CN106019440B - 一种偏振衍射光栅结构 - Google Patents

一种偏振衍射光栅结构 Download PDF

Info

Publication number
CN106019440B
CN106019440B CN201610588779.2A CN201610588779A CN106019440B CN 106019440 B CN106019440 B CN 106019440B CN 201610588779 A CN201610588779 A CN 201610588779A CN 106019440 B CN106019440 B CN 106019440B
Authority
CN
China
Prior art keywords
grating
duty ratio
polarizing diffraction
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610588779.2A
Other languages
English (en)
Other versions
CN106019440A (zh
Inventor
万辰皓
肖建高
郭海平
陈念
唐霞辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201610588779.2A priority Critical patent/CN106019440B/zh
Publication of CN106019440A publication Critical patent/CN106019440A/zh
Application granted granted Critical
Publication of CN106019440B publication Critical patent/CN106019440B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

本发明公开了一种偏振衍射光栅结构,包括基底层、光栅层,其特征在于:光栅层的各块状区域栅条方向、周期、占空比不同;光栅层位于基底层上方,需经过曝光、显影、刻蚀形成光栅层;本发明可以克服传统偏振衍射光栅参数调整只有一个自由度的缺点,从三个自由度来控制光栅透射光的分布,以达到任意光束的分束/合束功能,其理论分/合束效率达99%,且光栅器件的体积小,可应用在抗反射器、相干偏振合束、测量Stokes参量、生物成像和光通信等领域。

Description

一种偏振衍射光栅结构
一、技术领域
本发明属于激光技术领域涉及一种偏振衍射光栅结构,特别涉及一种高分/合束效率的光栅器件。
二、背景技术
光学衍射光栅作为衍射光学器件中的一种已经被人们广泛应用,它具有周期性的空间结构,一般是在介质或者金属上进行刻蚀形成等效折射率调制而制成的。光学衍射光栅可以分为透射光栅和反射光栅。衍射光栅的衍射级次主要由光栅周期和入射光波长的大小决定的。
目前激光分/合束系统的动态及主要问题:
1、传统激光分/合束系统通过采用达曼光栅,它可以将一束相干光分成若干束等强度的相干光,或者将将满足相位关系的相干光束阵列合成一束光,但不能满足分/合束效率要求较高的情况,传统的相位光栅只能实现对入射光的相位进行周期性的调控。并且主要调整栅条周期、栅条方向、栅条占空比其中的一个参数,这样的远场的光场分布就受到了一定的限制,这样,激光合束系统的输出效率就会大一定程度上受到了限制。
2、在激光相干合束系统中通过提升单一激光器的功率已达到物理极限,其分束/合束器件的效率起到了非常重要的作用,而传统的激光相干合束效率低下造成整个系统的性能的下降,输出功率受到一定的限制。
三、发明内容
针对现有技术的以上缺陷和改进需求,本发明提供了一种高效率的偏振衍射光栅结构及制作方法,以求解决现有合束系统中的远场光场分布不均匀、激光输出功率不高、转化效率低等问题。
本发明提出一种偏振衍射光栅结构,包括光栅层和基底层,其中:
所述基底层是单晶硅,所述光栅层是与基底层折射率相同的介电材料,通过曝光、显影、刻蚀制作在基底层上;
所述光栅层是占空比可变光栅结构或周期可变光栅结构;光栅层由多个长方形块状光栅区域平直对齐拼成,相邻各块状光栅区域内的栅条方向不同,每个块状光栅区域的光栅结构为二元型;长方形块数根据相位偏角变化值求得,各块相位偏角数越小,长方形块数越多;
所述占空比可变光栅结构是各块状区域光栅的周期不变,占空比和方向角变化;所述周期可变光栅结构是各块状区域光栅的占空比不变,周期和方向角变化。
进一步的,所述光栅等效参数计算步骤如下:
(1)求相位偏角α、相位延迟Γ、快轴方位角
相位偏角:指光波在光栅中传播的相移;
相位延迟:指光栅对两个互相正交的偏振分量产生的相位偏移;
快轴方位角:指光栅等效后快轴方位角;
其中:ρx为光波在x方向的振幅分量,ρy为光波在y方向的振幅分量;x轴方向为快轴,其垂直于各栅条,y轴平行于各栅条;θx为光波在x方向的初始相位角,θy为光波在y方向的初始相位角;这4个参数由入射光的方向和本光栅结构确定;当入射光为线偏振光时,该光栅的传输琼斯矩阵T(x)为:
可知,光场前焦面的琼斯矩阵为其中:
光栅用于分束/合束时,在前焦面上,x、y方向的光强分布分别为:
Vx=ρxexp(jθx) (3)
Vy=ρxexp(jθy) (4)
联立式(1)-式(4),求解出α、Γ、
(2)根据严格耦合波方法RCWA,计算可变占空比结构和可变周期结构相对应的光栅周期、占空比和方向角;
(2-1)在可变占空比结构中,光栅周期Λ不能太大,因为要满足亚波长的要求;也不能太小,太小加工不出来,主要受限于加工精度,一般取波长的0.4倍为光栅周期;即Λ=0.4λ;光栅方向角等于光栅等效为波片后的波片快轴方位角
光栅占空比F计算由如下两式联立求解:
Γ=eλz (5);Γ为光栅相位延迟;
其中(6)中的Γ根据琼斯矩阵计算出来的相位延迟:
其中(5)式中的λ为以下矩阵的特征值:
ur为光栅层的相对磁导率,εr为光栅层的相对介电常数,θ为入射光与z轴方向的夹角,φ为入射光在光栅面的投影与x轴方向的夹角;λ为矩阵FΩ的矩阵本征值,FΩ是包含F的矩阵,通过求解(FΩ-λE)x=0得到基础解系,式中E为单位矩阵,从而可以求解出FΩ的特征值;通过计算矩阵FΩ可以计算出相位延迟的表达式;
(2-2)在可变周期结构中,光栅占空比F不能太大,也不能太小,太小加工不出来,主要受限于加工精度,F一般取0.6;光栅方向角等于光栅等效为波片后的波片快轴方位角
光栅周期由如下两式联立求解:
Γ=eλz (7);Γ为光栅相位延迟;
式(8)根据琼斯矩阵得到;
其中(7)式中的λ为以下矩阵的特征值,用前述可变占空比结构方法可计算得到;
ur为光栅层的相对磁导率,εr为光栅层的相对介电常数,θ为入射光与z轴方向的夹角,φ为入射光在光栅面的投影与x轴方向的夹角。
进一步的,所述块状区域的占空比可变光栅结构的光栅周期为620nm,方向角变化范围22度到67度,占空比变化范围0.35到0.61,每个长方形块状区域的大小尺寸为18.6um*2.38mm,整个可变占空比结构光栅的尺寸大小为2.38mm*2.38mm。
进一步的,所述块状区域的周期可变光栅结构占空比为0.6,方向角变化范围22度到67度,周期变化范围279nm到636nm,每个长方形块状区域的大小尺寸为19.1um*2.44mm,整个可变周期结构光栅的尺寸大小为2.44mm*2.44mm。
进一步的,所述偏振衍射光栅的每个区域的栅条结构的周期、方向角、占空比不同,其安装位置通过高精度机械控制元件能进行微小移动。
进一步的,所述光栅结构入射面和出光面要根据光栅的实际位置而定,如果整个系统是从左到右依次布置,在合束作用时,左端是入射面,右端是出射面,分束作用时,则正好相反;其中,所述入射面是刻有光栅图案的一面,出射面是没有光栅图案的另一面。
进一步的,所述偏振衍射光栅为亚波长光栅。
相应地,本发明还提出一种所述偏振衍射光栅结构的制作方法,包括如下步骤:
(1)选用高阻单晶硅,将硅衬底使用标准化学机械抛光,对硅基片进行清洗,去除基片表面杂质;用丙酮超声清洗,然后用乙醇超声清洗,再用去离子水清洗后,取出基片用氮气吹干;对基片进行旋胶,要求胶膜均匀,与基片接触良好;所述单晶硅电阻率>100Ω·cm,光刻胶厚度在900-1100nm之间;
(2)将旋胶后的基片作前烘处理,使光刻胶内的有机溶剂充分挥发;然后用电子束透过带有预先设计的目标光栅结构的光刻掩模版照射,进行投影式曝光;
(3)将曝光后的硅基片放在显影液中显影,去除感光后的光刻胶;显影时,将基片浸入显影液中轻微晃动;然后接着对硅基片后烘,准备刻蚀;
(4)采用ICP等离子体刻蚀方法对刻蚀硅光栅,除掉没有光刻胶保护区域的1000nm厚的单晶硅层,得到相应的光栅结构。
进一步的,所述步骤(3)的显影中,先用二甲苯浸泡80秒,再用异丙醇浸泡40秒。
所述占空比可变光栅结构是光栅的周期不变,占空比和方向角变化;所述周期可变光栅结构是光栅的占空比不变,周期和方向角变化;栅条的占空比决定了等效波片的相位延迟;栅条的方向决定了等效波片的方向角;周期决定了光栅的偏振状态;不同周期、方向角、占空比的光栅区域所等效成不同的波片,对光的偏振控制作用也不一样,从而实现对入射光的偏振控制。
基于本发明提出的偏振衍射光栅,本发明还提出一种激光相干合束耦合谐振腔,除了本发明提出的偏振衍射光栅(4)之外,还包括上、中、下反射镜(11、12、13),上、中、下增益单元(21、22、23),上、中、下半导体激光器(31、32、33)和输出镜(5),其中:
上、中、下反射镜(11、12、13)从上至下对称设置,其中,中反射镜(12)和输出镜(5)共轴相对设置,所述偏振衍射光栅设在中反射镜(12)和输出镜(5)之间光轴上,各反射镜的反射中心均与偏振衍射光栅(4)的光轴中心等距;各反射镜与偏振衍射光栅(4)之间的光路上分别设有上、中、下增益单元(21、22、23);输出镜(5)与上、中、下反射镜(11、12、13)共同组成谐振腔;
上、中、下半导体激光器(31、32、33)分别靠近上、中、下增益单元(21、22、23)设置,各激光输出窗口对准各增益单元侧面的各增益单元的正中部;
所述半导体激光器(3)用于产生泵浦光;所述增益单元(2)设置在用于放大耦合腔内传输的激光;所述偏振衍射光栅(4)用于腔内激光分束/合束;所述输出镜(5)位于谐振腔右端,用于激光束输出;
工作时,各半导体激光器(31、32、33)产生初始的泵浦光,经过各增益单元(21、22、23)放大后的三束泵浦光,经各反射镜(11、12、13)反射后,到达偏振衍射光栅(4)后合为一束,合束后的激光功率如果没有达到谐振腔的阈值,合束光会经过输出镜(5)反射,由偏振衍射光栅(4)分成三束,三光束再经各增益单元放大,再次被反射和合束,直到达到谐振腔的阈值后,由输出镜(5)输出合束后的激光。
本发明提出的谐振腔由于加入了偏振衍射光栅做为分/合器件,能改变激光相干合束系统模式选择、随机相位波动特性,可通过基于主动偏振控制元件解决或缓解相干合束系统中随机相位波动的问题。这样可以代替传统激光器的而采用选模(锁相)机理,提高激光器的转换效率,有利于高功率激光的输出。
本偏振衍射光栅是通过调控偏振衍射光栅的栅条周期、点空比、方向三个自由度来周期性的调控入射光的偏振态,并达到大于99%的理论分束效率。分束效率可由下式计算得出。
其中d为光栅周期,Tm为m级次衍射的复振幅,S为信号的衍射级次,ηu为衍射效率,在偏振衍射光栅中,光栅周期小于入射光波长,只会产生0级衍射波,代入上式,即可得出光栅的理论分束效率。
本发明中,采用了严格耦合波方法RCWA计算可变占空比结构和可变周期结构相对应的光栅周期、占空比和方向角;推导过程如下(以可变占空比为例):
当光通过光栅时,麦克斯韦方程可以写成如下微分形式:
其中:
式中,Ex(z')为电场沿z平面中x方向的分量;Ey(z')为电场沿z平面中y方向的分量;为磁场沿z平面中x方向的分量;为磁场沿z平面中y方向的分量;
ur为光栅层的相对磁导率,εr为光栅层的相对介电常数,θ为入射光与z轴方向的夹角,φ为入射光在光栅面的投影与x轴方向的夹角;光栅相位延迟Γ等于eλz',λ为矩阵FΩ的矩阵本征值,通过计算矩阵FΩ可以计算出相位延迟的表达式:
Γ=eλz' (5);
由琼斯矩阵计算出来的相位延迟Γ为:
联立(5)、(6)两式,可计算出每个相位延迟所对应的占空比数值。
本发明中,光栅结构的高分束效率来源于对入射光的两个正交方向同时进行振幅和相位的调控,而振幅的调控并没有带来能量的损失,能量只是从一个正交方向转移到另一个正交方向,因而该光栅有着分/合束效率高的优点,在相同的输出功率的情况下,每个合束单元的功率都会大为减小,并且其运行功率都在其物理极限以内,有效的避免了单增益单元激光器系统的热效应、非线性效应和物理损伤等问题,可以实现高功率、高光束质量的激光输出。传统的分/合束器件基于达曼光栅,本发明使用偏振衍射光栅作为分/合束器件,其效率高于达曼光栅,而且该发明中的光栅器件经过量化处理分为很多块状区域,且每个区域的方向、周期、占空比,这些参数的不同可以对入射光的偏振态进行任意的调控,从而得到等能量和任意数目的子光束,与现有技术相比,本光栅具有如下优点:
(1)对光栅进行了量化处理,将偏振衍射光栅在分成多个块状区域,其每个区域的栅条的方向和占空比都不一样,通过调控这些结构参数来实现对入射光的偏振态的任意控制,以实现等能量和任意数目的分束,该偏振衍射光栅对偏振态的周期性调控可以等效为同时对两个正交方向的振幅和相位分别进行周期性的调控,自由度的个数相比于相位光栅从一个增加到三个。
(2)该偏振衍射光栅可以等效为一个相位延迟片,其方向角和相位延迟都是空间坐标的函数,因此偏振衍射光栅可以通过亚波长栅条结构来实现。栅条方向决定了等效波片的方向角,栅条占空比决定了对入射光的相对相位延迟,该偏振衍射光栅在一个局部位置的栅条结构都是二元的,可以通过对匀胶及掩模后硅片单次曝光获得,降低了制备的难度和成本。
附图说明
图1是本发明提供的偏振衍射光栅的示意图;
图2是本发明提供的可变占空比偏振衍射光栅的示意图;
图3是本发明提供的可变周期偏振衍射光栅的示意图;
图4是本发明提供的偏振衍射光栅的激光相干合束耦合谐振腔示意图;
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
11、12、13---反射镜,21、22、23---增益单元,31、32、33---半导体激光器,4---偏振衍射光栅,5---输出镜。
四、具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明的实施例中,采用本发明提供的偏振衍射光栅的工作方式,把偏振衍射分割成多个相同块状区域,该区域即可等效为一个薄片,各区域的参数包括栅条方向、栅条周期、栅条点空比。其中块状区域的栅条方向决定了等效波片的方向角,栅条高度和栅条占空比决定了相对相位延迟。其具体参数如下:可变占空比光栅结构,占空比变化范围为0.35到0.61,方向角变化范围为22度到67度,周期为固定值620nm,刻蚀深度为1000nm;可变周期光栅结构,周期可变化范围为279nm到636nm,长方形块状区域的方向角变化范围为22度到67度,占空比为固定值0.6,刻蚀深度为1000nm;
请参阅图2、图3所示,由图可见,本实施例中有两种光栅结构:可变占空比和可变周期,这两种偏振衍射光栅的具体制作流程如下所示:
(1)选用高阻单晶硅,将硅衬底使用标准化学机械抛光,首先对硅基片进行清洗,去除基片表面的有机物和灰尘等杂质。清洗过程中,先用丙酮超声清洗10min,然后用乙醇超声清洗10min,再用去离子水清洗10min,最后取出基片用氮气吹干备用。再对基片进行旋胶,旋胶要求胶膜均匀,与基片接触良好,所述单晶硅电阻率>100Ω·cm,光刻胶厚度在900-1100nm之间;
(2)旋胶完成后,将基片放置于热板上作前烘处理,其目的就是干燥光刻胶,促使光刻胶内的有机溶剂充分挥发,将前烘后的的硅基片在电子束的照射下,图2为可变占空比光栅结构,占空比变化范围为0.35到0.61,方向角变化范围为22度到67度,周期为固定值620nm,刻蚀深度为1000nm;图4为可变周期光栅结构,周期可变化范围为279nm到636nm,长方形块状区域的方向角变化范围为22度到67度,占空比为固定值0.6,刻蚀深度为1000nm;
(3)曝光完成后,先用二甲苯浸泡80秒,再用异丙醇浸泡40秒,去除感光后的光刻胶,显影时,将基片浸入显影液中轻微晃动,显影时间直接影响光刻胶光栅的形貌,需要严格控制。然后接着对硅基片后烘,准备刻蚀;
(4)光刻完成后,最后一道工序就是刻蚀,采用ICP等离子体刻蚀技术对硅光栅进行刻蚀,最后得到相应的光栅结构。
图2中可变占空比偏振衍射光栅结构特点是光栅的占空比可变,其变化范围为0.35到0.61,长方形块状区域的方向角变化范围为22度到67度,制作后的整个结构大小为2.38mm*2.38mm,每个长方形块状区域的光栅方向角和占空比可变,这样就可以等效成不同的波片,不同的波片对光的偏振有不同的调控作用,这样就可以实现对入射光的偏振控制。主要应用在光学相干偏振分/合束系统、抗反射器、、测量Stokes参量、生物成像和光通信等领域。
图3中可变周期偏振衍射光栅结构特点是光栅的周期可变,其变化范围为279nm到636nm,长方形块状区域的方向角变化范围为22度到67度,制作后的整个结构大小为2.44mm*2.44mm,每个长方形块状区域的光栅方向角和占空比可变,这样就可以等效成不同的波片,不同的波片对光的偏振有不同的调控作用,这样就可以实现对入射光的偏振控制。主要应用在光学相干偏振分/合束系统、抗反射器、测量Stokes参量、生物成像和光通信等领域。
本实例制出的光栅结构有两种,可变占空比和可变周期两种结构,两种光栅结构的主要参数有:占空比、周期、方向角、刻蚀深度。在可变占空比光栅结构中,可变参数有占空比和方向角,占空比变化范围为0.35到0.61,方向角变化范围为22度到67度,周期为固定值620nm,刻蚀深度为1000nm;可变周期光栅结构中,可变参数有周期和方向角,周期可变化范围为279nm到636nm,长方形块状区域的方向角变化范围为22度到67度,占空比为固定值0.6,刻蚀深度为1000nm。这两种结构的光栅结构可以使用在光学系统中作用分/合束器件,其具体使用直接用该光栅结构代替光学系统中的分/合束器件,光路只需要作用小范围的改动即可,用该光栅器件可以代替传统分/合束器件,可以提高系统的效率;该光栅还可以用于光通信中,因为该光栅器件可以实现对入射光的偏振态的任意调控,这样就可以使各个偏振态的光束携带不同的信息,可以实现不同偏振态的通信。
采用本发明提出的光栅,可以实现等能量、任意光束的分束,理论分束效率达99%,分束均匀度小于2%。
基于本偏振衍射光栅,本发明提出的一种激光相干合束耦合谐振腔实施方式,参见图4,其包括1、反射镜(11、12、13),2、增益单元(21、22、23),3、半导体激光器(31、32、33),4、偏振衍射光栅,5、输出镜。其中反射镜1通过镀膜技术使其保证经增益单元2放大的光束具有高反射特性,所述的反射镜1由三块镀膜镜组成,上下两块对称置于激光相干合束系统的左端,多个反射镜同时使用以提高系统的输出功率;所述的半导体激光器用于产生泵浦光,发出的泵浦光通过激励增益单元2,得到相干合束的泵浦光,种子光在耦合谐振腔不断往返传输,并且被增益单元2不断放大,最后得到激光输出;所述的输出镜5为部分反射镜,位于合束系统的右端,与反射镜1共同组成谐振腔,可以把大部分的光反射回去,当合束后的功率达到耦合谐振腔的阈值时,经输出镜5输出激光;所述偏振衍射光栅4位于耦合谐振腔的中间,其基底是低膨胀系数的玻璃或熔石英﹐在基底上面镀铝﹐然后曝光、显影、刻蚀把平行线刻在铝膜上,用于分束/合束作用,由增益单元2产生的种子光经反射镜1反射后,到达偏振衍射光栅4后合束,最后经输出镜5反射,由偏振衍射光栅4进行分束,分束后的子光束再经增益单元放大,不同于传统的相伴、振幅光栅的时该光栅可以实现入光偏振态的任意调控,以实现等能量和任意数目的分束;
总体而言,本发明从高效率的分/合束效率及制造工艺简单方面,提供了一种偏振衍射光栅的结构。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种偏振衍射光栅结构,包括光栅层和基底层,其特征在于:
所述基底层是单晶硅,所述光栅层是与基底层折射率相同的介电材料,通过曝光、显影和刻蚀制作在基底层上;
所述光栅层是占空比可变光栅结构或周期可变光栅结构,由多个长方形块状光栅区域平直对齐拼成,相邻各块状光栅区域内的栅条方向不同,每个块状光栅区域的光栅结构为二元型;长方形块数根据相位偏角变化值确定,各块相位偏角数越小,长方形块数越多;
所述占空比可变光栅结构是各块状区域光栅的周期不变,占空比和方向角变化;所述周期可变光栅结构是各块状区域光栅的占空比不变,周期和方向角变化;
所述光栅等效参数包括光栅周期、占空比和方向角,采用严格耦合波方法RCWA计算如下:
(1)可变占空比结构参数计算
光栅周期Λ的下限由加工精度限定,上限由亚波长工作要求限定;一般取波长的0.4倍为光栅周期;
光栅方向角等于光栅等效为波片后的波片快轴方位角
光栅占空比F计算由如下两式联立求解:
Γ=eλz (1)
其中ρx为光波在x方向的振幅分量,ρy为光波在y方向的振幅分量;x轴方向为快轴,其垂直于各栅条,y轴平行于各栅条;θx为光波在x方向的初始相位角,θy为光波在y方向的初始相位角;这4个参数由入射光的方向和本光栅结构确定;Γ为相位延迟,指光栅对两个互相正交的偏振分量产生的相位偏移;
其中,式(1)中的λ为以下矩阵的特征值:
上式中,ur为光栅层的相对磁导率,εr为光栅层的相对介电常数,θ为入射光与z轴方向的夹角,φ为入射光在光栅面的投影与水平x轴方向的夹角;Ω由麦克斯韦方程组求得;
(2)可变周期结构参数计算:
光栅占空比F取值范围是0到1,其下限由加工精度限定,太小加工不出来,一般取0.6;
光栅方向角等于光栅等效为波片后的波片快轴方位角
光栅周期由如下两式联立求解:
Γ=eλz (3);
其中(3)式中的λ为以下矩阵的特征值:
ur为光栅层的相对磁导率,εr为光栅层的相对介电常数,θ为入射光与z轴方向的夹角,φ为入射光在光栅面的投影与x轴方向的夹角。
2.根据权利要求1所述的偏振衍射光栅结构,其特征在于,所述块状区域的占空比可变光栅结构的光栅周期为620nm,方向角变化范围22度到67度,占空比变化范围0.35到0.61,每个长方形块状区域的大小尺寸为18.6um*2.38mm,整个可变占空比结构光栅的尺寸大小为2.38mm*2.38mm。
3.根据权利要求1所述的偏振衍射光栅结构,其特征在于,所述块状区域的周期可变光栅结构占空比为0.6,方向角变化范围22度到67度,周期变化范围279nm到636nm,每个长方形块状区域的大小尺寸为19.1um*2.44mm,整个可变周期结构光栅的尺寸大小为2.44mm*2.44mm。
4.根据权利要求1所述的偏振衍射光栅结构,其特征在于,所述偏振衍射光栅的每个区域的栅条结构的周期、方向角和占空比不同,其安装位置通过高精度机械控制元件能进行微小移动。
5.根据权利要求1所述的偏振衍射光栅结构,其特征在于,该光栅结构入射面和出光面要根据光栅的实际位置而定,如果整个系统是从左到右依次布置,在合束作用时,左端是入射面,右端是出射面,分束作用时,则正好相反;其中,所述入射面是刻有光栅图案的一面,出射面是没有光栅图案的另一面。
6.根据权利要求1所述的偏振衍射光栅结构,其特征在于,所述偏振衍射光栅为亚波长光栅。
7.权利要求1所述偏振衍射光栅结构的制作方法,其特征在于,包括如下步骤:
(1)选用高阻单晶硅,将硅衬底使用标准化学机械抛光,对硅基片进行清洗,去除基片表面杂质;用丙酮超声清洗,然后用乙醇超声清洗,再用去离子水清洗后,取出基片用氮气吹干;对基片进行旋胶,要求胶膜均匀,与基片接触良好;所述单晶硅电阻率>100Ω·cm,光刻胶厚度在900-1100nm之间;
(2)将旋胶后的基片作前烘处理,使光刻胶内的有机溶剂充分挥发;然后用电子束透过带有预先设计的目标光栅结构的光刻掩模版照射,进行投影式曝光;
(3)将曝光后的硅基片放在显影液中显影,去除感光后的光刻胶;显影时,将基片浸入显影液中轻微晃动;然后接着对硅基片后烘,准备刻蚀;
(4)采用ICP等离子体刻蚀方法对刻蚀硅光栅,除掉没有光刻胶保护区域的1000nm厚的单晶硅层,得到相应的光栅结构。
8.根据权利要求7所述的制作方法,其特征在于,在所述步骤(3)的显影中,先用二甲苯浸泡80秒,再用异丙醇浸泡40秒。
9.基于权利要求1-6任一偏振衍射光栅的激光相干合束耦合谐振腔,其特征在于,还包括上、中、下反射镜(11、12、13),上、中、下增益单元(21、22、23),上、中、下半导体激光器(31、32、33)和输出镜(5),其中:
上、中、下反射镜(11、12、13)从上至下对称设置,其中,中反射镜(12)和输出镜(5)共轴相对设置,所述偏振衍射光栅设在中反射镜(12)和输出镜(5)之间光轴上,各反射镜的反射中心均与偏振衍射光栅(4)的光轴中心等距;各反射镜与偏振衍射光栅(4)之间的光路上分别设有上、中、下增益单元(21、22、23);输出镜(5)与上、中、下反射镜(11、12、13)共同组成谐振腔;
上、中、下半导体激光器(31、32、33)分别靠近上、中、下增益单元(21、22、23)设置,各激光输出窗口对准各增益单元侧面的各增益单元的正中部;
所述半导体激光器(31、32、33)用于产生泵浦光;所述增益单元(21、22、23)设置在用于放大耦合腔内传输的激光;所述偏振衍射光栅(4)用于腔内激光分束/合束;所述输出镜(5)位于谐振腔右端,用于激光束输出;
工作时,各半导体激光器(31、32、33)产生初始的泵浦光,经过各增益单元(21、22、23)放大后的三束泵浦光,经各反射镜(11、12、13)反射后,到达偏振衍射光栅(4)后合为一束,合束后的激光功率如果没有达到谐振腔的阈值,合束光会经过输出镜(5)反射,由偏振衍射光栅(4)分成三束,三光束再经各增益单元放大,再次被反射和合束,直到达到谐振腔的阈值后,由输出镜(5)输出合束后的激光。
CN201610588779.2A 2016-07-25 2016-07-25 一种偏振衍射光栅结构 Expired - Fee Related CN106019440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610588779.2A CN106019440B (zh) 2016-07-25 2016-07-25 一种偏振衍射光栅结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610588779.2A CN106019440B (zh) 2016-07-25 2016-07-25 一种偏振衍射光栅结构

Publications (2)

Publication Number Publication Date
CN106019440A CN106019440A (zh) 2016-10-12
CN106019440B true CN106019440B (zh) 2018-08-21

Family

ID=57117795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610588779.2A Expired - Fee Related CN106019440B (zh) 2016-07-25 2016-07-25 一种偏振衍射光栅结构

Country Status (1)

Country Link
CN (1) CN106019440B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290813A (zh) * 2017-07-07 2017-10-24 大连理工大学 一种中红外双层纳米金属光栅及其制备方法
CN110429470B (zh) * 2019-05-29 2021-07-30 北京工业大学 一种出射激光偏振态可调的腔耦合型dfb激光器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176899A (ja) * 2006-12-18 2008-07-31 Matsushita Electric Ind Co Ltd 光ピックアップ装置
CN101356578A (zh) * 2007-02-01 2009-01-28 松下电器产业株式会社 光拾取装置
CN104677397A (zh) * 2015-02-15 2015-06-03 徐海 一种光电编码器及其细分方法
CN206114936U (zh) * 2016-07-25 2017-04-19 华中科技大学 一种偏振衍射光栅结构及耦合谐振腔

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180073B2 (ja) * 2005-07-28 2008-11-12 シャープ株式会社 光ピックアップ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176899A (ja) * 2006-12-18 2008-07-31 Matsushita Electric Ind Co Ltd 光ピックアップ装置
CN101356578A (zh) * 2007-02-01 2009-01-28 松下电器产业株式会社 光拾取装置
CN104677397A (zh) * 2015-02-15 2015-06-03 徐海 一种光电编码器及其细分方法
CN206114936U (zh) * 2016-07-25 2017-04-19 华中科技大学 一种偏振衍射光栅结构及耦合谐振腔

Also Published As

Publication number Publication date
CN106019440A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN102565904B (zh) 利用光栅成像扫描光刻制备大尺寸光栅的方法
CN206114936U (zh) 一种偏振衍射光栅结构及耦合谐振腔
JP7094358B2 (ja) 少なくとも2つの光学機能を提供可能な光学デバイス
CN103901563B (zh) 一种折射率可调的光栅耦合器及其制作方法
CN107179576B (zh) 一种可见光波段的渐变相位金属光栅
KR102129858B1 (ko) 회절 광학 소자, 이의 제조 방법 및 이를 포함하는 광학 장치
CN106019440B (zh) 一种偏振衍射光栅结构
CN102798930B (zh) 基于全息干涉术的光子晶体制造装置
Dems Modelling of high-contrast grating mirrors. The impact of imperfections on their performance in VCSELs
CN108663740A (zh) 基于电介质纳米砖超材料的线偏振光起偏器及制备方法
CN105700073B (zh) 一种表面等离激元单向耦合和分束器件及制备方法
US3786368A (en) Planar waveguide-type distributed feedback laser with angular tuning
JPH02188729A (ja) 光学素子の回析格子製造方法
CN106483774B (zh) 基于非对称金属包覆介质波导的多层亚波长结构刻写装置
TW508463B (en) Fabrication of gratings in planar waveguide devices
CN205985737U (zh) 一种偏振衍射光栅的激光相干合束耦合谐振腔
KR101836758B1 (ko) 그리드 편광 소자 및 광배향 장치
JP2000275415A (ja) 共振モード格子フィルター
CN104777537B (zh) 1×2高效率反射式光栅
JPWO2016031712A1 (ja) グレーティング素子
CN206282079U (zh) 基于非对称金属包覆介质波导的多层亚波长结构刻写装置
CN101140332B (zh) 用于啁啾脉冲放大光谱整形的介质膜结构反射镜
CN104698800B (zh) 一种制备类一维结构的激光全息干涉方法
Zhang et al. Research on laser interference lithography based on mutual injection dual-output laser
CN106918856B (zh) 一种半反半透型偏振分束光栅

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180821

Termination date: 20210725