CN106034394A - Radiator and radiating device - Google Patents
Radiator and radiating device Download PDFInfo
- Publication number
- CN106034394A CN106034394A CN201510124562.1A CN201510124562A CN106034394A CN 106034394 A CN106034394 A CN 106034394A CN 201510124562 A CN201510124562 A CN 201510124562A CN 106034394 A CN106034394 A CN 106034394A
- Authority
- CN
- China
- Prior art keywords
- heat
- section
- fins
- fin
- radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001154 acute effect Effects 0.000 claims description 9
- 238000005452 bending Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 description 64
- 238000001816 cooling Methods 0.000 description 5
- 239000012809 cooling fluid Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种散热器与散热装置,尤其涉及一种具有倾斜鳍片的散热器与散热装置。The invention relates to a radiator and a heat dissipation device, in particular to a radiator and a heat dissipation device with inclined fins.
背景技术Background technique
随着电子领域的技术不断演进,所生产出的电子元件的效能也不断提升。然而,一般来说电子元件的效能提升,其所产生的热量也会增加。这些热量不断累积于电子元件上将导致电子元件本身的温度持续升高。若无法有效将电子元件产生的热量排除,让电子元件降温,则将会使电子元件发生当机,甚或烧毁。因此,现在电子业普遍上会面临到的问题不是效能上的提升,而是如何有效地排除电子元件产生的热量。As technology in the electronics field continues to evolve, the performance of the electronic components produced is also increasing. However, generally speaking, as the performance of electronic components improves, the heat generated by them will also increase. The continuous accumulation of the heat on the electronic components will cause the temperature of the electronic components to continue to rise. If the heat generated by the electronic components cannot be effectively removed to cool down the electronic components, the electronic components will crash or even be burned. Therefore, the problem generally faced by the electronics industry is not to improve performance, but how to effectively remove the heat generated by electronic components.
一般来说,散热装置的散热方式分为液冷式与气冷式。液冷式散热装置的散热原理是指利用压缩机或泵驱动冷却管内的冷却流体来和电子元件进行热交换,以排除电子元件的热量。气冷式散热装置的散热原理是指利用风扇与鳍片的搭配来对电子元件进行降温。液冷式散热装置的散热效能一般优于气冷式散热装置的散热效能,但由于气冷式的散热装置无需装设压缩机、泵及冷却流体,在成本上具有优势,故业界普遍利用气冷式散热装置来排除电子元件的热量。Generally speaking, heat dissipation methods of heat sinks are divided into liquid-cooled and air-cooled. The heat dissipation principle of the liquid-cooled heat sink refers to using a compressor or a pump to drive the cooling fluid in the cooling pipe to exchange heat with the electronic components to remove the heat from the electronic components. The heat dissipation principle of the air-cooled heat dissipation device is to use the combination of fans and fins to cool down the temperature of electronic components. The heat dissipation performance of liquid-cooled heat sinks is generally better than that of air-cooled heat sinks. However, since air-cooled heat sinks do not need to install compressors, pumps, and cooling fluids, they have advantages in terms of cost. Therefore, the industry generally uses air-cooled heat sinks. Cool heat sink to remove heat from electronic components.
然而,在气冷式散热装置中,散热鳍片的气流道中易有气旋产生,并使得散热气流与散热鳍片的表面无法充份接触,而此气流阻隔的状况尤易发生在流道末段,进而造成气冷式散热装置的散热效能无法有效提升。因此,如何让散热气流能够充份的和散热鳍片热接触,进而提升气冷式散热装置的散热效率,将是研发人员应解决的问题之一。However, in an air-cooled heat dissipation device, cyclones are likely to be generated in the air passages of the heat dissipation fins, which prevents the heat dissipation airflow from fully contacting the surface of the heat dissipation fins, and this airflow obstruction is especially likely to occur at the end of the flow passages , resulting in that the heat dissipation performance of the air-cooled heat dissipation device cannot be effectively improved. Therefore, how to make the heat dissipation air flow fully in thermal contact with the heat dissipation fins, so as to improve the heat dissipation efficiency of the air-cooled heat dissipation device, will be one of the problems to be solved by the research and development personnel.
发明内容Contents of the invention
本发明在于提供一种散热器与散热装置,以让散热气流能够充份的和散热鳍片热接触,进而提升气冷式散热装置的散热效率。The present invention provides a radiator and a heat dissipation device, so that the heat dissipation airflow can fully contact the heat dissipation fins, thereby improving the heat dissipation efficiency of the air-cooled heat dissipation device.
本发明所公开的散热器,包含多个导热夹片、多个第一鳍片及多个第二鳍片。每一导热夹片包含相连的一近风段及一离风段。近风段与离风段的夹角小于180度。这些第一鳍片与这些导热夹片交错排列,且这些第一鳍片分别结合于这些导热夹片的这些近风段,以令这些第一鳍片形成倾斜且间隔排列的多个第一流道。这些第二鳍片与这些导热夹片交错排列,且这些第二鳍片分别结合于这些导热夹片的这些离风段,以令这些第二鳍片与这些第一鳍片的夹角小于180度,以及令这些第二鳍片形成倾斜且间隔排列的多个第二流道,且这些第一流道连通这些第二流道。The heat sink disclosed in the present invention includes a plurality of heat conducting clips, a plurality of first fins and a plurality of second fins. Each heat-conducting clip includes a connected section near the wind and a section away from the wind. The included angle between the windward section and the windward section is less than 180 degrees. The first fins and the heat conduction clips are alternately arranged, and the first fins are respectively combined with the windward sections of the heat conduction clips, so that the first fins form a plurality of first flow channels inclined and arranged at intervals . The second fins and the heat conduction clips are alternately arranged, and the second fins are respectively combined with the wind-away sections of the heat conduction clips, so that the included angle between the second fins and the first fins is less than 180° degree, and make the second fins form a plurality of second flow channels inclined and arranged at intervals, and the first flow channels communicate with the second flow channels.
本发明所公开的散热装置,包含一热源、一气流产生器及一如上所述的散热器。气流产生器位于热源上方。散热器位于热源与气流产生器之间,散热器热接触于热源,且这些第二鳍片较这些第一鳍片靠近热源。The heat dissipation device disclosed in the present invention includes a heat source, an air flow generator and a heat sink as described above. The airflow generator is located above the heat source. The heat sink is located between the heat source and the airflow generator, the heat sink is in thermal contact with the heat source, and the second fins are closer to the heat source than the first fins.
根据上述实施例所公开的散热器与散热装置,通过倾斜设置的第一鳍片与第二鳍片的导引,可强迫散热气流在第一流道与第一鳍片剧烈碰撞,以及强迫散热气流在第二流道内与第二鳍片剧烈碰撞。如此一来,即可提升散热气流与散热器间的热交换效率,进而提升散热装置与散热器的散热效能。According to the heat sink and heat dissipation device disclosed in the above-mentioned embodiments, through the guidance of the obliquely arranged first fins and second fins, the heat dissipation airflow can be forced to collide violently with the first fins in the first flow channel, and the heat dissipation airflow can be forced Vigorously collides with the second fin in the second flow channel. In this way, the heat exchange efficiency between the heat dissipation airflow and the radiator can be improved, thereby improving the heat dissipation performance of the heat dissipation device and the radiator.
以上关于本发明内容的说明及以下实施方式的说明是用以示范与解释本发明的原理,并且提供本发明的权利要求书更进一步的解释。The above descriptions about the contents of the present invention and the following descriptions of the embodiments are used to demonstrate and explain the principles of the present invention, and provide further explanations of the claims of the present invention.
附图说明Description of drawings
图1为根据本发明第一实施例所述的散热装置的立体示意图。FIG. 1 is a schematic perspective view of a heat dissipation device according to a first embodiment of the present invention.
图2为图1的分解示意图。FIG. 2 is an exploded schematic diagram of FIG. 1 .
图3为图2的单一个导热夹片的侧视示意图。FIG. 3 is a schematic side view of a single thermally conductive clip in FIG. 2 .
图4为图1的散热装置的侧视示意图。FIG. 4 is a schematic side view of the heat dissipation device of FIG. 1 .
图5为图4的第一鳍片与第二鳍片的局部侧视示意图。FIG. 5 is a schematic partial side view of the first fin and the second fin in FIG. 4 .
图6为根据本发明第二实施例所述的散热装置的侧视示意图。FIG. 6 is a schematic side view of a heat dissipation device according to a second embodiment of the present invention.
图7为根据本发明第三实施例所述的第一鳍片与第二鳍片的局部侧视示意图。7 is a schematic partial side view of the first fin and the second fin according to the third embodiment of the present invention.
【符号说明】【Symbol Description】
1、2 散热装置1.2 Heat sink
10 热源10 heat sources
20 气流产生器20 airflow generator
30 散热器30 Radiator
32 第一流道32 First runner
34 第二流道34 Second runner
100、100’ 导热夹片100, 100' thermal clip
110 近风段110 near wind section
111 第一穿孔111 First piercing
120 离风段120 from the wind section
130 组接段130 groups of joints
140 延伸段140 extension
141 第二穿孔141 Second piercing
200 第一鳍片200 first fin
210 第一侧缘210 First side edge
220 第三穿孔220 Third piercing
300 第二鳍片300 second fin
310 第二侧缘310 Second side edge
400 热管400 heat pipes
410 吸热段410 endothermic section
420 放热段420 exothermic section
430 弯曲段430 curved section
具体实施方式detailed description
请参阅图1至图2。图1为根据本发明第一实施例所述的散热装置的立体示意图。图2为图1的分解示意图。Please refer to Figure 1 to Figure 2. FIG. 1 is a schematic perspective view of a heat dissipation device according to a first embodiment of the present invention. FIG. 2 is an exploded schematic diagram of FIG. 1 .
本实施例的散热装置1包含一热源10、一气流产生器20及一散热器30。热源10例如为中央处理器或显示晶片。气流产生器20例如为轴流式风扇,位于热源10上方。散热器30位于热源10与气流产生器20之间。散热器30热接触于热源10,以将热源10所产生的热量传导至散热器30上。气流产生器20用以产生一散热气流来带走热源10所产生的热量。The heat dissipation device 1 of this embodiment includes a heat source 10 , an airflow generator 20 and a radiator 30 . The heat source 10 is, for example, a CPU or a display chip. The airflow generator 20 is, for example, an axial fan, and is located above the heat source 10 . The radiator 30 is located between the heat source 10 and the airflow generator 20 . The heat sink 30 is in thermal contact with the heat source 10 to transfer the heat generated by the heat source 10 to the heat sink 30 . The airflow generator 20 is used for generating a cooling airflow to take away the heat generated by the heat source 10 .
详细来说,请参阅图2至图5。图3为图2的单一个导热夹片的侧视示意图。图4为图1的散热装置的侧视示意图。图5为图4的第一鳍片与第二鳍片的局部侧视示意图。For details, please refer to Figure 2 to Figure 5. FIG. 3 is a schematic side view of a single heat-conducting clip of FIG. 2 . FIG. 4 is a schematic side view of the heat dissipation device of FIG. 1 . FIG. 5 is a schematic partial side view of the first fin and the second fin in FIG. 4 .
散热器30包含多个导热夹片100、多个第一鳍片200、多个第二鳍片300及一热管400。The heat sink 30 includes a plurality of heat conducting clips 100 , a plurality of first fins 200 , a plurality of second fins 300 and a heat pipe 400 .
本实施例的导热夹片100的宽度W1小于第一鳍片200与第二鳍片300的宽度W2,且大于热源10的宽度W3。每一导热夹片100包含相连的一近风段110、一离风段120、一组接段130及一延伸段140。近风段110较离风段120靠近气流产生器20,并具有一第一穿孔111。近风段110与离风段120分别倾斜地连接于组接段130的相对两侧,且近风段110与离风段120的夹角θ1小于180度。这些组接段130接续组接,且令这些近风段110彼此保持一间隙,以及令这些离风段120彼此保持一间隙。The width W1 of the heat conducting clip 100 of this embodiment is smaller than the width W2 of the first fin 200 and the second fin 300 , and larger than the width W3 of the heat source 10 . Each heat-conducting clip 100 includes a wind-near section 110 , a wind-away section 120 , a set of connection sections 130 and an extension section 140 . The windward section 110 is closer to the airflow generator 20 than the windward section 120 , and has a first through hole 111 . The windward section 110 and the windward section 120 are obliquely connected to opposite sides of the assembly section 130 , and the included angle θ1 between the windward section 110 and the windward section 120 is less than 180 degrees. The assembling sections 130 are assembled continuously, and the windward sections 110 keep a gap with each other, and the windward sections 120 keep a gap with each other.
延伸段140连接于离风段120远离近风段110的一侧,延伸段140具有一第二穿孔141。本实施例的第二穿孔141为有缺口形式的穿孔,但并不以此为限,在其他实施例中,第二穿孔141也可以是无缺口形式的穿孔。The extension section 140 is connected to a side of the windward section 120 away from the windward section 110 , and the extension section 140 has a second through hole 141 . The second perforation 141 in this embodiment is a perforation with a notch, but it is not limited thereto. In other embodiments, the second perforation 141 may also be a perforation without a notch.
此外,在本实施例中,延伸段140与离风段120的夹角为钝角,但并不以此为限,在其他实施例中,延伸段140与离风段120的夹角也可为锐角,或者延伸段140亦可平行于离风段120。In addition, in this embodiment, the angle between the extension section 140 and the wind-away section 120 is an obtuse angle, but it is not limited thereto. In other embodiments, the angle between the extension section 140 and the wind-away section 120 can also be The acute angle, or the extension section 140 can also be parallel to the wind-away section 120 .
这些第一鳍片200与这些导热夹片100交错排列,且这些第一鳍片200分别结合于这些导热夹片100的这些近风段110。通过这些导热夹片100的近风段110的间隔,使得这些第一鳍片200未被导热夹片100的近风段110夹住的部分形成倾斜且间隔排列的多个第一流道32。此外,这些第一鳍片200各具有一第三穿孔220,第三穿孔220对齐第一穿孔111。The first fins 200 are alternately arranged with the heat conducting clips 100 , and the first fins 200 are respectively combined with the windward sections 110 of the heat conducting clips 100 . Due to the spacing between the windward sections 110 of the thermally conductive clips 100 , the parts of the first fins 200 not sandwiched by the windwardly section 110 of the thermally conductive clips 100 form a plurality of inclined and spaced first flow channels 32 . In addition, each of the first fins 200 has a third through hole 220 , and the third through hole 220 is aligned with the first through hole 111 .
这些第二鳍片300与这些导热夹片100交错排列,且这些第二鳍片300分别结合于这些导热夹片100的这些离风段120。通过这些导热夹片100的近风段110的导引与间隔,使得这些第二鳍片300与这些第一鳍片200的夹角θ2小于180度,以及这些第二鳍片300未被导热夹片100的离风段120夹住的部分形成倾斜且间隔排列的多个第二流道34。并且,这些第二流道34连通这些第一流道32。The second fins 300 are alternately arranged with the heat conduction clips 100 , and the second fins 300 are combined with the wind-away sections 120 of the heat conduction clips 100 respectively. Through the guidance and spacing of the near-wind section 110 of these heat-conducting clips 100, the included angle θ2 between these second fins 300 and these first fins 200 is less than 180 degrees, and these second fins 300 are not covered by the heat-conducting clip The portion sandwiched by the wind-away section 120 of the sheet 100 forms a plurality of second flow channels 34 that are inclined and arranged at intervals. Moreover, the second flow channels 34 communicate with the first flow channels 32 .
其中,上述的第一鳍片200、第二鳍片300与导热夹片100的结合方式例如为铆接、螺合或粘贴。详细来说,在本实施例中,是先将这些第一鳍片200与这些第二鳍片300分别夹在这些导热夹片100之间,再一并将这些第一鳍片200铆接于导热夹片100的近风段110上,以及将这些第二鳍片300铆接于导热夹片100的离风段120上。此种结合方式能够提升散热器30的生产效率。Wherein, the above-mentioned first fins 200 , second fins 300 and the thermally conductive clip 100 are combined by, for example, riveting, screwing or pasting. In detail, in this embodiment, the first fins 200 and the second fins 300 are sandwiched between the heat-conducting clips 100 respectively, and then the first fins 200 are riveted to the heat-conducting clips together. On the windward section 110 of the clip 100 , and the second fins 300 are riveted to the windward section 120 of the heat conducting clip 100 . This combination can improve the production efficiency of the radiator 30 .
上述的导热夹片100的厚度例如介于0.8毫米至2毫米之间。在本实施例中导热夹片100的厚度是以1毫米为例,即令各第一鳍片200可形成1毫米宽的第一流道32,以及令各第二鳍片300可形成1毫米宽的第二鳍片300的间隙。如此一来,各第一鳍片200与各第二鳍片300除了可密集排列而具有较大的散热面积之外,第一流道32与第二流道34又有足够的宽度来供散热气流顺畅地通过。The thickness of the above-mentioned thermally conductive clip 100 is, for example, between 0.8 mm and 2 mm. In this embodiment, the thickness of the thermally conductive clip 100 is 1 mm as an example, that is, each first fin 200 can form a first flow channel 32 with a width of 1 mm, and each second fin 300 can form a first flow channel 32 with a width of 1 mm. The gap of the second fin 300 . In this way, not only the first fins 200 and the second fins 300 can be densely arranged to have a larger heat dissipation area, but also the first flow channel 32 and the second flow channel 34 have enough width for the heat dissipation airflow. Pass smoothly.
热管400包含一吸热段410、一放热段420及一弯曲段430。热管400的吸热段410穿设这些延伸段140的这些第二穿孔141。热管400的放热段420贯穿这些第一鳍片200的这些第三穿孔220与这些近风段110这些第一穿孔111。弯曲段430衔接吸热段410与放热段420。热管400的吸热段410凸出于延伸段140的底缘,并与热源10热接触。吸热段410吸收到的热量会通过弯曲段430传导至放热段420,再传导至各第一鳍片200,以令热源10所产生的热量较均匀且快速地传导至散热器30。The heat pipe 400 includes a heat absorbing section 410 , a heat releasing section 420 and a bending section 430 . The heat absorption section 410 of the heat pipe 400 passes through the second through holes 141 of the extension sections 140 . The heat radiation section 420 of the heat pipe 400 runs through the third through holes 220 of the first fins 200 and the first through holes 111 of the near wind section 110 . The curved section 430 connects the heat absorbing section 410 and the heat releasing section 420 . The heat absorbing section 410 of the heat pipe 400 protrudes from the bottom edge of the extending section 140 and is in thermal contact with the heat source 10 . The heat absorbed by the heat absorbing section 410 is conducted to the heat releasing section 420 through the curved section 430 , and then conducted to each first fin 200 , so that the heat generated by the heat source 10 is conducted to the heat sink 30 more uniformly and quickly.
更详细来说,如图5所示,本实施例的这些第一鳍片200各具有远离气流产生器20的一第一侧缘210。这些第二鳍片300各具有邻近气流产生器20的一第二侧缘310。这些第一鳍片200的这些第一侧缘210分别邻近于这些第二鳍片300的这些第二侧缘310,并彼此相对齐。此外,这些第一鳍片200的这些第一侧缘210与这些第二鳍片300的这些第二侧缘310保持一间隙,使得这些第一流道32与这些第二流道34之间具有空隙,而可供外部气流f流入。In more detail, as shown in FIG. 5 , each of the first fins 200 in this embodiment has a first side edge 210 away from the airflow generator 20 . Each of the second fins 300 has a second side edge 310 adjacent to the airflow generator 20 . The first side edges 210 of the first fins 200 are respectively adjacent to the second side edges 310 of the second fins 300 and are aligned with each other. In addition, there is a gap between the first side edges 210 of the first fins 200 and the second side edges 310 of the second fins 300 , so that there is a gap between the first flow channels 32 and the second flow channels 34 , while the external airflow f can flow in.
接着说明本实施例的散热器30的散热原理。如图4与图5所示,气流产生器20产生一散热气流F。散热气流F的起始流向(散热气流F未接触至第一散热鳍片时的流动方向)与第一鳍片200保持一第一锐角θ3。第一锐角θ3例如介于30度至60度。并且,散热气流F的起始流向(散热气流F未接触至第一散热鳍片的流向)与第二鳍片300保持一第二锐角θ4。第二锐角θ4例如介于30度至60度。Next, the heat dissipation principle of the heat sink 30 of this embodiment will be described. As shown in FIGS. 4 and 5 , the airflow generator 20 generates a cooling airflow F. As shown in FIG. The initial flow direction of the heat dissipation airflow F (the flow direction when the heat dissipation airflow F does not contact the first heat dissipation fins) maintains a first acute angle θ3 with the first fins 200 . The first acute angle θ3 is, for example, between 30 degrees and 60 degrees. Moreover, the initial flow direction of the heat dissipation airflow F (the flow direction of the heat dissipation airflow F not in contact with the first heat dissipation fin) maintains a second acute angle θ4 with the second fin 300 . The second acute angle θ4 is, for example, between 30 degrees and 60 degrees.
如图5所示,当散热气流F进入第一流道32时,倾斜设置的第一鳍片200可导引散热气流在第一流道32内剧烈碰撞第一鳍片200,来将自热源10传导至散热器30上的热量带走。也就是说,倾斜设置的第一鳍片200可强迫散热气流F与各第一鳍片200的表面热接触,进而能有效提升散热器30的散热效能。换言之,倾斜设置的第一鳍片200将可避免散热气流F受到气旋的阻碍而无法充份地和第一鳍片200进行热交换。如此一来,将能够提升散热气流对散热器30的散热效能。As shown in FIG. 5 , when the heat dissipation airflow F enters the first flow channel 32 , the obliquely arranged first fins 200 can guide the heat dissipation airflow to violently collide with the first fins 200 in the first flow channel 32 to conduct heat from the heat source 10 . To the heat on the radiator 30 away. That is to say, the inclined first fins 200 can force the heat dissipation airflow F to come into thermal contact with the surface of each first fin 200 , thereby effectively improving the heat dissipation performance of the heat sink 30 . In other words, the inclined first fins 200 can prevent the heat dissipation airflow F from being hindered by the cyclone and cannot fully exchange heat with the first fins 200 . In this way, the heat dissipation efficiency of the heat dissipation airflow to the radiator 30 can be improved.
同理,当散热气流F自第一流道32进入第二流道34时,倾斜设置的第二鳍片300亦可导引散热气流在第二流道34内剧烈碰撞第二鳍片300,以将自热源10传导至散热器30上的热量带走。如此一来,将能够提升散热气流对散热器30的散热效能。Similarly, when the cooling air flow F enters the second flow channel 34 from the first flow channel 32, the obliquely arranged second fins 300 can also guide the cooling air flow to violently collide with the second fin 300 in the second flow channel 34, thereby The heat conducted from the heat source 10 to the radiator 30 is taken away. In this way, the heat dissipation efficiency of the heat dissipation airflow to the radiator 30 can be improved.
第一实施例的散热装置1具有热管400,但并不以此为限,在其他实施例中,散热装置亦可不具有热管。请参阅图6。图6为根据本发明第二实施例所述的散热装置的侧视示意图。The heat sink 1 of the first embodiment has a heat pipe 400 , but it is not limited thereto. In other embodiments, the heat sink may not have a heat pipe. See Figure 6. FIG. 6 is a schematic side view of a heat dissipation device according to a second embodiment of the present invention.
本实施例的散热装置2的导热夹片100’与第一实施例的导热夹片100相似,其差异在于本实施例的导热夹片100’无延伸段140。由于导热夹片100无延伸段140,且导热夹片100的离风段120的底缘与第二鳍片300的底缘切齐共同形成一连续面来和热源10热接触,故可进一步提升热源10与散热器30之间的热交换效率。The heat conduction clip 100' of the heat dissipation device 2 of this embodiment is similar to the heat conduction clip 100 of the first embodiment, the difference is that the heat conduction clip 100' of this embodiment does not have an extension section 140. Since the thermally conductive clip 100 has no extension section 140, and the bottom edge of the wind-away section 120 of the thermally conductive clip 100 is aligned with the bottom edge of the second fin 300 to form a continuous surface to be in thermal contact with the heat source 10, it can be further improved. The heat exchange efficiency between the heat source 10 and the heat sink 30 .
第一实施例的第一鳍片200的第一侧缘210对齐第二鳍片300的第二侧缘310,但并不以此为限。请参阅图7。图7为根据本发明第三实施例所述的第一鳍片与第二鳍片的局部侧视示意图。In the first embodiment, the first side edge 210 of the first fin 200 is aligned with the second side edge 310 of the second fin 300 , but the present invention is not limited thereto. See Figure 7. 7 is a schematic partial side view of the first fin and the second fin according to the third embodiment of the present invention.
在本实施例中,这些第一鳍片200各具有远离气流产生器20的一第一侧缘210。这些第二鳍片300各具有邻近气流产生器20的一第二侧缘310。这些第一鳍片200的这些第一侧缘210分别邻近于这些第二鳍片300的这些第二侧缘310,并彼此相错位。In this embodiment, each of the first fins 200 has a first side edge 210 away from the airflow generator 20 . Each of the second fins 300 has a second side edge 310 adjacent to the airflow generator 20 . The first side edges 210 of the first fins 200 are respectively adjacent to the second side edges 310 of the second fins 300 and are offset from each other.
通过这些第一鳍片200与这些第二鳍片300的错位关系,第一流道32内的散热气流F可一分为二地流入相邻的二第二流道34内,以扩大散热气流F对散热器30的散热区域。Through the dislocation relationship between the first fins 200 and the second fins 300, the heat dissipation airflow F in the first channel 32 can be divided into two and flow into two adjacent second flow channels 34, so as to expand the heat dissipation airflow F The heat dissipation area of the radiator 30.
根据上述实施例所公开的散热器与散热装置,通过倾斜设置的第一鳍片与第二鳍片的导引,可强迫散热气流在第一流道与第一鳍片剧烈碰撞,以及强迫散热气流在第二流道内与第二鳍片剧烈碰撞。如此一来,即可提升散热气流与散热器间的热交换效率,进而提升散热装置与散热器的散热效能。According to the heat sink and heat dissipation device disclosed in the above-mentioned embodiments, through the guidance of the obliquely arranged first fins and second fins, the heat dissipation airflow can be forced to collide violently with the first fins in the first flow channel, and the heat dissipation airflow can be forced Vigorously collides with the second fin in the second flow channel. In this way, the heat exchange efficiency between the heat dissipation airflow and the radiator can be improved, thereby improving the heat dissipation performance of the heat dissipation device and the radiator.
虽然本发明的实施例公开如上所述,然并非用以限定本发明,任何本领域普通技术人员,在不脱离本发明的构思和范围内,凡依本发明申请范围所述的形状、构造、特征及数量当可做这些许的变更,因此本发明的保护范围须视本说明书所附的权利要求书所界定者为准。Although the embodiments of the present invention are disclosed as above, they are not intended to limit the present invention. Anyone skilled in the art, without departing from the concept and scope of the present invention, can use any shape, structure, The characteristics and quantity should be subject to these permissible changes, so the scope of protection of the present invention must be defined by the appended claims of this specification.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510124562.1A CN106034394B (en) | 2015-03-20 | 2015-03-20 | Radiator and radiating device |
TW104110093A TWI588437B (en) | 2015-03-20 | 2015-03-27 | Heat dissipator and heat dissipating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510124562.1A CN106034394B (en) | 2015-03-20 | 2015-03-20 | Radiator and radiating device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106034394A true CN106034394A (en) | 2016-10-19 |
CN106034394B CN106034394B (en) | 2018-02-09 |
Family
ID=57148773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510124562.1A Active CN106034394B (en) | 2015-03-20 | 2015-03-20 | Radiator and radiating device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106034394B (en) |
TW (1) | TWI588437B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109952485A (en) * | 2016-11-10 | 2019-06-28 | 赛峰集团 | Heat exchanger |
CN112040719A (en) * | 2017-12-26 | 2020-12-04 | 讯凯国际股份有限公司 | Heat radiation structure |
CN114121849A (en) * | 2020-08-27 | 2022-03-01 | 讯凯国际股份有限公司 | Water-cooling heat dissipation device and manufacturing method thereof |
CN114585211A (en) * | 2020-11-30 | 2022-06-03 | 惠州惠立勤电子科技有限公司 | Air guide cooling module |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201945091U (en) * | 2010-11-18 | 2011-08-24 | 三花丹佛斯(杭州)微通道换热器有限公司 | Heat exchanger |
JP2012028361A (en) * | 2010-07-20 | 2012-02-09 | Furukawa Sky Kk | Heat sink |
US20130155616A1 (en) * | 2011-12-16 | 2013-06-20 | Delta Electronics (Shanghai) Co., Ltd. | Hybrid heat sink and hybrid heat sink assembly for power module |
CN203615553U (en) * | 2013-10-18 | 2014-05-28 | 广东美的暖通设备有限公司 | Electric heating component for air conditioner and air conditioner with electric heating component |
CN103987231A (en) * | 2013-02-08 | 2014-08-13 | 技嘉科技股份有限公司 | Heat sink and method for manufacturing the same |
CN203824172U (en) * | 2014-05-14 | 2014-09-10 | 珠海格力电器股份有限公司 | Finned heat exchanger using R410a refrigerant |
CN104302147A (en) * | 2013-07-18 | 2015-01-21 | 技嘉科技股份有限公司 | Radiator manufacturing method and radiator |
CN204119706U (en) * | 2014-05-19 | 2015-01-21 | 技嘉科技股份有限公司 | Heat radiation module |
CN104427826A (en) * | 2013-08-29 | 2015-03-18 | 昆山广兴电子有限公司 | Heat radiation module |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3699290B2 (en) * | 1999-02-26 | 2005-09-28 | コーセル株式会社 | Heat dissipation device |
US20030131970A1 (en) * | 2002-01-17 | 2003-07-17 | Carter Daniel P. | Heat sinks and method of formation |
CN201203377Y (en) * | 2008-04-01 | 2009-03-04 | 明道煌 | Heat radiating fin |
CN204119708U (en) * | 2014-08-07 | 2015-01-21 | 技嘉科技股份有限公司 | Heat radiator |
CN204203883U (en) * | 2014-11-13 | 2015-03-11 | 华为技术有限公司 | Heating radiator |
-
2015
- 2015-03-20 CN CN201510124562.1A patent/CN106034394B/en active Active
- 2015-03-27 TW TW104110093A patent/TWI588437B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012028361A (en) * | 2010-07-20 | 2012-02-09 | Furukawa Sky Kk | Heat sink |
CN201945091U (en) * | 2010-11-18 | 2011-08-24 | 三花丹佛斯(杭州)微通道换热器有限公司 | Heat exchanger |
US20130155616A1 (en) * | 2011-12-16 | 2013-06-20 | Delta Electronics (Shanghai) Co., Ltd. | Hybrid heat sink and hybrid heat sink assembly for power module |
CN103987231A (en) * | 2013-02-08 | 2014-08-13 | 技嘉科技股份有限公司 | Heat sink and method for manufacturing the same |
CN104302147A (en) * | 2013-07-18 | 2015-01-21 | 技嘉科技股份有限公司 | Radiator manufacturing method and radiator |
CN104427826A (en) * | 2013-08-29 | 2015-03-18 | 昆山广兴电子有限公司 | Heat radiation module |
CN203615553U (en) * | 2013-10-18 | 2014-05-28 | 广东美的暖通设备有限公司 | Electric heating component for air conditioner and air conditioner with electric heating component |
CN203824172U (en) * | 2014-05-14 | 2014-09-10 | 珠海格力电器股份有限公司 | Finned heat exchanger using R410a refrigerant |
CN204119706U (en) * | 2014-05-19 | 2015-01-21 | 技嘉科技股份有限公司 | Heat radiation module |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109952485A (en) * | 2016-11-10 | 2019-06-28 | 赛峰集团 | Heat exchanger |
CN112040719A (en) * | 2017-12-26 | 2020-12-04 | 讯凯国际股份有限公司 | Heat radiation structure |
CN112040719B (en) * | 2017-12-26 | 2023-04-25 | 讯凯国际股份有限公司 | Heat dissipation structure |
CN114121849A (en) * | 2020-08-27 | 2022-03-01 | 讯凯国际股份有限公司 | Water-cooling heat dissipation device and manufacturing method thereof |
CN114585211A (en) * | 2020-11-30 | 2022-06-03 | 惠州惠立勤电子科技有限公司 | Air guide cooling module |
Also Published As
Publication number | Publication date |
---|---|
CN106034394B (en) | 2018-02-09 |
TWI588437B (en) | 2017-06-21 |
TW201634894A (en) | 2016-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7304847B2 (en) | Heat sink | |
US7370692B2 (en) | Heat dissipating structure having different compactness | |
US20080101036A1 (en) | Heat-dissipating assembly structure | |
US20070251675A1 (en) | Thermal module | |
US20110127012A1 (en) | Heat dissipation device | |
US20100025013A1 (en) | Heat dissipation device | |
US20140116659A1 (en) | Heat dissipation device and heat dissipation fins thereof | |
CN106034394B (en) | Radiator and radiating device | |
CN103906413B (en) | Heat radiation module | |
CN2930230Y (en) | radiator module | |
US7463484B2 (en) | Heatsink apparatus | |
US20100020494A1 (en) | Heat dissipation device | |
CN204335265U (en) | Electronic cooling module and cartridge electronic radiator | |
US20100181886A1 (en) | Heat dissipating module | |
US20080115910A1 (en) | Heat-Dissipation and Airflow-Conduction Fin Assembly | |
TWI334529B (en) | Heat dissipation device | |
CN203423886U (en) | Heat radiation module | |
US8644023B2 (en) | Heat dissipation device and electronic device using the same | |
CN102036536A (en) | Cooling device | |
CN202103993U (en) | Heat dissipation fin assembly and heat dissipation assembly thereof | |
TWM466295U (en) | Heat dissipation module | |
CN107872941B (en) | Heat sink device | |
JP3148593U (en) | Structure of heat dissipation fin set with reduced pressure loss of heat dissipation fluid and heat dissipation module using the heat dissipation fin set | |
TWI300325B (en) | Heat dissipation module | |
CN103732036B (en) | heat sink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |