CN106011806A - 一种离子液体中zta陶瓷表面化学镀镍的方法 - Google Patents

一种离子液体中zta陶瓷表面化学镀镍的方法 Download PDF

Info

Publication number
CN106011806A
CN106011806A CN201610499240.XA CN201610499240A CN106011806A CN 106011806 A CN106011806 A CN 106011806A CN 201610499240 A CN201610499240 A CN 201610499240A CN 106011806 A CN106011806 A CN 106011806A
Authority
CN
China
Prior art keywords
zta
plating
ionic liquid
solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610499240.XA
Other languages
English (en)
Other versions
CN106011806B (zh
Inventor
汝娟坚
冯晶
蒋业华
周荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201610499240.XA priority Critical patent/CN106011806B/zh
Publication of CN106011806A publication Critical patent/CN106011806A/zh
Application granted granted Critical
Publication of CN106011806B publication Critical patent/CN106011806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1687Process conditions with ionic liquid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1882Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开了一种离子液体中ZTA陶瓷表面化学镀镍的方法,其步骤为:首先对ZTA陶瓷颗粒进行表面预处理,然后配制含有离子液体的化学镀镍溶液,并将化学镀镍溶液加入旋转镀槽中加热,待温度恒定后,放入表面清洁的ZTA陶瓷颗粒,缓慢旋转进行化学镀镍。本发明将离子液体引入化学镀镍溶液,减缓了镀覆速度,克服了镀液不稳定、陶瓷颗粒表面施镀不均匀的缺点;此外,本发明采用的旋转搅拌方法有效解决了大粒径ZTA陶瓷颗粒镀覆不均匀的问题,ZTA陶瓷颗粒表面镀镍提高了其与金属液的润湿能力,并增强了其与金属基体的结合强度。

Description

一种离子液体中ZTA陶瓷表面化学镀镍的方法
技术领域
本发明涉及金属基复合材料技术领域,特别涉及一种离子液体中ZTA陶瓷表面化学镀镍的方法。
背景技术
陶瓷金属复合材料由于兼具金属高强度、良好塑性及韧性和陶瓷材料的高硬度、高耐磨性能,已成为国内外科研热点。氧化锆增韧氧化铝陶瓷ZTA由于内部均匀分散的氧化锆颗粒能提高耐磨件的磨损性能,又能保证其整体韧性,被广泛应用于耐磨材料领域。尤其是国外相关产品已有工业应用,进入我国市场并形成垄断。但是,由于ZTA与钢铁液的润湿性差,导致无压铸渗制备ZTA/钢铁复合材料变得相当困难。同时,ZTA/钢铁界面基本为机械结合,结合强度低,复合材料力学性能差,导致复合材料在抗磨损服役过程中可靠性和耐磨性变差。这些技术瓶颈在我国尚未获得突破,因此,提高材料耐磨性能,延长设备使用寿命势在必行。
化学镀是一种有效的表面改性方法,通过在陶瓷颗粒表面镀覆金属往往能够在保持原有材料性能的基础上改善材料的表面性能。但是,在水溶液中对微米甚至毫米级别的大粒径ZTA颗粒上镀覆金属时,由于陶瓷颗粒受重力作用影响,易发生在溶剂中分散稳定性差、镀层薄、包覆不均匀等问题。
发明内容
针对现有技术中存在的问题,本发明的目的是在于提供一种离子液体中ZTA陶瓷表面化学镀镍的方法,可以有效解决大粒径ZTA颗粒化学镀覆中表面镀覆不均匀、镀覆速度过快导致镀液不稳定的问题。
为了达到上述目的,本发明采用以下技术方案予以实现。
一种离子液体中ZTA陶瓷表面化学镀镍的方法,包括以下步骤:
1、将ZTA陶瓷颗粒在表面处理液中处理20-60min,然后过滤并用去离子水清洗3-5次,得到具有清洁和粗糙表面的ZTA陶瓷颗粒;
2、配制化学镀镍溶液:称取适量的氯化镍、次亚磷酸钠、柠檬酸钠、硼酸,分别用少量去离子水充分溶解配制成溶液,先将氯化镍溶液缓慢加入到柠檬酸钠溶液中,然后依次加入次亚磷酸钠溶液和硼酸溶液,最后加入离子液体,并用氢氧化钠调节溶液pH值至9-10;
3、将步骤2中的化学镀镍溶液加入旋转镀槽中,加热至40-80℃,待温度恒定后,将步骤1表面处理后的ZTA陶瓷颗粒放入旋转镀槽中,缓慢旋转进行化学镀镍,调节转速为3-10rpm,镀覆结束后,静置使固液分离,用去离子水清洗三遍并进行干燥封存。
进一步地,步骤1中所述ZTA陶瓷颗粒的粒径为10-1500μm。
进一步地,步骤1中所述表面处理液为氯化亚锡和盐酸的混合溶液,氯化亚锡的浓度为10-30g/L,盐酸的浓度为4-7mol/L。
进一步地,步骤2中所述离子液体为六氟磷酸咪唑、氯化胆碱-尿素、氯化胆碱-乙二醇中的任意一种。
进一步地,步骤2中所述化学镀镍溶液中氯化镍的浓度为25-55g/L、次亚磷酸钠的浓度为20-40g/L、柠檬酸钠的浓度为10-30g/L、硼酸的浓度为10-20g/L、离子液体的浓度为10-50g/L。
本发明方法的有益效果:
(1)本发明所述方法所采用的旋转搅拌方法有效提高了大粒径ZTA镀覆不均匀的问题,从而提高了镀覆效率。
(2)离子液体吸附到ZTA陶瓷表面,减缓镀覆速度,避免镀液不稳定、陶瓷颗粒表面施镀不均匀的现象。
(3)本发明方法对ZTA陶瓷颗粒进行表面处理包覆镍,使陶瓷颗粒表面金属化,提高了金属液与ZTA陶瓷颗粒的润湿能力。
(4)本发明方法通过ZTA陶瓷颗粒表面的金属镍作为陶瓷颗粒与金属基体的中间过渡层,解决了因基体与陶瓷颗粒膨胀系数相差太大而引起开裂的问题,增强了陶瓷颗粒与金属基体的结合强度。
附图说明
图1为实施例1中ZTA陶瓷颗粒表面化学镀镍后的实物图;
图2为实施例1中ZTA陶瓷颗粒表面化学镀镍后的SEM图。
具体实施方式
为使本发明的目的、技术方案和有益效果更加清楚,下面结合实施例对本发明做更进一步地解释,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)配制表面处理溶液,其中氯化亚锡的浓度为10g/L和盐酸的浓度为4mol/L,将粒径为10μm的ZTA陶瓷颗粒在表面处理液中处理20min,然后过滤并用去离子水清洗3次,得到具有清洁和粗糙表面的ZTA陶瓷颗粒。
(2)配制化学镀镍溶液,并用氢氧化钠调整溶液pH值至9,其中氯化镍的浓度为25g/L,次亚磷酸钠的浓度为20g/L,柠檬酸钠的浓度为10g/L,硼酸的浓度为10g/L,离子液体为六氟磷酸咪唑,浓度为10g/L。
(3)将化学镀镍溶液放入旋转镀槽中,加热至40℃,待温度恒定后,将表面处理后的ZTA陶瓷颗粒放入旋转镀槽中缓慢旋转进行化学镀镍,调节转速为3rpm;镀覆结束后得到与ZTA陶瓷结合力好的镍镀层,静置使固液分离,用去离子水清洗三遍并进行干燥封存,所得到的镍镀层厚度为3μm。
图1为本实施例ZTA陶瓷颗粒表面化学镀镍后的实物图,图2为本实施例ZTA陶瓷颗粒表面化学镀镍后SEM,从图2中可以看出ZTA陶瓷颗粒表面形成了紧密连续的Ni镀层,而且Ni颗粒大小相对均一,表面光滑,说明镀覆效果较好。
实施例2
(1)配制表面处理溶液,其中氯化亚锡的浓度为20g/L和盐酸的浓度为6mol/L,将粒径为1000μm的ZTA陶瓷颗粒在表明处理液中处理40min,然后过滤并用去离子水清洗5次,得到具有清洁和粗糙表面的ZTA陶瓷颗粒。
(2)配制化学镀镍溶液,并用氢氧化钠调整溶液pH值至10,其中氯化镍的浓度为40g/L,次亚磷酸钠的浓度为30g/L,柠檬酸钠的浓度为20g/L,硼酸的浓度为15g/L,离子液体为氯化胆碱-尿素,浓度为30g/L。
(3)将化学镀镍溶液放入旋转镀槽中,加热至60℃,待温度恒定后,将表面处理后的ZTA陶瓷颗粒放入旋转镀槽中缓慢旋转进行化学镀镍,调节转速为7rpm;镀覆结束后得到与ZTA陶瓷结合力好的镍镀层,静置使固液分离,用去离子水清洗三遍并进行干燥封存,所得到的镍镀层厚度为15μm。
实施例3
(1)配制表面处理溶液,其中氯化亚锡的浓度为30g/L和盐酸的浓度为7mol/L,将粒径为1500μm的ZTA陶瓷颗粒在表面处理液中处理60min,然后过滤并用去离子水清洗4次,得到具有清洁和粗糙表面的ZTA陶瓷颗粒。
(2)配制化学镀镍溶液,并用氢氧化钠调整溶液pH值至9,其中氯化镍的浓度为55g/L,次亚磷酸钠的浓度为40g/L,柠檬酸钠的浓度为30g/L,硼酸的浓度为20g/L,离子液体为氯化胆碱-尿素,浓度为50g/L。
(3)将化学镀镍溶液放入旋转镀槽中,加热至80℃,待温度恒定后,将表面处理后的ZTA陶瓷颗粒放入旋转镀槽中缓慢旋转进行化学镀镍,调节转速为10rpm;镀覆结束后得到与ZTA陶瓷结合力好的镍镀层,静置使固液分离,用去离子水清洗三遍并进行干燥封存,所得到的镍镀层厚度为30μm。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种离子液体中ZTA陶瓷表面化学镀镍的方法,其特征在于,包括以下步骤:
1)将ZTA陶瓷颗粒在表面处理液中处理20-60min,然后过滤并用去离子水清洗3-5次,得到具有清洁和粗糙表面的ZTA陶瓷颗粒;
2)配制化学镀镍溶液:称取适量的氯化镍、次亚磷酸钠、柠檬酸钠、硼酸,分别用少量去离子水充分溶解配制成溶液,先将氯化镍溶液缓慢加入到柠檬酸钠溶液中,然后依次加入次亚磷酸钠溶液和硼酸溶液,最后加入离子液体,并用氢氧化钠调节溶液pH值至9-10;
3)将步骤2)中的化学镀镍溶液加入旋转镀槽中,加热至40-80℃,待温度恒定后,将步骤1)表面处理后的ZTA陶瓷颗粒放入旋转镀槽中,缓慢旋转进行化学镀镍,调节转速为3-10rpm,镀覆结束后,静置使固液分离,用去离子水清洗三遍并进行干燥封存。
2.根据权利要求1所述的一种离子液体中ZTA陶瓷表面化学镀镍的方法,其特征在于,步骤1)中所述ZTA陶瓷颗粒的粒径为10-1500μm。
3.根据权利要求1所述的一种离子液体中ZTA陶瓷表面化学镀镍的方法,其特征在于,步骤1)中所述表面处理液为氯化亚锡和盐酸的混合溶液,氯化亚锡的浓度为10-30g/L,盐酸的浓度为4-7mol/L。
4.根据权利要求1所述的离子液体,其特征在于,步骤2)中所述离子液体为六氟磷酸咪唑、氯化胆碱-尿素、氯化胆碱-乙二醇中的任意一种。
5.根据权利要求1所述的一种离子液体中ZTA陶瓷表面化学镀镍的方法,其特征在于,步骤2)中所述化学镀镍溶液中氯化镍的浓度为25-55g/L,次亚磷酸钠的浓度为20-40g/L,柠檬酸钠的浓度为10-30g/L,硼酸的浓度为10-20g/L,离子液体的浓度为10-50g/L。
CN201610499240.XA 2016-06-30 2016-06-30 一种离子液体中zta陶瓷表面化学镀镍的方法 Active CN106011806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610499240.XA CN106011806B (zh) 2016-06-30 2016-06-30 一种离子液体中zta陶瓷表面化学镀镍的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610499240.XA CN106011806B (zh) 2016-06-30 2016-06-30 一种离子液体中zta陶瓷表面化学镀镍的方法

Publications (2)

Publication Number Publication Date
CN106011806A true CN106011806A (zh) 2016-10-12
CN106011806B CN106011806B (zh) 2018-08-28

Family

ID=57104407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610499240.XA Active CN106011806B (zh) 2016-06-30 2016-06-30 一种离子液体中zta陶瓷表面化学镀镍的方法

Country Status (1)

Country Link
CN (1) CN106011806B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544675A (zh) * 2016-10-26 2017-03-29 昆明理工大学 一种磁性薄膜复合有机薄膜的多层膜材料的制备方法
CN106623863A (zh) * 2016-11-10 2017-05-10 西安交通大学 一种基于化学法活化处理的zta颗粒增强钢铁基复合破碎壁的制备方法
CN106735101A (zh) * 2016-11-10 2017-05-31 西安交通大学 一种基于化学法活化处理的zta颗粒增强钢铁基复合磨辊的制备方法
CN106735100A (zh) * 2016-11-10 2017-05-31 西安交通大学 一种基于化学法活化处理的zta颗粒增强钢铁基复合衬板的制备方法
CN107675149A (zh) * 2017-08-10 2018-02-09 安徽省凤形耐磨材料股份有限公司 一种陶瓷颗粒表面镀镍的方法
CN110424034A (zh) * 2019-09-06 2019-11-08 昆明理工大学 一种不规则陶瓷颗粒表面金属化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060045843A1 (en) * 2004-09-01 2006-03-02 Laiyuan Chen Method for partial oxidation of hydrocarbons, catalyst member therefor and method of manufacture
CN102660735A (zh) * 2012-03-27 2012-09-12 上海大学 非水溶剂体系化学镀镍溶液及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060045843A1 (en) * 2004-09-01 2006-03-02 Laiyuan Chen Method for partial oxidation of hydrocarbons, catalyst member therefor and method of manufacture
CN102660735A (zh) * 2012-03-27 2012-09-12 上海大学 非水溶剂体系化学镀镍溶液及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘欢 等: "ZTA陶瓷预制体/铁基复合材料制备及界面研究", 《第十四届全国耐磨材料大会论文集》 *
蒋业华 等: "用化学镀获得Al2O3颗粒表面镍涂层及其在铁基复合材料中的应用", 《铸造》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544675A (zh) * 2016-10-26 2017-03-29 昆明理工大学 一种磁性薄膜复合有机薄膜的多层膜材料的制备方法
CN106623863A (zh) * 2016-11-10 2017-05-10 西安交通大学 一种基于化学法活化处理的zta颗粒增强钢铁基复合破碎壁的制备方法
CN106735101A (zh) * 2016-11-10 2017-05-31 西安交通大学 一种基于化学法活化处理的zta颗粒增强钢铁基复合磨辊的制备方法
CN106735100A (zh) * 2016-11-10 2017-05-31 西安交通大学 一种基于化学法活化处理的zta颗粒增强钢铁基复合衬板的制备方法
CN106735101B (zh) * 2016-11-10 2018-07-17 西安交通大学 一种基于化学法活化处理的zta颗粒增强钢铁基复合磨辊的制备方法
CN106735100B (zh) * 2016-11-10 2018-07-17 西安交通大学 一种基于化学法活化处理的zta颗粒增强钢铁基复合衬板的制备方法
CN106623863B (zh) * 2016-11-10 2018-07-17 西安交通大学 一种基于化学法活化处理的zta颗粒增强钢铁基复合破碎壁的制备方法
CN107675149A (zh) * 2017-08-10 2018-02-09 安徽省凤形耐磨材料股份有限公司 一种陶瓷颗粒表面镀镍的方法
CN110424034A (zh) * 2019-09-06 2019-11-08 昆明理工大学 一种不规则陶瓷颗粒表面金属化方法

Also Published As

Publication number Publication date
CN106011806B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN106011806B (zh) 一种离子液体中zta陶瓷表面化学镀镍的方法
CN102773475B (zh) 一种导电浆料用抗氧化铜银复合粉及其制备方法
CN106424713A (zh) 一种铜碳复合材料及其制备方法
CN102899644B (zh) 在铝及铝合金表面获得含微纳米SiO2颗粒镀层的方法
CN101298677A (zh) 镁合金表面耐磨耐腐蚀纳米复合镀层的制备方法
CN101070671A (zh) 金属包覆高分子纤维及其制备方法
CN108642535B (zh) 一种二氧化铈改性铝化物梯度涂层体系的制备方法
CN106334787B (zh) 一种梯度石墨/铝基表层自润滑复合材料及制备方法
CN108588690A (zh) 一种金刚石-铝复合材料的化学镀镍方法
CN104018019A (zh) 一种ZrB2/Cu复合材料的制备方法
CN106544653A (zh) 一种SiC粉末表面化学镀铜方法
CN104988474B (zh) 一种复合梯度涂层的化学镀制备方法
CN105296974A (zh) 一种镀钯液及使用其在铜表面镀钯的方法
CN104043826A (zh) 一种铝粉表面水化处理方法及其在制备Al@Ag核壳复合粒子导电与电磁屏蔽填料中的应用
CN102643097A (zh) 氧化铝包覆SiC颗粒增强镍基复合材料的制备方法
CN106435541A (zh) 一种基于碳氮化钛的铝合金晶粒细化剂及其制备方法
CN105483804B (zh) 一种碳化硼复合电极的制备方法
CN107059081A (zh) 一种电镀镍银的镀镍方法
CN106011805A (zh) 一种离子液体中Al2O3陶瓷表面化学镀镍的方法
CN105887170B (zh) 一种电镀金刚石切割线的制造方法
CN107243630A (zh) 一种Ti3SiC2/Ag复合导电粉体的制备方法
CN109183010B (zh) 空心玻璃微珠表面粗化-镀镍的方法
CN106544675A (zh) 一种磁性薄膜复合有机薄膜的多层膜材料的制备方法
CN106205862A (zh) 一种高温导电玻璃纤维布的制备方法
CN106891011B (zh) 一种叠层复合刀具材料及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant