CN106044879A - 一种改善高分子调驱体系注入性的方法 - Google Patents

一种改善高分子调驱体系注入性的方法 Download PDF

Info

Publication number
CN106044879A
CN106044879A CN201610533813.6A CN201610533813A CN106044879A CN 106044879 A CN106044879 A CN 106044879A CN 201610533813 A CN201610533813 A CN 201610533813A CN 106044879 A CN106044879 A CN 106044879A
Authority
CN
China
Prior art keywords
oil field
profile control
sewage
field sewage
zeta potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610533813.6A
Other languages
English (en)
Other versions
CN106044879B (zh
Inventor
铁磊磊
李翔
陈月飞
刘文辉
刘丰钢
鞠野
徐国瑞
郭宏峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Oilfield Services Ltd
China National Offshore Oil Corp CNOOC
Original Assignee
China Oilfield Services Ltd
China National Offshore Oil Corp CNOOC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Oilfield Services Ltd, China National Offshore Oil Corp CNOOC filed Critical China Oilfield Services Ltd
Priority to CN201610533813.6A priority Critical patent/CN106044879B/zh
Publication of CN106044879A publication Critical patent/CN106044879A/zh
Application granted granted Critical
Publication of CN106044879B publication Critical patent/CN106044879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种改善高分子调驱体系注入性的方法,其中,所述方法包括:分别测量调驱剂和油田现场污水中固体悬浮物的表面Zeta电位;当所述油田现场污水中固体悬浮物的表面Zeta电位为正以及在‑5mV~0的范围内时,在将所述调驱剂加入所述油田现场污水之前,向所述油田现场污水中加入防絮凝剂,以使最终获得的混合物中固体悬浮物的表面Zeta电位为负且其绝对值大于10mV。本申请提供的改善高分子调驱体系注入性的方法,不仅可以直接利用油田污水进行调驱配液,不需要额外增加过滤装置,而且还能够有效预防近井带堆积堵塞的问题,保证作业连续性,降低作业成本。

Description

一种改善高分子调驱体系注入性的方法
技术领域
本申请涉及但不限于一种改善高分子调驱体系注入性的方法。
背景技术
受限于现场实际条件,调驱剂经常需要采用油田现场污水配制,油田现场污水的外观整体呈灰黄色,显微镜可观察到大量大小不一的悬浮颗粒,用该污水配制调驱剂后,由于调驱剂本身为高分子材料,污水中的固体悬浮物颗粒会和聚合物分子发生局部絮凝反应,结果悬浮物颗粒粒径明显产生团聚效应,导致在实际施工过程中,这些絮凝体会在注入井筛管、近井地带产生堆积作用,难以进入地层深部,造成注入压力不断的增加,压力达到注入限压,原设计连续注入3个月的调驱作业只能停止注入,待降压解堵后才能继续进行,为施工带来了不便。在中低渗地层甚至难以完成调驱作业。
对利用现场污水注入调驱体系压力快速上升的问题,对此问题,一般现场要在调驱前或调驱施工中利用酸化等措施进行降压解堵作业,即提供足够的升压空间来满足长时间调驱注入的要求,这种做法既增加整体成本又影响施工的连续性,最终影响施工效果。
基于降压解堵措施的问题,为保证施工的连续性,近年来部分油田在现场作业时将污水处理装置(机械过滤方法)引入调驱作业前端,保证配液用水达标,从而不会造成因絮凝问题在近井带堆积堵塞的问题,但此种做法同样增加了额外的投入,当前模块化的机械过滤装置价格较高,对于多井组或整体调驱应用具有一定的适用性,单井组调驱或海上平台限制空间应用时,凸显出成本及空间占用的问题。
另外,也考虑过利用絮凝剂对油田现场污水中的固体悬浮物颗粒进行絮凝沉淀,然而,对油田现场污水进行静置沉淀、再过滤大大增加了操作成本,操作起来也不太现实。
发明内容
本申请的目的是提供一种改善高分子调驱体系注入性的方法。
所述改善高分子调驱体系注入性的方法包括:
分别测量调驱剂和油田现场污水中固体悬浮物的表面Zeta电位;
当所述油田现场污水中固体悬浮物的表面Zeta电位为正以及在-5mV~0的范围内时,在将所述调驱剂加入所述油田现场污水之前,向所述油田现场污水中加入防絮凝剂,以使最终获得的混合物中固体悬浮物的表面Zeta电位为负且其绝对值大于10mV。
在一个实施方式中,向所述油田现场污水中加入防絮凝剂,以使最终获得的混合物中固体悬浮物的表面Zeta电位为负且其绝对值大于25mV。
在一个实施方式中,所述防絮凝剂包括铁铬木质素磺酸盐和/或聚羧酸。
在一个实施方式中,所述防絮凝剂为铁铬木质素磺酸盐。
在一个实施方式中,相对于100mg所述油田现场污水中的固体悬浮物,所述防絮凝剂的加入量为20-500ppm。
本申请提供的改善高分子调驱体系注入性的方法,不仅可以直接利用油田污水进行调驱配液,不需要额外增加过滤装置,而且还能够有效预防近井带堆积堵塞的问题,保证作业连续性,降低作业成本。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是絮结反应的主要原理示意图。
图2是本申请对比例1油田现场污水的电子显微镜照片。
图3是本申请对比例1油田现场污水中悬浮颗粒表面Zeta电位测定。
图4是本申请对比例1油田现场污水配制调驱剂后体系中悬浮颗粒表面Zeta电位测定。
图5是本申请对比例1油田现场污水配制调驱剂后发生絮凝的电子显微镜照片。
图6是本申请对比例1油田现场污水配制调驱剂后的注入动态图。
图7是本申请实施例1油田现场污水中加入防絮凝剂后表面Zeta电位测定。
图8是本申请实施例1油田现场污水添加防絮凝剂后的电子显微镜照片。
图9(A)是本申请对比例1在填砂模型中注入油田现场污水加入调驱剂后进行水驱的压力变化示意图。
图9(B)是本申请实施例1在填砂模型中注入油田现场污水加入防絮凝剂和调驱剂后进行水驱的压力变化示意图。
图10是本申请实施例2在填砂模型中注入油田现场污水加入防絮凝剂和调驱剂后进行水驱的压力变化示意图。
具体实施方式
下面将通过实施例对本发明作进一步的描述,这些描述并不是对本发明内容作进一步的限定。本领域的技术人员应理解,对本发明技术特征所作的等同替换,或相应的改进,仍属于本发明的保护范围之内。
本申请提供了一种改善高分子调驱体系注入性的方法,其中,所述方法包括:分别测量调驱剂和油田现场污水中固体悬浮物的表面Zeta电位;当所述油田现场污水中固体悬浮物的表面Zeta电位为正以及在-5mV~0的范围内时,在将所述调驱剂加入所述油田现场污水之前,向所述油田现场污水中加入防絮凝剂,以使最终获得的混合物中固体悬浮物的表面Zeta电位为负且其绝对值大于10mV。
本发明的发明人通过大量的实验发现,通过在油田现场污水中加入在颗粒表面具有强吸附能力的防絮凝剂,通过改变油田现场污水中固悬物表面的荷电性质,达到防止调驱剂和固体悬浮物形成更大的絮结体,消除其带来的额外阻力的目的,保证调驱剂的顺利注入。
图1是絮结反应的主要原理图。如图1所示。横坐标代表调驱剂中固体悬浮物表面的Zeta电位值,纵坐标代表油田现场污水中固体悬浮物表面的Zeta电位值,可以看出,在调驱剂和油田现场污水中固体悬浮物表面Zeta电位值较低时,两者可能发生絮结反应(Ⅰ区),随着固体悬浮物和调驱剂表面Zeta电位的增加,两者逐渐进入平衡状态,絮结反应受到抑制(Ⅱ区),随着Zeta电位的继续增加,两者处于彻底的分散状态(III区)。
本申请中,最终获得的混合物中固体悬浮物的表面Zeta电位为负且其绝对值大于10mV即可有效地防止絮结反应的发生,可有效地改善高分子调驱体系的注入性。
在本申请实施方式中,向所述油田现场污水中加入防絮凝剂,只要使最终获得的混合物中固体悬浮物的表面Zeta电位为负且其绝对值大于25mV即可有效的避免絮结反应的发生。
在本申请实施方式中,所述防絮凝剂可以包括铁铬木质素磺酸盐和/或聚羧酸。
在本申请实施方式中,所述防絮凝剂可以为铁铬木质素磺酸盐。
在本申请实施方式中,相对于100mg所述油田现场污水中的固体悬浮物,所述防絮凝剂的加入量可以为20-500ppm。
在本申请实施方式中,所述调驱剂和种类和用量没有特别要求,可以是本领域技术人员已知的任意一种调驱剂。
在本申请实施方式中,所述防絮凝剂的加入温度和加入时间没有特别要求,可以直接在收集的油田现场污水中添加所述防絮凝剂。另外,所述防絮凝剂的添加形态也没有特别要求,可以直接添加,也可以在水中溶解稀释后添加。本发明没有特殊要求。
本申请提供的改善高分子调驱体系注入性的方法,通过添加合适的防絮凝剂,使得油田现场污水中的悬浮物在防絮凝剂的作用下,存在状态从絮结区向平衡区和分散区移动,达到抑制絮凝反应发生的目的。使得油田现场污水中的悬浮物能够均匀分散,避免了因絮凝导致的污堵问题。
以下实施例中所用试剂均来自商购。
油田现场污水均采用的是渤中19-4油田的现场污水。
对比例1
在室温下,渤中19-4油田现场污水的电子显微镜照片如图2所示,图2中的油田现场污水的外观整体呈灰黄色,显微镜可观察到大量大小不一的悬浮颗粒,部分粒径达到50μm左右;其悬浮颗粒表面Zeta电位测定如图3所示。图3对应的利用Zeta电位仪测定油田现场污水中固悬物表面的Zeta电位值为-4.4mV。
向上述油田现场污水中加入2000ppm的调驱剂(聚丙烯酰胺类微凝胶)。加入调驱剂的油田现场污水体系的表面的Zeta电位如图4所示,其电子显微镜照片如图5所示,从图5可以看出,固体悬浮物颗粒粒径明显产生聚团效应,粒径达到几百微米,甚至达到厘米级。图4对应的调驱体系表面Zeta电位为-25.4mV。
该油田现场污水和调驱剂中固体悬浮物中的表面Zeta电位对应于图1中絮结区I中圆点所示位置,其中,油田现场污水中固悬物表面Zeta电位为-4.4mV,调驱剂表面Zeta电位为-25.4mV的状态,可以看到两者正好处于絮结区间,两者将在接触后迅速絮结,从而容易在近井带滞留,造成调驱作业注入困难。
利用上述加入调驱剂的油田现场污水体系进行油田现场施工的曲线图如图6所示。从图6可以看出,在注入一周后,压力达到注入限压,原设计连续注入3个月的调驱作业只能停止注入,待降压解堵后继续进行。
实验室利用模拟填砂装置开展对体系的注入性改善实验,在填砂模型中注入上述加入调驱剂的油田现场污水体系,然后进行后续水驱,所得结果如图9(A)所示。在图9(A)中,横坐标PV代表模拟填砂装置的孔隙体积,从该图可以看出,在注入过程中,注入压力急剧增加并且不断的上升,不利于调驱作业。
实施例1
在室温下,向100g的渤中19-4油田现场污水中加入200ppm的防絮凝剂铁铬木质素磺酸盐(获自中海油服化学公司),然后再加入2000ppm的聚丙烯酰胺类微凝胶调驱剂(获自盘锦海世通化工有限责任公司)。测定体系表面Zeta电位如图7所示,体系电子显微镜照片如图8所示。
如图7所示,100g油田现场污水中加入上述防絮凝剂后固体悬浮物表面Zeta电位的负电荷峰值强度增大,并向左移,平均表面Zeta电位值从最初的-4.4mV增加到-24.0mV。结合图8的电子显微镜照片,注入水中的固体悬浮颗粒从较大的聚集状态转化为均匀的分散状态,粒径也有明显的减小。在此状态下两者的共存状态基本处于分散区,可以很好的抑制絮凝反应的发生。
实验室利用模拟填砂装置开展对体系的注入性改善实验,在填砂模型中注入上述加入防絮凝剂和调驱剂的油田现场污水(渤中19-4油田)体系,然后进行后续水驱,所得结果如图9(B)所示。
对比图9(A)和9(B)可以看出,没有添加防絮凝剂的体系,注入初期,压力急剧上升,进行后续水驱后,可以看到压力持续增高,监测的最高注入压力可达到0.3MPa以上,最高阻力系数(阻力系数是注入一定体积后的压力除以初始注入压力计算得到的)达到了5以上;而加入防絮凝剂的体系,可以看到注入压力非常稳定,监测的最高注入压力在0.1MPa以下,最高阻力系数仅为1.4,且在后期压力并无明显上升的趋势,可见,防絮凝剂有效减缓了油田现场污水的污堵问题,对调驱体系注入性的效果有较好的改善。
实施例2
采用与实施例1相同的方法,不同的是,采用200ppm防絮凝剂聚羧酸(获自中海油服化学公司)。最终获得的体系中固体悬浮物表面Zeta电位为-15.2mV。
利用模拟填砂装置考察体系注入性,所得结果如图10所示。实验过程中注入压力非常稳定,最高注入压力在0.14MPa以下,最高阻力系数仅为1.75。
从上述实施例结果可以看出,本发明实施方式提供的改善高分子调驱体系注入性的方法,能够有效预防油田现场污水的絮凝情况,有效避免了近井带堆积堵塞的问题,使注水时的最高阻力系数保持在2以下,注入压力非常稳定,保证作业连续性,降低作业成本。
本申请包括但不限于以上实施例,凡是在本申请精神的原则下进行的任何等同替代或局部改进,都将视为在本申请的保护范围之内。

Claims (5)

1.一种改善高分子调驱体系注入性的方法,其特征在于,所述方法包括:
分别测量调驱剂和油田现场污水中固体悬浮物的表面Zeta电位;
当所述油田现场污水中固体悬浮物的表面Zeta电位为正以及在-5mV~0的范围内时,在将所述调驱剂加入所述油田现场污水之前,向所述油田现场污水中加入防絮凝剂,以使最终获得的混合物中固体悬浮物的表面Zeta电位为负且其绝对值大于10mV。
2.如权利要求1所述的方法,其中,向所述油田现场污水中加入防絮凝剂,以使最终获得的混合物中固体悬浮物的表面Zeta电位为负且其绝对值大于25mV。
3.如权利要求1或2所述的方法,其中,所述防絮凝剂包括铁铬木质素磺酸盐和/或聚羧酸。
4.如权利要求3所述的方法,其中,所述防絮凝剂为铁铬木质素磺酸盐。
5.如权利要求1或2所述的方法,其中,相对于100mg所述油田现场污水中的固体悬浮物,所述防絮凝剂的加入量为20-500ppm。
CN201610533813.6A 2016-07-07 2016-07-07 一种改善高分子调驱体系注入性的方法 Active CN106044879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610533813.6A CN106044879B (zh) 2016-07-07 2016-07-07 一种改善高分子调驱体系注入性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610533813.6A CN106044879B (zh) 2016-07-07 2016-07-07 一种改善高分子调驱体系注入性的方法

Publications (2)

Publication Number Publication Date
CN106044879A true CN106044879A (zh) 2016-10-26
CN106044879B CN106044879B (zh) 2019-06-28

Family

ID=57186707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610533813.6A Active CN106044879B (zh) 2016-07-07 2016-07-07 一种改善高分子调驱体系注入性的方法

Country Status (1)

Country Link
CN (1) CN106044879B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596639A (zh) * 2016-11-11 2017-04-26 中国石油天然气股份有限公司 一种筛选油田注入水的离子组成与离子浓度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123683A2 (en) * 2008-04-03 2009-10-08 Bp Corporation North America Inc. Softened injection water
CN104234676A (zh) * 2014-08-28 2014-12-24 中国石油天然气股份有限公司 一种利用三元复合驱采出污水进行深部调剖的方法
CN104632151A (zh) * 2013-11-12 2015-05-20 中国石油天然气股份有限公司 一种离子匹配水驱提高采收率的方法
CN104745172A (zh) * 2015-02-03 2015-07-01 成都理工大学 一种用于煤层气藏的煤粉稳定剂及其使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123683A2 (en) * 2008-04-03 2009-10-08 Bp Corporation North America Inc. Softened injection water
CN104632151A (zh) * 2013-11-12 2015-05-20 中国石油天然气股份有限公司 一种离子匹配水驱提高采收率的方法
CN104234676A (zh) * 2014-08-28 2014-12-24 中国石油天然气股份有限公司 一种利用三元复合驱采出污水进行深部调剖的方法
CN104745172A (zh) * 2015-02-03 2015-07-01 成都理工大学 一种用于煤层气藏的煤粉稳定剂及其使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596639A (zh) * 2016-11-11 2017-04-26 中国石油天然气股份有限公司 一种筛选油田注入水的离子组成与离子浓度的方法
CN106596639B (zh) * 2016-11-11 2019-05-07 中国石油天然气股份有限公司 一种筛选油田注入水的离子组成与离子浓度的方法

Also Published As

Publication number Publication date
CN106044879B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
CN103043831B (zh) 一种陆相页岩气井压裂作业废液的处理方法
CN103834375B (zh) 一种基于磁流变液的油气井暂堵剂及其制备方法与应用
EP2737109B1 (en) Scale-inhibiting polymers and methods for preventing scale formation
Nasiri et al. Influence of monoethanolamine on thermal stability of starch in water based drilling fluid system
CN104692513A (zh) 一种污水处理絮凝剂
CN105084615A (zh) 基于特种膜的油田废水处理工艺
CN103666409B (zh) 一种聚合物粘度稳定剂
CN104787923B (zh) 油田污水可移动撬装式处理方法
CN104386861A (zh) 废弃钻井液的破胶成核处理工艺
CN106277430A (zh) 一种适用于气井的压裂返排液处理与循环利用方法
CN106044879A (zh) 一种改善高分子调驱体系注入性的方法
CN105156087B (zh) 一种利用胍胶类压裂返排液提高原油采收率的方法
CN110168012B (zh) 多相聚合物悬浮液及其用途
CN108249635A (zh) 一种压裂返排液外排处理装置
CN103666424B (zh) 一种聚合物降解剂
CN208916977U (zh) 一种瓜胶体系压裂返排液的处理后回用系统
CN102442737A (zh) 一种使用强氧化剂处理低温含油污水的方法
EP3447106A1 (en) Process for enhanced oil recovery
Wang Research and application of oil sludge resource utilization technology in oil field
CN110054278B (zh) 一种促进纳米四氧化三铁分散和迁移的方法
CN104194739A (zh) 一种钻井液润滑剂及其制备方法
CN105443104B (zh) 聚合物驱堵塞井酸化后解堵方法
CN102466616A (zh) 一种测量重金属螯合剂加入量对铅离子去除率影响的方法
CN213924319U (zh) 一种油田压裂返排废液处理系统
CN207525193U (zh) 原油中不明黑色悬浮物固体颗粒去除助剂加注用喷嘴装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Applicant after: China Offshore Oil Group Co., Ltd.

Applicant after: China Oilfield Services Limited

Address before: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Applicant before: China National Offshore Oil Corporation

Applicant before: China Oilfield Services Limited

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant