CN106007679B - 一种激光近净成形Al2O3基共晶陶瓷刀具的方法 - Google Patents

一种激光近净成形Al2O3基共晶陶瓷刀具的方法 Download PDF

Info

Publication number
CN106007679B
CN106007679B CN201610343826.7A CN201610343826A CN106007679B CN 106007679 B CN106007679 B CN 106007679B CN 201610343826 A CN201610343826 A CN 201610343826A CN 106007679 B CN106007679 B CN 106007679B
Authority
CN
China
Prior art keywords
powder
ceramic
cutter
laser
net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610343826.7A
Other languages
English (en)
Other versions
CN106007679A (zh
Inventor
吴东江
闫帅
沈忱
牛方勇
马广义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201610343826.7A priority Critical patent/CN106007679B/zh
Publication of CN106007679A publication Critical patent/CN106007679A/zh
Application granted granted Critical
Publication of CN106007679B publication Critical patent/CN106007679B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种激光近净成形Al2O3基共晶陶瓷刀具的方法,将Al2O3和陶瓷粉末分别放入送粉器两个粉筒中,调整送粉速度使Al2O3和另一种陶瓷粉末具有一定质量配比,以惰性气体作为送粉和保护气体,高能激光束在TC4基板上和前一沉积层上形成熔池并熔化注入熔池的陶瓷粉末,采用连续多道多层扫描制备Al2O3基共晶陶瓷刀具。本方法制备的Al2O3基共晶陶瓷刀具在增强传统陶瓷刀具韧性的基础上,硬度和强度都能得到进一步提高,特别是在陶瓷材料熔点附近仍保持非常高的强度、硬度和抗蠕变性,可有效抑制在干式高速切削条件下刀具的破损和裂纹缓慢长大导致刀具材料性能退化,表现出优异的热稳定性,提升刀具寿命和生产效率。

Description

一种激光近净成形Al2O3基共晶陶瓷刀具的方法
技术领域
本发明涉及一种刀具制造技术,尤其涉及一种激光近净成形Al2O3基共晶陶瓷刀具。
背景技术
切削加工占整个制造业加工中比例为80%-85%,在国内更高达90%,切削刀具的每一次技术变革,都会引领制造业加工技术的一次飞跃。当代机械加工发展总趋势为高效率、高精度、高柔性和强化环境意识,陶瓷刀具以良好的红硬性和化学稳定性适用于高速干式切削,可加工硬质合金难以加工的高硬材料,并可实现以车代磨、以铣代抛,原料广、节约贵金属以降低成本等优势逐步进入刀具市场,其中Al2O3基陶瓷刀具与铁族金属亲和性小,抗氧化能力强,在切削过程中月牙洼磨损小,可实现干式高速切削加工淬硬钢和高硬镍,广泛应用于军事国防和航空航天中的涡轮叶片、曲轴、连杆的加工制造,因此Al2O3基陶瓷刀具的增强增韧成为研究热点。
目前,制备Al2O3基陶瓷刀具按材料分类主要有纯Al2O3(牌号P1)、Al2O3—碳化物系(牌号M16/SG3)、Al2O3—TiC—金属系(牌号AT6/LT35)、Al2O3—SiC系(牌号JX-1/WG300)、Al2O3—(Ti/W)C系(牌号FG2),生产方式主要有冷压法烧结(CP)、热压法烧结(HP)、热等静压法(HIP)、SHS冶金技术法,历经碳化物颗粒增韧、SiC晶须增韧、功能梯度增韧、复合纳米增韧。激光近净成形法(LENS)采用激光超高温熔粉,快速冷凝制备Al2O3基共晶陶瓷刀具,晶粒及共晶间距可达百纳米级,利用纳米和相变协同增韧原理,有效提高 Al2O3基陶瓷刀具的韧性和强度。有关报道如下:
南京理工大学申请号为201510779093.7的申请专利介绍了一种Al2O3/Ti (C/N)复合陶瓷刀具材料及其微波烧结工艺,利用微波烧结系统制备了 Al2O3/Ti(C/N)复合陶瓷刀具材料,但由于微波本身的特性微波炉腔体中场强往往不均匀,微波烧结过程中刀具材料的加热速度非常迅速,不均匀的微波场将导致在刀具材料内部不同的部位获得不同的微波能量,出现很大的温度梯度导致刀具材料开裂。
青岛唐鹏钢结构工程有限公司申请号为201510904497.4的申请专利介绍了一种耐热型陶瓷刀具,其所制备的Al2O3基陶瓷刀具红硬性能较好但韧性和强度较低,刀具容易发生破损,降低刀具寿命和生产效率。
发明内容
本发明为解决传统陶瓷刀具在高温条件下的断裂韧性差、抗弯强度低等问题,提供一种高效优质且加工柔性强的一种激光近净成形Al2O3基共晶陶瓷刀具的方法,不但可以提高传统陶瓷刀具的红硬性和化学稳定性,而且由于激光近净成形制备方式提高了陶瓷刀具的韧性和强度,其原因在于:
1、激光近净成形法(LENS)采用激光超高温熔粉,快速冷凝制备Al2O3基共晶陶瓷刀具,共晶结构均匀且晶粒及共晶间距可达百纳米量级,利用纳米和相变协同增韧原理,有效提高Al2O3基陶瓷刀具的韧性和强度;
2、Al2O3基共晶陶瓷组织细小且缺陷少,共晶组织呈相互交缠的三维网络状结构,相界面结合良好,不存在高温下容易变形的非晶相,不能发生晶界相对滑移,应变只能通过晶内位错变形协调,具有较高的强度和韧性,可有效提高传统陶瓷刀具的耐用度。
本发明的技术方案:
一种激光近净成形Al2O3基共晶陶瓷刀具的方法,步骤如下:
该方法所用的系统为激光近净成形系统;
(1)成形基板和陶瓷粉末的预处理:将陶瓷粉末干燥,成形基板采用与Al2O3基共晶陶瓷热膨胀系数相近的材料,成形前用砂纸打磨并依次用丙酮、乙醇、去离子水清洗、吹干;所述陶瓷粉末为Al2O3/ZrO2,Al2O3质量分数54.5~60.5%; Al2O3/SiC,Al2O3质量分数86~92%;或Al2O3/Si3N4,Al2O3质量分数92~98%。
(2)成形参数的设置:设置激光功率密度为104~105W/cm2,送粉量为0.025~0.095g/cm,每层4~9道,每道3~5cm,成形30~50层后,每层2~7道,每道1~3cm,成形10~30层;
(3)打开惰性气体为激光近净成形Al2O3基共晶陶瓷刀具提供送粉动力和气体保护;
(4)先后启动送粉器和激光器对复合陶瓷粉末进行激光近净成形,成形过程中通过改变送粉器不同粉筒的送粉转速,以控制各陶瓷粉末的送粉量,最终实现一定质量配比的Al2O3基共晶陶瓷刀具;
(5)成形结束按先后顺序关闭激光器、送粉器、惰性气体。
所述的Al2O3基共晶陶瓷刀具为多道多层成形工艺,前角γ0=0°~10°,后角α0=5°~10°,刃倾角λ0=-5°~-10°,刀尖圆弧半径rc=0.2~1mm。
与现有技术相比,本发明具有以下有益效果:
1、本发明中所采用的制备方法与以往报道的方法相比,Al2O3基共晶陶瓷刀具在增强传统陶瓷刀具韧性的基础上,硬度和强度都能得到进一步提高,特别是在陶瓷材料熔点附近仍保持非常高的强度、硬度和抗蠕变性,可有效抑制在干式高速切削条件下,刀具的破损和裂纹缓慢长大导致刀具材料性能退化,表现出优异的热稳定性,提升刀具寿命和生产效率;
2、本发明中所采用的制备方法与以往报道的方法相比,激光近净成形制备刀具过程中冷却速度更快,成形尺寸精度较高,易于得到更加细密均匀的共晶组织,有利于结构件力学性能的提高,增强刀具的耐摩擦磨损性能。
附图说明
图1是激光近净成形系统示意图。
图2是Al2O3-ZrO2共晶陶瓷刀具SEM微观组织示意图。
图中:1工业计算机;2激光器;3光纤;4-1送粉器的粉桶A;4-2送粉器的粉桶B;4-3送粉器的粉桶C;5惰性气体;6激光加工头;7成形刀具;8基板。
具体实施方式
下面结合附图和实施例对本发明进行进一步说明。
实施例1
采用Nd:YAG固体连续激光器对Al2O3和ZrO2陶瓷粉末进行激光近净成形,具体成形步骤如下:
A、实验前基板8用砂纸打磨并依次用丙酮、乙醇、去离子水清洗、吹干,选择直径为40~90μm的Al2O3和ZrO2陶瓷粉末,将粉末放至电热式鼓风干燥箱中100℃下干燥5h,调整基板8使同轴送粉的粉末流焦点处于基板的表面,同时保证粉末流焦点与激光光斑重合,以最大程度地提高粉末利用率,然后将 Al2O3粉末放入4-1送粉器的粉筒A中,将ZrO2陶瓷粉末放入4-2送粉器的粉筒 B中;
B、打开惰性气体5为激光近净成提供送粉动力及气体保护,调整送粉气压为0.2MPa,流量为5L/min,保护气压为0.1MPa,流量为15L/min,先后启动 4-1送粉器的粉筒A、4-2送粉器的粉筒B和激光器2,送粉器粉筒A及粉筒B 的送粉转速利用相应变量的赋值来分别控制,以保证一定质量配比的Al2O3基共晶陶瓷刀具;
C、设置激光功率密度105W/cm2,送粉量为0.075g/cm,每层7道,每道4 cm,成形40层后,每层5道,每道3cm,成形15层;
D、先后启动送粉器4和激光器2对复合陶瓷粉末进行激光近净成形,成形过程中通过改变送粉器4不同粉筒的送粉转速,以控制各陶瓷粉末的送粉量,最终实现实一定质量配比的Al2O3基共晶陶瓷刀具;
E、成形结束按先后顺序关闭激光器、送粉器、惰性气体。
实施例2
采用Nd:YAG固体连续激光器对Al2O3和SiC陶瓷粉末进行激光近净成形,具体成形步骤如下:
A、实验前基板8用砂纸打磨并依次用丙酮、乙醇、去离子水清洗、吹干,选择直径为40~90μm的Al2O3和SiC陶瓷粉末,将粉末放至电热式鼓风干燥箱中100℃下干燥5h,调整基板8使同轴送粉的粉末流焦点处于基板的表面,同时保证粉末流焦点与激光光斑重合,以最大程度地提高粉末利用率,然后将 Al2O3粉末放入4-1送粉器的粉筒A中,将SiC陶瓷粉末放入4-2送粉器的粉筒 B中;
B、打开惰性气体5为激光近净成提供送粉动力及气体保护,调整送粉气压为0.2MPa,流量为5L/min,保护气压为0.1MPa,流量为15L/min,先后启动 4-1送粉器的粉筒A、4-2送粉器的粉筒B和激光器2,送粉器粉筒A及粉筒B 的送粉转速利用相应变量的赋值来分别控制,以保证一定质量配比的Al2O3基共晶陶瓷刀具;
C、设置激光功率密度104W/cm2,送粉量为0.055g/cm,每层6道,每道 3.5cm,成形30层后,每层4道,每道2cm,成形20层;
D、先后启动送粉器4和激光器2对复合陶瓷粉末进行激光近净成形,成形过程中通过改变送粉器4不同粉筒的送粉转速,以控制各陶瓷粉末的送粉量,最终实现实一定质量配比的Al2O3基共晶陶瓷刀具;
E、成形结束按先后顺序关闭激光器、送粉器、惰性气体。
实施例3
采用Nd:YAG固体连续激光器对Al2O3和Si3N4陶瓷粉末进行激光近净成形,具体成形步骤如下:
A、实验前基板8用砂纸打磨并依次用丙酮、乙醇、去离子水清洗、吹干,选择直径为40~90μm的Al2O3和Si3N4陶瓷粉末,将粉末放至电热式鼓风干燥箱中100℃下干燥5h,调整基板8使同轴送粉的粉末流焦点处于基板的表面,同时保证粉末流焦点与激光光斑重合,以最大程度地提高粉末利用率,然后将 Al2O3粉末放入4-1送粉器的粉筒A中,将Si3N4陶瓷粉末放入4-2送粉器的粉筒B中;
B、打开惰性气体5为激光近净成提供送粉动力及气体保护,调整送粉气压为0.2MPa,流量为5L/min,保护气压为0.1MPa,流量为15L/min,先后启动 4-1送粉器的粉筒A、4-2送粉器的粉筒B和激光器2,送粉器粉筒A及粉筒B 的送粉转速利用相应变量的赋值来分别控制,以保证一定质量配比的Al2O3基共晶陶瓷刀具;
C、设置激光功率密度5×104W/cm2,送粉量为0.04g/cm,每层4道,每道 3cm,成形30层后,每层2道,每道1cm,成形10层;
D、先后启动送粉器4和激光器2对复合陶瓷粉末进行激光近净成形,成形过程中通过改变送粉器4不同粉筒的送粉转速,以控制各陶瓷粉末的送粉量,最终实现实一定质量配比的Al2O3基共晶陶瓷刀具;
E、成形结束按先后顺序关闭激光器、送粉器、惰性气体。

Claims (1)

1.一种激光近净成形Al2O3基共晶陶瓷刀具的方法,其特征在于,步骤如下:
该方法所用的系统为激光近净成形系统;
(1)成形基板和陶瓷粉末的预处理:将陶瓷粉末干燥,成形基板采用与Al2O3基共晶陶瓷热膨胀系数相近的材料,成形前用砂纸打磨并依次用丙酮、乙醇、去离子水清洗、吹干;
(2)成形参数的设置:设置激光功率密度为104~105W/cm2,送粉量为0.025~0.095g/cm,每层4~9道,每道3~5cm,成形30~50层后,每层2~7道,每道1~3cm,成形10~30层;
(3)打开惰性气体为激光近净成形Al2O3基共晶陶瓷刀具提供送粉动力和气体保护;
(4)先后启动送粉器和激光器对复合陶瓷粉末进行激光近净成形,成形过程中通过改变送粉器不同粉筒的送粉转速,以控制各陶瓷粉末的送粉量,最终实现一定质量配比的Al2O3基共晶陶瓷刀具;
(5)成形结束按先后顺序关闭激光器、送粉器、惰性气体;
所述的陶瓷粉末为Al2O3/SiC,Al2O3质量分数86~92%;或Al2O3/Si3N4,Al2O3质量分数92~98%;所述的Al2O3基共晶陶瓷刀具为多道多层成形工艺,前角γ0=0°~10°,后角α0=5°~10°,刃倾角λ0=-5°~-10°,刀尖圆弧半径rc=0.2~1mm。
CN201610343826.7A 2016-05-21 2016-05-21 一种激光近净成形Al2O3基共晶陶瓷刀具的方法 Active CN106007679B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610343826.7A CN106007679B (zh) 2016-05-21 2016-05-21 一种激光近净成形Al2O3基共晶陶瓷刀具的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610343826.7A CN106007679B (zh) 2016-05-21 2016-05-21 一种激光近净成形Al2O3基共晶陶瓷刀具的方法

Publications (2)

Publication Number Publication Date
CN106007679A CN106007679A (zh) 2016-10-12
CN106007679B true CN106007679B (zh) 2018-12-18

Family

ID=57095686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610343826.7A Active CN106007679B (zh) 2016-05-21 2016-05-21 一种激光近净成形Al2O3基共晶陶瓷刀具的方法

Country Status (1)

Country Link
CN (1) CN106007679B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278843B (zh) * 2021-05-25 2021-12-24 江南大学 一种热等静压制备金属基陶瓷复合材料的制造工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268584B1 (en) * 1998-01-22 2001-07-31 Optomec Design Company Multiple beams and nozzles to increase deposition rate
CN102557596A (zh) * 2012-01-05 2012-07-11 西北工业大学 一种激光送粉法制备氧化铝基共晶陶瓷的方法
CN103159484A (zh) * 2013-03-01 2013-06-19 大连理工大学 ZrO2/SiC复合掺杂增韧Al2O3基陶瓷件的激光近净成形方法
CN103193486A (zh) * 2013-03-18 2013-07-10 大连理工大学 一种激光近净成形Al2O3-ZrO2共晶陶瓷结构件的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268584B1 (en) * 1998-01-22 2001-07-31 Optomec Design Company Multiple beams and nozzles to increase deposition rate
CN102557596A (zh) * 2012-01-05 2012-07-11 西北工业大学 一种激光送粉法制备氧化铝基共晶陶瓷的方法
CN103159484A (zh) * 2013-03-01 2013-06-19 大连理工大学 ZrO2/SiC复合掺杂增韧Al2O3基陶瓷件的激光近净成形方法
CN103193486A (zh) * 2013-03-18 2013-07-10 大连理工大学 一种激光近净成形Al2O3-ZrO2共晶陶瓷结构件的方法

Also Published As

Publication number Publication date
CN106007679A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
JP7004088B2 (ja) 付加製造体の製造方法、および、付加製造体の製造装置
CN103624257B (zh) 制造三维制品的方法
CN102441672B (zh) 一种激光熔覆纳米陶瓷颗粒增强的金属基梯度涂层制备方法
US8956478B2 (en) Process for joining refractory ceramic parts by spark plasma sintering (SPS)
CN101063187B (zh) 一种陶瓷-金属复合材料的制备方法
Li et al. In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/(TiC+ Ti3SiC2) system functionally graded material
JP7362595B2 (ja) 脆性材料の表面破壊靭性を改善するための方法及びシステム、並びにそのような方法により製造される切削工具
JP6188678B2 (ja) フラッシュ焼結によって複雑な形状を有する部品を製造するための方法、およびそのような方法を実施するための装置
Zou et al. Effects of sintering processes on mechanical properties and microstructure of TiB2–TiC+ 8 wt% nano-Ni composite ceramic cutting tool material
Soliman et al. Titanium aluminides processing by additive manufacturing–a review
CN109760173B (zh) 壁状Al2O3-GdAlO3-ZrO2三元共晶陶瓷的激光熔化成形方法
Wang et al. Microstructural evolution and growth kinetics of interfacial compounds in TiAl/Ti3SiC2 diffusion bonding joints
CN103361532A (zh) 一种固溶体增韧金属陶瓷及其制备方法
CN103276394A (zh) 一种等离子喷涂双层结构热障涂层激光重熔一步强化加工方法及其装置
CN109439991A (zh) 一种TiB2晶须高温强韧化Ti(C,N)基金属陶瓷材料制备方法
CN111334742B (zh) 过渡族金属难熔化合物陶瓷复合涂层的制备方法
CN106007679B (zh) 一种激光近净成形Al2O3基共晶陶瓷刀具的方法
CN1334759A (zh) 层条状金属-陶瓷复合材料
CN109628786B (zh) 一种耐高温强韧化Ti(C,N)基金属陶瓷产品的成型制备方法
CN107500778B (zh) 三种维度材料协同增韧聚晶立方氮化硼的制备方法
CN108588628B (zh) 高速模切刀具表面梯度涂层及其制备工艺
CN114799212A (zh) 一种抑制激光增材制造镍基高温合金热裂纹的方法
RU2414991C1 (ru) Способ получения керамических изделий с наноразмерной структурой
CN113106450A (zh) 一种复合硬质涂层刀具及其制备方法
JP2021188135A (ja) 付加製造体の製造方法、および、付加製造体の製造装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant