CN106011783A - 一种高迁移率层状硒氧化铋半导体薄膜及其制备方法 - Google Patents

一种高迁移率层状硒氧化铋半导体薄膜及其制备方法 Download PDF

Info

Publication number
CN106011783A
CN106011783A CN201610532362.4A CN201610532362A CN106011783A CN 106011783 A CN106011783 A CN 106011783A CN 201610532362 A CN201610532362 A CN 201610532362A CN 106011783 A CN106011783 A CN 106011783A
Authority
CN
China
Prior art keywords
thin film
semiconductive thin
arbitrary
stratiform
mobility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610532362.4A
Other languages
English (en)
Other versions
CN106011783B (zh
Inventor
彭海琳
吴金雄
谭聪伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201610532362.4A priority Critical patent/CN106011783B/zh
Publication of CN106011783A publication Critical patent/CN106011783A/zh
Application granted granted Critical
Publication of CN106011783B publication Critical patent/CN106011783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高迁移率层状Bi2O2Se半导体薄膜及其制备方法。该制备层状Bi2O2Se半导体薄膜的方法,包括如下步骤:以Bi2O3粉末和Bi2Se3块体为原料,在云母基底上进行化学气相沉积,沉积完毕后即得到所述层状Bi2O2Se半导体薄膜。该方法经济、简单易行、所得薄膜大面积连续迁移率高,具有广阔应用前景。

Description

一种高迁移率层状硒氧化铋半导体薄膜及其制备方法
技术领域
本发明属于半导体材料领域,具体涉及一种高迁移率层状硒氧化铋半导体薄膜的制备方法。
背景技术
二维层状材料因其独特的二维结构和优异的光学、电学及光电性质而受到人们的广泛关注。硒氧化铋(Bi2O2Se)是一种传统的热电材料,属于四方晶系 Z=2),由(Bi2O2)n层和Sen交替连接构成而具有二维层状晶体结构。C.Drasar等对Bi2O2Se单晶块材的电学输运研究表明,其具有较高迁移率,室温霍尔迁移率可高于300cm2V-1s-1。同时,相关的理论计算表明,Bi2O2Se具有较大的体带隙(~0.7-1.2eV)。因此,Bi2O2Se是一种潜在的高迁移率的半导体层状材料,可能应用于高性能逻辑器件、光电等领域,并可能制备全新的二维柔性电子器件和光电器件。大面积连续高质量的单晶薄膜材料的可控合成是应用实现的关键和难点。然而,迄今为止,Bi2O2Se材料主要是通过溶液法或高温气质输运方法得到的,且所得产物为纳米晶或者块体,其晶体质量较差,难以满足电子和光电子领域的需求。大面积连续高质量的Bi2O2Se单晶薄膜的合成尚未见报道。
发明内容
本发明的目的是提供一种高迁移率层状Bi2O2Se半导体薄膜及其制备方法。
本发明提供的制备层状Bi2O2Se半导体薄膜的方法,包括如下步骤:
以Bi2O3粉末和Bi2Se3块体为原料,进行化学气相沉积,沉积完毕后得到所述层状Bi2O2Se半导体薄膜。
上述方法中,所述Bi2O3粉末与Bi2Se3块体的摩尔比为1~3:1,具体可为1:1、2:1或3:1。
所述化学气相沉积在基底上进行;
所述基底具体为云母,化学式为KMg3(AlSi3010)F2
所述化学气相沉积步骤中,载气为氩气。
体系压强为50-400托,具体可为50、200或400托。
沉积温度为580-680℃,具体可为580℃、630℃或680℃。
沉积时间为5-60分钟,具体可为5、30或60分钟。
所述化学气相沉积具体可为在管式炉中进行。
更具体的,所述原料位于所述管式炉的中心位置。
所述基底位于所述管式炉中心位置的下游。具体为距所述中心位置10-14厘米的下游位置。
所述方法还包括如下步骤:在所述化学气相沉积步骤之后,将体系自然降温至室温。
图1是本发明生长Bi2O2Se薄膜方法的示意图。
另外,按照上述方法制备得到的层状Bi2O2Se半导体薄膜及该层状Bi2O2Se半导体薄膜在制备红外光电探测器或场效应晶体管中的应用,也属于本发明的保护范围。
所述层状Bi2O2Se半导体薄膜的300K下的霍尔迁移率具体可为313cm2V-1s-1,低温2K下的霍尔迁移率具体可为20660cm2V-1s-1
本发明介绍一种化学气相沉积合成高迁移率层状Bi2O2Se半导体薄膜的制备方法。该方法经济、简单易行、所得薄膜大面积连续迁移率高,具有广阔应用前景。
附图说明
图1是本发明生长Bi2O2Se薄膜方法的示意图;
图2为本发明介绍的层状硒氧化铋的晶体结构图;
图3是本发明实施例1中所得Bi2O2Se薄膜的光学显微镜照片;
图4是本发明实施例1中所得Bi2O2Se薄膜的原子力显微镜照片;
图5是本发明实施例1中所得Bi2O2Se薄膜的透射电镜低分辨,高分辨及选区电子衍射图片;
图6是本发明实施例1中所得Bi2O2Se薄膜的能谱(EDS)图片;
图7是本发明实施例4中所得Bi2O2Se薄膜的霍尔迁移率和载流子浓度随温度的变化趋势曲线;
图8是本发明实施例2中所得Bi2O2Se薄膜的光学显微镜照片;
图9是本发明实施例3中所得Bi2O2Se薄膜的光学显微镜照片;
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
实施例1
称取0.71克Bi2O3粉末和1.00克Bi2Se3块体(摩尔比1:1),将其置于管式炉石英管的中心。接着,氟金云母基底被置于距离管式炉中心10-14厘米的下游处。通入载气氩气,维持体系压强为200托。将温度升至630摄氏度,维持5分钟,进行化学气相沉积。沉积完毕后停止载气的通入,自然降温至室温,将沉积有Bi2O2Se薄膜的云母基底取出,即得到本发明提供的层状Bi2O2Se半导体薄膜。
图2为该实施例制备所得层状Bi2O2Se半导体薄膜的晶体结构图;由图可知,Bi2O2Se是一种由(Bi2O2)n层和Sen层在z轴方向上交替连接而形成的二维层状材料;
图3是该实施例所得Bi2O2Se薄膜的光学显微镜照片;由图可知,所得Bi2O2Se二维晶体薄膜形状近乎为规整的正方形,畴区尺寸大约为30-50微米;
图4是该实施例所得Bi2O2Se二维晶体薄膜的典型原子力显微镜照片;由图可知,所得该Bi2O2Se二维晶体的厚度为6.2nm,其表面为原子级平整;
图5是该实施例所得Bi2O2Se二维晶体薄膜的透射电镜低分辨,高分辨及选区电子衍射图片;由图可知,所得Bi2O2Se二维晶体的结晶性非常良好,其中高分辨透射电镜照片给出的0.28nm的面间距与Bi2O2Se晶体的(110)晶面的面间距的理论值(0.28nm)一致;
图6是该实施例所得Bi2O2Se二维晶体薄膜的能谱(EDS)图;由图可知,所得二维晶体薄膜的Bi,O和Se的原子比遵从2:2:1,其中Cu的信号来源于微栅铜网;
图7是该实施例所得Bi2O2Se二维晶体薄膜的霍尔迁移率和载流子浓度随温度变化趋势曲线;由图可知,所得Bi2O2Se二维晶体薄膜的室温霍尔迁移率可达313cm2V-1s-1,且其随着温度降低迅速上升,在低温2K下,霍尔迁移率可达20660cm2V-1s-1。同时其载流子浓度随着温度降低单调递减,由300K下的2.8×1013cm-2降为低温2K下的1.8×1013cm-2
实施例2
称取1.42克Bi2O3粉末和1.00克Bi2Se3块体(摩尔比2:1),将其置于管式炉石英管的中心。随后,将氟金云母基底置于距离管式炉中心10-14厘米的下游处。通入载气氩气,维持体系压强为400托。将温度升至580摄氏度,维持30分钟,进行化学气相沉积。沉积完毕后停止载气的通入,自然降温至室温,将沉积有Bi2O2Se薄膜的云母基底取出,即得本发明提供的层状Bi2O2Se半导体薄膜。
图8是本发明实施例2中所得Bi2O2Se薄膜的光学显微镜照片;由图可知,所得Bi2O2Se二维晶体薄膜的畴区尺寸大于100微米。
实施例3
称取2.13克Bi2O3粉末和1.00克Bi2Se3块体(摩尔比3:1),将其置于管式炉石英管的中心。随后,将氟金云母基底置于距离管式炉中心10-14厘米的下游处。通入载气氩气,维持体系压强为50托。将温度升至680摄氏度,维持60分钟,进行化学气相沉积。沉积完毕后停止载气的通入,自然降温至室温,将沉积有Bi2O2Se薄膜的云母基底取出,即得本发明提供的层状Bi2O2Se半导体薄膜。
图9是该实施例所得Bi2O2Se薄膜的光学显微镜照片;由图可知,所得Bi2O2Se薄膜大面积连续、均匀。

Claims (10)

1.一种制备层状Bi2O2Se半导体薄膜的方法,包括如下步骤:
以Bi2O3粉末和Bi2Se3块体为原料,进行化学气相沉积,沉积完毕即得。
2.根据权利要求1所述的方法,其特征在于:所述Bi2O3粉末与Bi2Se3块体的摩尔比为1~3:1。
3.根据权利要求1或2所述的方法,其特征在于:所述化学气相沉积在基底上进行;
或,所述化学气相沉积在基底上进行,所述基底为云母,化学式为KMg3(AlSi3010)F2
4.根据权利要求1-3中任一所述的方法,其特征在于:所述化学气相沉积步骤中,载气为氩气;
体系压强为50-400托;
沉积温度为580-680℃;
沉积时间为5-60分钟。
5.根据权利要求1-4中任一所述的方法,其特征在于:所述化学气相沉积在管式炉中进行。
6.根据权利要求5所述的方法,其特征在于:所述原料位于所述管式炉的中心位置;所述基底位于所述管式炉中心位置的下游。
7.根据权利要求1-6中任一所述的方法,其特征在于:所述方法还包括如下步骤:
在所述化学气相沉积步骤之后,将体系自然冷却至室温。
8.权利要求1-7中任一所述方法制备得到的层状Bi2O2Se半导体薄膜。
9.根据权利要求8所述的层状Bi2O2Se半导体薄膜,其特征在于:所述层状Bi2O2Se半导体薄膜的300K下的霍尔迁移率为313cm2V-1s-1,低温2K下的霍尔迁移率为20660cm2V-1s-1
10.权利要求8或9任一所述层状Bi2O2Se半导体薄膜在制备红外光电探测器或场效应晶体管中的应用。
CN201610532362.4A 2016-07-07 2016-07-07 一种高迁移率层状硒氧化铋半导体薄膜及其制备方法 Active CN106011783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610532362.4A CN106011783B (zh) 2016-07-07 2016-07-07 一种高迁移率层状硒氧化铋半导体薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610532362.4A CN106011783B (zh) 2016-07-07 2016-07-07 一种高迁移率层状硒氧化铋半导体薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106011783A true CN106011783A (zh) 2016-10-12
CN106011783B CN106011783B (zh) 2018-06-01

Family

ID=57108246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610532362.4A Active CN106011783B (zh) 2016-07-07 2016-07-07 一种高迁移率层状硒氧化铋半导体薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106011783B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783552A (zh) * 2017-01-22 2017-05-31 北京大学 二维硒氧化铋晶体及近红外光电探测器件
CN108039403A (zh) * 2017-12-12 2018-05-15 北京大学 一种高质量晶圆级硒氧化铋半导体单晶薄膜的批量化制备方法
CN108217607A (zh) * 2017-12-18 2018-06-29 国家纳米科学中心 Bi2OxSe纳米片、其制备方法及用途
CN108546108A (zh) * 2018-04-19 2018-09-18 清华大学 热电材料及其制备方法以及热电器件
CN108930065A (zh) * 2017-05-24 2018-12-04 北京大学 一种高迁移率硒氧化铋半导体薄膜的化学刻蚀方法
CN109402739A (zh) * 2018-12-19 2019-03-01 清华-伯克利深圳学院筹备办公室 一种二维铋氧硒原子晶体材料、及其制备方法和用途
CN109659408A (zh) * 2018-11-30 2019-04-19 华灿光电(浙江)有限公司 一种氮化镓基发光二极管外延片、芯片及其制备方法
CN110184654A (zh) * 2019-06-06 2019-08-30 江苏科技大学 一种Bi2O2Se晶体及其制备方法
CN110387582A (zh) * 2019-03-22 2019-10-29 南京大学 一种理想二维费米液体系统Bi2O2Se单晶及其制备方法和应用
CN110438567A (zh) * 2019-07-22 2019-11-12 中国科学院上海微系统与信息技术研究所 一种半导体硒氧化铋单晶薄膜材料的制备方法
CN111121979A (zh) * 2019-12-10 2020-05-08 东莞烯事达新材料有限公司 一种基于二维铋氧硒薄膜的测辐射热探测计及其制备方法
CN112071865A (zh) * 2020-09-10 2020-12-11 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN112490305A (zh) * 2020-11-25 2021-03-12 天津津航技术物理研究所 一种可见-紫外双色探测器
CN113690145A (zh) * 2021-09-29 2021-11-23 南京理工大学 一种二维Bi2O2Se薄膜厚度的调控方法
CN114093438A (zh) * 2021-10-28 2022-02-25 北京大学 一种基于Bi2O2Se的多模态库网络时序信息处理方法
CN114275744A (zh) * 2022-02-21 2022-04-05 电子科技大学 一种Bi2O2Se纳米带及其制备方法
CN115787094A (zh) * 2022-08-10 2023-03-14 哈尔滨工业大学 一种辅助生长硒氧化铋薄膜的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263198A (zh) * 2010-05-26 2011-11-30 苏州汉申温差电科技有限公司 低维结构热电材料的制备方法
CN104261357A (zh) * 2014-09-23 2015-01-07 清华大学 一种Bi2O2Se基热电材料及其制备方法
US20150044556A1 (en) * 2013-08-08 2015-02-12 Yanbo Wang Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263198A (zh) * 2010-05-26 2011-11-30 苏州汉申温差电科技有限公司 低维结构热电材料的制备方法
US20150044556A1 (en) * 2013-08-08 2015-02-12 Yanbo Wang Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same
CN104261357A (zh) * 2014-09-23 2015-01-07 清华大学 一种Bi2O2Se基热电材料及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C.DRASAR ET AL.: ""preparation and transport properties of Bi2O2Se single crystals"", 《ELECTRONIC MATERIALS》 *
MONRUDEE LIANGRUKSA: ""effects of negative response of electron transport to thermoelectric properties of Bi2O2Se"", 《COMPUTATIONAL MATERIALS SCIENCE》 *
P.RULEOVA ET AL.: ""Thermoelectric properties of Bi2O2Se"", 《MATERIALS CHEMISTRY AND PHYSICS》 *
况学成等: ""热电材料的研究现状及发展趋势"", 《佛山陶瓷》 *
杨梦倩等: ""n型Bi-Te-Se温差电材料溶液体系的电沉积过程研究"", 《表面技术》 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783552A (zh) * 2017-01-22 2017-05-31 北京大学 二维硒氧化铋晶体及近红外光电探测器件
CN108930065A (zh) * 2017-05-24 2018-12-04 北京大学 一种高迁移率硒氧化铋半导体薄膜的化学刻蚀方法
CN108039403A (zh) * 2017-12-12 2018-05-15 北京大学 一种高质量晶圆级硒氧化铋半导体单晶薄膜的批量化制备方法
CN108217607B (zh) * 2017-12-18 2020-07-10 国家纳米科学中心 Bi2OxSe纳米片、其制备方法及用途
CN108217607A (zh) * 2017-12-18 2018-06-29 国家纳米科学中心 Bi2OxSe纳米片、其制备方法及用途
CN108546108A (zh) * 2018-04-19 2018-09-18 清华大学 热电材料及其制备方法以及热电器件
CN109659408A (zh) * 2018-11-30 2019-04-19 华灿光电(浙江)有限公司 一种氮化镓基发光二极管外延片、芯片及其制备方法
CN109659408B (zh) * 2018-11-30 2021-03-05 华灿光电(浙江)有限公司 一种氮化镓基发光二极管外延片、芯片及其制备方法
CN109402739A (zh) * 2018-12-19 2019-03-01 清华-伯克利深圳学院筹备办公室 一种二维铋氧硒原子晶体材料、及其制备方法和用途
CN110387582A (zh) * 2019-03-22 2019-10-29 南京大学 一种理想二维费米液体系统Bi2O2Se单晶及其制备方法和应用
CN110387582B (zh) * 2019-03-22 2020-12-22 南京大学 一种理想二维费米液体系统Bi2O2Se单晶及其制备方法和应用
CN110184654A (zh) * 2019-06-06 2019-08-30 江苏科技大学 一种Bi2O2Se晶体及其制备方法
CN110438567A (zh) * 2019-07-22 2019-11-12 中国科学院上海微系统与信息技术研究所 一种半导体硒氧化铋单晶薄膜材料的制备方法
CN111121979A (zh) * 2019-12-10 2020-05-08 东莞烯事达新材料有限公司 一种基于二维铋氧硒薄膜的测辐射热探测计及其制备方法
CN112071865A (zh) * 2020-09-10 2020-12-11 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN112071865B (zh) * 2020-09-10 2022-02-22 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
WO2022052305A1 (zh) * 2020-09-10 2022-03-17 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
US11923384B2 (en) 2020-09-10 2024-03-05 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel, manufacturing method thereof, and display device
CN112490305A (zh) * 2020-11-25 2021-03-12 天津津航技术物理研究所 一种可见-紫外双色探测器
CN112490305B (zh) * 2020-11-25 2022-04-01 天津津航技术物理研究所 一种可见-紫外双色探测器
CN113690145A (zh) * 2021-09-29 2021-11-23 南京理工大学 一种二维Bi2O2Se薄膜厚度的调控方法
CN114093438A (zh) * 2021-10-28 2022-02-25 北京大学 一种基于Bi2O2Se的多模态库网络时序信息处理方法
CN114275744A (zh) * 2022-02-21 2022-04-05 电子科技大学 一种Bi2O2Se纳米带及其制备方法
CN115787094A (zh) * 2022-08-10 2023-03-14 哈尔滨工业大学 一种辅助生长硒氧化铋薄膜的方法

Also Published As

Publication number Publication date
CN106011783B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
CN106011783A (zh) 一种高迁移率层状硒氧化铋半导体薄膜及其制备方法
Ginley et al. Topological insulator film growth by molecular beam epitaxy: A review
CN103194729B (zh) 金属硫属化物薄膜的制备方法
CN103526297B (zh) 一种制备拓扑绝缘体Bi2Se3薄膜的方法
Gong et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides
Wang et al. Recent progress in synthesis of two-dimensional hexagonal boron nitride
Lee et al. High mobility ultra-thin crystalline indium oxide thin film transistor using atomic layer deposition
CN112359421B (zh) 一种反向气流法制备层状铋氧硒半导体薄膜的方法
Zhao et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives
CN108039403B (zh) 一种高质量晶圆级硒氧化铋半导体单晶薄膜的批量化制备方法
Wang et al. Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition
CN108486656B (zh) 一种碲化铌二维材料及其合成和应用
Izhnin et al. Epitaxial fabrication of 2D materials of group IV elements
Han et al. Horizontal growth of MoS 2 nanowires by chemical vapour deposition
Zhou et al. Band alignment of ultrawide bandgap ε-Ga2O3/h-BCN heterojunction epitaxially grown by metalorganic chemical vapor deposition
Shao et al. Modulated anisotropic growth of 2D SnSe based on the difference in a/b/c-axis edge atomic structures
Gavrilin et al. A new approach for producing of film structures based on Si1-xGex
Ren et al. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition
Polat et al. Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics
Song et al. Synthesis of large-area uniform Si 2 Te 3 thin films for p-type electronic devices
Wu et al. Tuning power factors of two-dimensional Bi2O2Se nanoplates through vacancy engineering
CN110344025A (zh) 一种二维Zn掺杂Ca2Si纳米薄膜及其化学气相沉积方法
He et al. Preparation and characterization of heteroepitaxial Zn2SnO4 single crystalline films prepared on MgO (100) substrates
Rath et al. Evidence of nanostructure formation in Ge oxide by crystallization induced by swift heavy ion irradiation
RU2723125C1 (ru) СПОСОБ СОЗДАНИЯ МАТЕРИАЛОВ НА ОСНОВЕ ГЕРМАНЕНА EuGe2 И SrGe2 С ВЫСОКОЙ ПОДВИЖНОСТЬЮ НОСИТЕЛЕЙ ЗАРЯДА

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant