管复合宏观体。
实施例6
取100ml浓度为4mg mL-1氧化石墨烯水溶液;按氧化石墨烯与镍盐质量比1:10,称取4g硫酸镍;按氧化石墨烯、Zn(NO3)2·6H2O和2-甲基咪唑的质量比为1:20:60,称取8g Zn(NO3)2·6H2O和24g 2-甲基咪唑;将氧化石墨烯溶液、镍盐与Zn(NO3)2·6H2O按比例配制后超声处理0.5h,再加入2-甲基咪唑,搅拌12min,得混合液;在95℃条件下加热1h,得石墨烯水凝胶;将制得的石墨烯水凝胶经冷冻干燥后得到石墨烯三维宏观体,然后在氮气环境下,950℃反应3h,再将反应产物用0.03mol L-1的硝酸酸浸渍4h后反复用去离子水清洗,烘干,得石墨烯和碳纳米管复合宏观体。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均在本发明待批权利要求保护范围之内。

Claims (7)

1.一种石墨烯基宏观体的制备方法,其特征在于,所述方法包括以下步骤:
1)配制混合液:超声处理由氧化石墨烯溶液、镍盐与Zn(NO3)2·6H2O按比例配制的混合物0.5~2h后,加入2-甲基咪唑混合搅拌,配制成混合液;
2)制备石墨烯水凝胶:于80~120℃下加热步骤1)的混合液0.5~5h;
3)制备石墨烯基宏观体:将步骤2)中的水凝胶冷冻干燥后,于惰性气氛中、650~1000℃下反应1~5h;再用0.01~0.1mol /L的酸浸渍1~10h,水洗,烘干;
步骤1)中所述氧化石墨烯与镍盐的质量比为1:10~1:50;
步骤1)中所述氧化石墨烯、Zn(NO3)2·6H2O和2-甲基咪唑的质量比为1:(10~50):(20~100); 步骤3)中所得石墨烯基宏观体为层状、多孔的三维宏观体,该三维宏观体为石墨烯和碳纳米管的复合宏观体。
2.如权利要求1所述的制备方法,其特征在于,步骤1)中所述氧化石墨烯的浓度为0.1~5mg /mL。
3.如权利要求1所述的制备方法,其特征在于,步骤1)中所述镍盐为氯化镍、乙酸镍、硝酸镍和硫酸镍中的一种或多种组合物。
4.如权利要求1所述的制备方法,其特征在于,步骤1)中的搅拌时间为5~20min。
5.如权利要求1所述的制备方法,其特征在于,步骤3)中的酸为盐酸或硝酸。
6.如权利要求1所述的制备方法,其特征在于,步骤3)中于氮气、1000℃下,反应5h。
7.一种权利要求1所述的石墨烯基宏观体的制备方法制备的石墨烯基宏观体用于制备超级电容器的应用。
CN201610353877.8A 2016-05-25 2016-05-25 一种三维石墨烯宏观体制备方法 Active CN106045552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610353877.8A CN106045552B (zh) 2016-05-25 2016-05-25 一种三维石墨烯宏观体制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610353877.8A CN106045552B (zh) 2016-05-25 2016-05-25 一种三维石墨烯宏观体制备方法

Publications (2)

Publication Number Publication Date
CN106045552A CN106045552A (zh) 2016-10-26
CN106045552B true CN106045552B (zh) 2021-08-06

Family

ID=57175119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610353877.8A Active CN106045552B (zh) 2016-05-25 2016-05-25 一种三维石墨烯宏观体制备方法

Country Status (1)

Country Link
CN (1) CN106045552B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619040B (zh) * 2017-11-01 2019-11-19 中国科学院兰州化学物理研究所 局部燃烧法快速制备多孔石墨烯的方法
CN112054205A (zh) * 2020-09-28 2020-12-08 成都玉龙化工有限公司 一种导电添加剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096916A1 (en) * 2009-02-27 2010-09-02 Andre Boulet Parallel passage fluid contactor structure
CN104538200A (zh) * 2014-12-12 2015-04-22 上海应用技术学院 一种石墨烯/Fe-MOFs复合材料及其制备方法
CN105344327A (zh) * 2015-11-26 2016-02-24 中国科学院生态环境研究中心 一种MOFs石墨烯复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096916A1 (en) * 2009-02-27 2010-09-02 Andre Boulet Parallel passage fluid contactor structure
CN104538200A (zh) * 2014-12-12 2015-04-22 上海应用技术学院 一种石墨烯/Fe-MOFs复合材料及其制备方法
CN105344327A (zh) * 2015-11-26 2016-02-24 中国科学院生态环境研究中心 一种MOFs石墨烯复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"One-step solid-state thermolysis of metal-organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes";Linyun Chen等;《Chemical Communications》;20080131;第1581-1583页 *
"基于金属 - 有机骨架前驱体的先进功能材料";张慧等;《化学进展》;20150305;第27卷;第174-191页 *
"石墨烯碳纳米管复合材料制备进展";王强;《化工管理》;20160331;第171页 *

Also Published As

Publication number Publication date
CN106045552A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
Shi et al. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review
Yeon et al. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode
Senthil et al. Recent progress on porous carbon derived from Zn and Al based metal-organic frameworks as advanced materials for supercapacitor applications
Zhang et al. Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors
Wang et al. Catalyzing polysulfide conversion by gC 3 N 4 in a graphene network for long-life lithium-sulfur batteries
Imtiaz et al. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries
Wang et al. Nitrogen-doped porous carbon derived from ginkgo leaves with remarkable supercapacitance performance
Shah et al. Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices
Sun et al. Hybrid symmetric supercapacitor assembled by renewable corn silks based porous carbon and redox-active electrolytes
Sun et al. Mn3O4 embedded 3D multi-heteroatom codoped carbon sheets/carbon foams composites for high-performance flexible supercapacitors
Yang et al. Cobalt–carbon derived from zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material
El-Khodary et al. Sonochemical assisted fabrication of 3D hierarchical porous carbon for high-performance symmetric supercapacitor
CN104715936B (zh) 一种用于超级电容器的分级多孔碳电极材料及制备方法
Lu et al. Molten-salt strategy for fabrication of hierarchical porous N-doped carbon nanosheets towards high-performance supercapacitors
Chen et al. Wood-derived scaffolds decorating with nickel cobalt phosphate nanosheets and carbon nanotubes used as monolithic electrodes for assembling high-performance asymmetric supercapacitor
Gui et al. TiO2 nanotube/RGO modified separator as an effective polysulfide-barrier for high electrochemical performance Li-S batteries
Peng et al. Binary tungsten-molybdenum oxides nanoneedle arrays as an advanced negative electrode material for high performance asymmetric supercapacitor
Wei et al. Hollow C/Co9S8 hybrid polyhedra-modified carbon nanofibers as sulfur hosts for promising Li–S batteries
CN106356204A (zh) 一种碳基复合电极材料及其制备方法
Cui et al. Nickel–Cobalt-layered double hydroxide nanosheets supported on NiMoO4 nanorods with enhanced stability for asymmetric supercapacitors
Qiao et al. Highly efficient oxygen electrode catalyst derived from chitosan biomass by molten salt pyrolysis for zinc-air battery
Xu et al. An instantaneous metal organic framework to prepare ultra-high pore volume porous carbon for lithium ion capacitors
CN105869903B (zh) 一种石墨烯制备方法
Li et al. Biomass absorption of nickel salt derived carbon wrapped NiS/Ni3S4 nanocomposite as efficient electrode for supercapacitors
Liu et al. N/P codoped carbon materials with an ultrahigh specific surface area and hierarchical porous structure derived from durian peel for high-performance supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant