CN106000355A - 一种回收水中碳氟表面活性剂的新工艺 - Google Patents

一种回收水中碳氟表面活性剂的新工艺 Download PDF

Info

Publication number
CN106000355A
CN106000355A CN201610413542.0A CN201610413542A CN106000355A CN 106000355 A CN106000355 A CN 106000355A CN 201610413542 A CN201610413542 A CN 201610413542A CN 106000355 A CN106000355 A CN 106000355A
Authority
CN
China
Prior art keywords
water
surfactant
magnetic
particle
microgranule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610413542.0A
Other languages
English (en)
Other versions
CN106000355B (zh
Inventor
邹伟
李嘉
颜杰
陈炯
杨虎
杨益祥
苏桂萍
朱胜兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhonghao Chenguang Research Institute of Chemical Industry Co Ltd
Sichuan University of Science and Engineering
Original Assignee
Zhonghao Chenguang Research Institute of Chemical Industry Co Ltd
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhonghao Chenguang Research Institute of Chemical Industry Co Ltd, Sichuan University of Science and Engineering filed Critical Zhonghao Chenguang Research Institute of Chemical Industry Co Ltd
Priority to CN201610413542.0A priority Critical patent/CN106000355B/zh
Publication of CN106000355A publication Critical patent/CN106000355A/zh
Application granted granted Critical
Publication of CN106000355B publication Critical patent/CN106000355B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明涉及水处理技术领域,具体为一种回收水中碳氟表面活性剂的新工艺。该工艺首先合成或者选用一种铁磁性微粒,然后在磁性材料表面包覆一层惰性物质层,并通过嫁接的方式使其表面覆盖大量可反应基团;然后将尾端具有可与反应基团的反应的聚乙二醇和碳氟化合物加入,将聚氧乙烯基链和碳氟链链接到微粒的表面;将这种表面覆盖有聚氧乙烯醚链和碳氟链的微粒,分散到含有碳氟表面活性剂的原水中;当吸附达到饱和后,利用强磁场将微粒从水中提出,从而实现水中含氟表面活性剂的脱除,经处理后的清水可以直接排放。该发明具有方法简单可靠、能源消耗低、磁性微粒可重复利用,可用于含氟聚合物生产中含氟表面活性剂的回收和氟表面活性剂废水的处理。

Description

一种回收水中碳氟表面活性剂的新工艺
技术领域
本发明涉及水处理技术领域,具体为一种回收水中碳氟表面活性剂的新工艺。
背景技术
氟碳的表面活性剂的氟碳链具有很强的疏水性,在极低用量条件下,就能够高效降低水的表面张力,是最重要的特种表面活性剂。同时碳链中氢原子被氟原子替代,使氟碳表面活性剂具极强的化学和热稳定性、和独特的疏油性。能够用于其它表面活性剂难于使用的环境下如,高温、强酸、强碱和强氧化性的环境下,或者其它表面活性剂性能不足的使用条件下。如在乳液聚合合成氟碳高分子聚合物时,碳氟表面活性剂一种不太可替代的乳化剂。
但氟碳表面活性剂在合成时需要消耗大量的电能和复杂的生产装置,所以氟碳表面活性剂的大多较为昂贵。因为其化学性质异常稳定,所以其使用后一旦排放到自然环境中其几乎不能被生物降解。而大量研究表明以全氟辛酸为代表的氟碳表面活性剂是一种环境雌激素,如果为经处理排放到自然界中可能严重威胁人们的健康。但利用乳液聚合生产氟碳聚合物时氟碳表面活性的又是无可取代的,因此如果能够开发一种可靠的工艺能够将废水中的氟碳表面活性剂脱除并回收循环使用就具有很好的社会和经济效益。
在2014-2015年日本Mitsuo Sawamoto等将含有碳氟链的聚合物单体与其他单体共聚并在聚合中引入了聚乙二醇长链,合成了一类表面被聚乙二醇链包覆,内核具有大量碳氟链的星星状聚合物纳米材料。这种材料因具有大量聚乙二醇链而能够很好的分散中水中,同时氟碳内核可以吸附溶解在水中的氟碳的表面活性剂。通过将此中材料交联得到一种凝胶,能够高效地脱除废水中氟碳表面活性剂使其在水中的参与量达到ppb级。但这种凝胶从水中分离以及氟碳表面活性剂的回收都很不成熟,无法使用工程实际。
基于此本发明在磁性的材料表面覆盖层惰性包覆层,并在包覆层表面留下大量的可以反应基团,然后将氟碳链和聚乙二醇链嫁接在材料的表面,使这种材料不但能够分散在水中,同时可以有效地吸附富集氟碳表面活性剂。当材料吸附了大量表面活性剂后,利用磁场将材料从水中分离出来,经洗脱后回收氟碳表面活性剂,并将材料从新活化循环使用。该发明具有良好的工程使用性,能够高效地回收废水中氟碳表面活性剂,不但节约了生产成本,液解决了氟碳表面活性剂的环境污染问题,具有良好的经济效益和社会效益。
发明内容
本发明正是针对以上技术问题,提供一种回收水中碳氟表面活性剂的新工艺。该工艺通过在铁磁性微粒表面包覆惰性的包覆层,然后利用惰性层表面的可反应基团上链接能在水中分散的聚氧乙烯醚链和能够与含氟表面活性剂作用的碳氟链。让其在水中吸附富集含氟表面活性剂,然后再磁场作用下脱除吸附了表面活性剂的微粒,降低水中碳氟化合物的含量。同时利用适当洗脱工艺使将碳氟表面活性剂洗脱,回收磁性纳米颗粒,并将含氟表面活性剂浓缩回用。
本发明的具体技术方案如下:
一种回收水中碳氟表面活性剂的新工艺,该工艺首先需要合成或者选用一种铁磁性微粒,然后在磁性材料表面包覆一层惰性物质层,如二氧化硅、酚醛树脂、脲醛树脂等。并通过嫁接的方式是其表面覆盖大量氨基、羟基、羧基等可反应基团。然后将尾端具有可与反应基团的反应的聚乙二醇和碳氟化合物加入,将聚氧乙烯基链和碳氟链链接到微粒的表面。较这种表面覆盖有聚氧乙烯醚链和碳氟链的微粒,分散到含有碳氟表面活性剂的原水中。当吸附达到饱和后,利用强磁场将微粒从水中提出,从而实现水中含氟表面活性剂的脱除,经处理后的清水可以直接排放。脱除后的微粒经恰当的洗涤工艺,浓缩含氟表面活性剂,并将铁磁性微粒循环使用。
该工艺具体包括以下步骤:
1、在铁磁性微粒表面包覆一层惰性介质,然后利用介质表面可以反应的氨基、羧基、羟基、羰基(醛或酮),然后将亲水性的聚乙二醇链和亲含氟表面活性剂的碳氟链,通过可反应基团链接到磁性微粒表面。
2、在5-90℃下将能够富集水中碳氟表面活性剂的铁磁性微粒,分散到含在1-1000ppm的全氟辛酸,全氟己酸,全氟辛磺酸等碳氟表面活性剂的废水中并形成1g/L-100g/L的分散液,然后利用功率1 w/L-100 w/L,频率为30Hz-100 MHz的超声并充分搅拌的情况下,使铁磁性微粒在水中分散均匀,并保持搅拌10-300 min;
3、然后在处理容器外壁外加强度为100Gs-10000Gs的强磁场,并保持10-300 min,或至水中浊度小于< 3.0-5.0 NTU或者处理后的水无丁达尔现象为止,在保有磁场的情况下放出清水;
4、加入原水体积1%-20%的清水,或者乙醇/水溶液(体积比0.1-10),并除去磁场,然后利用功率1 w/L-100 w/L,频率为30Hz-100 MHz的超声并充分搅拌的情况下,使铁磁性微粒重新在水中分散均匀,并保持搅拌10-300 min后,重新开启磁场,放出含有高浓度碳氟表面活性剂溶液。然后可以重复步骤2-4。
其中能够富集水中碳氟表面活性剂的铁磁纳米微粒,具有以下特征:
1)铁磁性微粒:包括铁磁金属纳米颗粒及铁、钴、镍的微粒;铁磁性复合金属微粒,铁-钯合金微粒、铁-铂合金微粒,稀土合金微粒,和磁性金属氧化物微粒及四氧化三铁微粒。
2)铁磁性微粒的粒径1nm-2μm之间,比表面积为20-500 m2/g,其形貌可以为球形、棒状、立方体、长方体、六棱柱、纳米花等多种,磁性纳米颗粒材料可以经溶胶-凝胶法、共沉淀法、水热法、溶剂热、离子热法等来何处,也可以利用球磨、砂磨和胶体磨等研磨技术将磁性颗粒粉碎得到超细的粉体。
3)利用溶胶凝胶法在铁磁性微粒表面包覆厚度为1-2000nm的包覆层,包覆层优选二氧化硅、酚醛树脂、密胺树脂、聚丙烯酸树脂及其衍生物。在合成这些包覆层适合选用合适的前体、或者是嫁接的方法,使颗粒表面带有氨基、羧基、羟基、羰基(醛或酮)等可反应的基团。
4)然后选有端基修饰的聚乙二醇优选的分子量为(100-10000),修饰基团可以是酰氯、羧基、羟基、氯离子、氨基中与磁性材料表面修饰微粒发生化学链接的一种或者两种。在链接聚乙二醇后加入与聚乙二醇具有相同端基的碳氟化合物,两者间的摩尔比为0.1-10,其中碳氟化合物的链长为4-20 个碳原子。反应后得到的磁性微粒既可以与分散在水中又能够吸附水中溶解的碳氟表面活性剂。
本发明的效果和益处是:
(一)、在铁性材料表面包覆惰性材料,并链接能够使其分散在水中的聚乙二醇链和能够与含氟表面活性剂亲和的碳氟链。这种材料才能在水中选择性的吸附富集含氟的表面活性剂,然后在磁场作用下被分离出来。然后利用合适的洗涤剂将含氟表面活性剂从微粒表面洗脱得到浓缩的含氟表面活性剂溶液。利用蒸发浓缩或调节含氟表面活性的溶解度,是含氟表面活性剂从水中析出实现含氟表面活性剂的回收。同时利用该选择性吸附富集方法可使原水中表面活性剂的量将到ppb级。
(二)、该工艺简单可靠、能源消耗低、磁性微粒可重复利用并可回收具有特殊性能的、高附加值的含氟表面活性剂,原水中含氟表面活性剂脱出率高等技术特点。
(三)、可用于含氟聚合物生产中含氟表面活性剂的回收,和氟表面活性剂废水的处理。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合具体实施方式对本发明作进一步的详细描述,但不应将此理解为本发明上述主题的范围仅限于下述实施例。
实施例1:利用改性四氧化三铁回收废水中的全氟辛酸
取27.8g的七水合硫酸亚铁和39.9g硫酸亚铁配制成50mL溶液,然后加入200mL氨水溶液(100mL28%的氨水和100mL去离子水),并剧烈搅拌2h。然后将混合物转移到烧杯中,并将烧杯放置到磁铁上方,使磁性四氧化三铁迅速沉淀到烧杯的底部,倒掉上部的水和杂质,并利用去离子清洗2-3次得到高纯度的四氧化三铁纳米微粒。将此四氧化三铁纳米微粒分散到20 mL乙醇和80mL氨水中,并加入5g 正硅酸四乙酯反应2h后加入0.5g氨丙基三甲氧基硅烷在反应1h后将材料利用磁场将材料回收。然后取2g包覆的磁性微粒加入20mL二氯甲烷和2g吡啶的混合溶液中,并加入0.5g端位被氯取代的聚乙二醇4000,待反应1h后加入0.5全氟辛酰氯在反应2h,利用磁场回收后该磁性材料。将该改性磁性纳米微粒以0.5%的质量比放入含有100ppm全氟辛酸的废水中,剧烈搅拌15 min后将分散液放置到稀土磁铁上方,30min后放出清水并利用液质联谱对水中残余的全氟辛酸进行分析,表面经处理后的全氟辛酸含量约为1.5ppm,然后在粉末中加入约50mL乙醇和水1:3(体积比)的混合溶液,剧烈搅拌15min,然后放出溶液,继续加入污水实现材料的重复应用,材料经10次循环后处理后清水中全氟辛酸含量仍然效应5ppm。
实施例2:利用改性磁铁矿粉回收废水中的全氟辛酸
取200g市售粒度在1000目以上的高纯磁铁矿粉,加50mL 28%氨水和100mL乙醇和400mL去离子水,利用机械搅拌剧烈搅拌充分,然后加入20g正硅酸四乙酯对铁粉进行改性,反应2h后加入5g三乙氧基丙基氨基硅烷,使颗粒表面带上氨基,然后利用磁场将此材料分离处理,然后取4 g包覆的磁铁矿粉加入20mL二氯甲烷和2g吡啶的混合溶液中,并加入0.5g端位被氯取代的聚乙二醇6000,待反应1h后加入0.5全氟辛酰氯在反应2h,利用磁场回收后该磁性材料。将该改性磁性纳米微粒以0.5%的质量比放入含有100ppm全氟辛酸的废水中,剧烈搅拌15 min后将分散液放置到稀土磁铁上方,30min后放出清水并利用液质联谱对水中残余的全氟辛酸进行分析,表面经处理后的全氟辛酸含量约为2.2ppm,然后在粉末中加入约50mL乙醇和水1:3(体积比)的混合溶液,剧烈搅拌15min,然后放出溶液,继续加入污水实现材料的重复应用,材料经10次循环后处理后清水中全氟辛酸含量仍然效应5ppm。
实施例3:利用改性四氧化三铁回收废水中的全氟己酸
取27.8g的七水合硫酸亚铁和39.9g硫酸亚铁配制成50mL溶液,然后加入200mL氨水溶液(100mL 28%氨水和100mL去离子水),并剧烈搅拌2h。然后将混合物转移到烧杯中,并将烧杯放置到磁铁上方,使磁性四氧化三铁迅速沉淀到烧杯的底部,倒掉上部的水和杂质,并利用去离子清洗2-3次得到高纯度的四氧化三铁纳米微粒。将此四氧化三铁纳米微粒分散到20 mL乙醇和80mL氨水中,并加入5g 正硅酸四乙酯反应2h后加入0.5g氨丙基三甲氧基硅烷在反应1h后将材料利用磁场将材料回收。然后取2g包覆的磁性微粒加入20mL二氯甲烷和2g吡啶的混合溶液中,并加入0.5g端位被氯取代的聚乙二醇6000,待反应1h后加入0.5全氟辛酰氯在反应2h,利用磁场回收后该磁性材料。将该改性磁性纳米微粒以0.5%的质量比放入含有100ppm全氟己酸的废水中,剧烈搅拌15 min后将分散液放置到稀土磁铁上方,30min后放出清水并利用液质联谱对水中残余的全氟辛酸进行分析,表面经处理后的全氟辛酸含量约为0.9ppm,然后在粉末中加入约50mL乙醇和水1:3(体积比)的混合溶液,剧烈搅拌15min,然后放出溶液,继续加入污水实现材料的重复应用,材料经10次循环后处理后清水中全氟辛酸含量仍然效应4 ppm。
实施例4:利用改性磁铁矿粉回收废水中的全氟己酸
取200g市售粒度在1000目以上的高纯磁铁矿粉,加50mL 28%氨水和100mL乙醇和400mL去离子水,利用机械搅拌剧烈搅拌充分,然后加入20g正硅酸四乙酯对铁粉进行改性,反应2h后加入5g三乙氧基丙基氨基硅烷,使颗粒表面带上氨基,然后利用磁场将此材料分离处理,然后取4 g包覆的磁铁矿粉加入20mL二氯甲烷和2g吡啶的混合溶液中,并加入0.5g端位被氯取代的聚乙二醇4000,待反应1h后加入0.5全氟辛酰氯在反应2h,利用磁场回收后该磁性材料。将该改性磁性纳米微粒以0.5%的质量比放入含有100ppm全氟辛己酸的废水中,剧烈搅拌15 min后将分散液放置到稀土磁铁上方,30min后放出清水并利用液质联谱对水中残余的全氟辛酸进行分析,表面经处理后的全氟辛酸含量约为1.6 ppm,然后在粉末中加入约50mL乙醇和水1:3(体积比)的混合溶液,剧烈搅拌15min,然后放出溶液,继续加入污水实现材料的重复应用,材料经10次循环后处理后清水中全氟辛酸含量仍然效应5ppm。
实施例5:利用改性磁铁矿粉回收废水中的全氟聚醚表面活性剂
取200g市售粒度在1000目以上的高纯磁铁矿粉,加50mL 28%氨水和100mL乙醇和400mL去离子水,利用机械搅拌剧烈搅拌充分,然后加入20g正硅酸四乙酯对铁粉进行改性,反应2h后加入5g三乙氧基丙基氨基硅烷,使颗粒表面带上氨基,然后利用磁场将此材料分离处理,然后取4 g包覆的磁铁矿粉加入20mL二氯甲烷和2g吡啶的混合溶液中,并加入0.5g端位被氯取代的聚乙二醇6000,待反应1h后加入0.5全氟辛酰氯在反应2h,利用磁场回收后该磁性材料。将该改性磁性纳米微粒以0.5%的质量比放入含有100ppm全氟聚醚的废水中,剧烈搅拌15 min后将分散液放置到稀土磁铁上方,30min后放出清水并利用液质联谱对水中残余的全氟辛酸进行分析,表面经处理后的全氟聚醚含量约为3.2ppm,然后在粉末中加入约50mL乙醇和水1:3(体积比)的混合溶液,剧烈搅拌15min,然后放出溶液,继续加入污水实现材料的重复应用,材料经10次循环后处理后清水中全氟聚醚含量仍然效应8 ppm。
实施例6:利用改性四氧化三铁回收废水中的全氟磺酸
取27.8g的七水合硫酸亚铁和39.9g硫酸亚铁配制成50mL溶液,然后加入200mL氨水溶液(100mL 28%氨水和100mL去离子水,并剧烈搅拌2h。然后将混合物转移到烧杯中,并将烧杯放置到磁铁上方,使磁性四氧化三铁迅速沉淀到烧杯的底部,倒掉上部的水和杂质,并利用去离子清洗2-3次得到高纯度的四氧化三铁纳米微粒。将此四氧化三铁纳米微粒分散到20 mL乙醇和80mL氨水中,并加入5g 正硅酸四乙酯反应2h后加入0.5g氨丙基三甲氧基硅烷在反应1h后将材料利用磁场将材料回收。然后取2g包覆的磁性微粒加入20mL二氯甲烷和2g吡啶的混合溶液中,并加入0.5g端位被氯取代的聚乙二醇6000,待反应1h后加入0.5全氟辛酰氯在反应2h,利用磁场回收后该磁性材料。将该改性磁性纳米微粒以0.5%的质量比放入含有100ppm全氟磺酸的废水中,剧烈搅拌15 min后将分散液放置到稀土磁铁上方,30min后放出清水并利用液质联谱对水中残余的全氟磺酸进行分析,表面经处理后的全氟磺酸含量约为2.3ppm,然后在粉末中加入约50mL乙醇和水1:3(体积比)的混合溶液,剧烈搅拌15min,然后放出溶液,继续加入污水实现材料的重复应用,材料经10次循环后处理后清水中全氟磺酸酸含量仍然效应5 ppm。
实施例7:利用改性四氧化三铁回收废水中的全氟磺酸
取27.8g的七水合硫酸亚铁和39.9g硫酸亚铁配制成50mL溶液,然后加入200mL氨水溶液(100mL 28%的氨水和100mL去离子水,并剧烈搅拌2h。然后将混合物转移到烧杯中,并将烧杯放置到磁铁上方,使磁性四氧化三铁迅速沉淀到烧杯的底部,倒掉上部的水和杂质,并利用去离子清洗2-3次得到高纯度的四氧化三铁纳米微粒。将此四氧化三铁纳米微粒分散到80 mL乙醇和20mL氨水中,并加入4g间苯二酚和2mL甲醛,反应2h并加入0.5g端位被氯取代的聚乙二醇6000,待反应1h后加入0.5全氟辛胺在反应2h,利用磁场回收后该磁性材料。将该改性磁性纳米微粒以0.5%的质量比放入含有100ppm全氟己酸的废水中,剧烈搅拌15 min后将分散液放置到稀土磁铁上方,30min后放出清水并利用液质联谱对水中残余的全氟磺酸酸进行分析,表面经处理后的全氟磺酸含量约为1.3ppm,然后在粉末中加入约50mL乙醇和水1:3(体积比)的混合溶液,剧烈搅拌15min,然后放出溶液,继续加入污水实现材料的重复应用,材料经10次循环后处理后清水中全氟磺酸含量仍然效应5ppm。
实施例8:利用改性四氧化三铁回收废水中的全氟辛酸
取27.8g的七水合硫酸亚铁和39.9g硫酸亚铁配制成50mL溶液,然后加入200mL氨水溶液(100mL 28%的氨水和100mL去离子水,并剧烈搅拌2h。然后将混合物转移到烧杯中,并将烧杯放置到磁铁上方,使磁性四氧化三铁迅速沉淀到烧杯的底部,倒掉上部的水和杂质,并利用去离子清洗2-3次得到高纯度的四氧化三铁纳米微粒。将此四氧化三铁纳米微粒分散到80 mL乙醇和20mL氨水中,并加入4g三聚氰胺和2mL甲醛并加入,反应2h并加入0.5g端位被氯取代的聚乙二醇6000,待反应1h后加入0.5全氟辛酰氯在反应2h,利用磁场回收后该磁性材料。将该改性磁性纳米微粒以0.5%的质量比放入含有100ppm全氟辛酸的废水中,剧烈搅拌15 min后将分散液放置到稀土磁铁上方,30min后放出清水并利用液质联谱对水中残余的全氟辛酸进行分析,表面经处理后的全氟辛酸含量约为0.9 ppm,然后在粉末中加入约50mL乙醇和水1:3(体积比)的混合溶液,剧烈搅拌15min,然后放出溶液,继续加入污水实现材料的重复应用,材料经10次循环后处理后清水中全氟辛酸含量仍然效应4 ppm。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (4)

1.一种回收水中碳氟表面活性剂的新工艺,其特征在于包括以下步骤:
(1)、在铁磁性微粒表面包覆一层惰性介质,其组成为二氧化硅、酚醛树脂、密胺树脂、聚丙烯酸树脂及其衍生物中的一种,然后利用介质表面可反应的氨基、羧基、羟基、羰基、醛或酮,将亲水性的聚乙二醇链和亲含氟表面活性剂的碳氟链,通过可反应基团链接到磁性微粒表面;
(2)、在5-90℃下将能富集水中碳氟表面活性剂的铁磁性微粒,分散到含在1-1000ppm的全氟辛酸,全氟己酸,全氟辛磺酸,全氟聚醚 碳氟表面活性剂的废水中并形成1g/L-100g/L的分散液,然后利用功率1 w/L-100 w/L,频率为30Hz-100 MHz的超声并充分搅拌的情况下,使铁磁性微粒在水中分散均匀,并保持搅拌10-300 min;
(3)、在处理容器外壁外加强度为100Gs-10000Gs的强磁场,并保持10-300 min,或至水中浊度小于< 3.0-5.0 NTU或者处理后的水无丁达尔现象为止,在保有磁场的情况下放出清水;
(4)、加入废水体积1%-20%的清水,或者乙醇与水溶液的体积比=0.1-10,并除去磁场,然后利用功率1 w/L-100 w/L,频率为30Hz-100 MHz的超声并充分搅拌的情况下,使铁磁性微粒重新在水中分散均匀,并保持搅拌10-300 min后,重新开启磁场,放出含有高浓度碳氟表面活性剂溶液。
2.根据权利要求1所述回收水中碳氟表面活性剂的新工艺,其特征在于:该工艺还包括重复步骤(2)-(4)。
3.根据权利要求1所述回收水中碳氟表面活性剂的新工艺,其特征在于所述的铁磁性微粒具有以下特征:
1)包括铁磁金属纳米颗粒及铁、钴、镍的微粒;铁磁性复合金属微粒,铁-钯合金微粒、铁-铂合金微粒,稀土合金微粒,和磁性金属氧化物微粒及四氧化三铁微粒;
2)铁磁性微粒的粒径1nm-2μm之间,比表面积为20-500 m2/g,其形貌为球形、棒状、立方体、长方体、六棱柱或纳米花,磁性纳米颗粒材料为经溶胶-凝胶法、共沉淀法、水热法、溶剂热、离子热法等方法合成,或利用球磨、砂磨和胶体磨技术将磁性颗粒粉碎得到超细的粉体;
3)利用溶胶凝胶法在铁磁性微粒表面包覆厚度为1-2000nm的包覆层,包覆层优选二氧化硅、酚醛树脂、密胺树脂、聚丙烯酸树脂及其衍生物,在合成这些包覆层适合选用合适的前体、或者是嫁接的方法,使颗粒表面带有氨基、羧基、羟基、羰基基团;
4)然后选有端基修饰的聚乙二醇,修饰基团为酰氯、羧基、羟基、氯离子、氨基中与磁性材料表面修饰微粒发生化学链接的任意一种或者两种,并在链接聚乙二醇后链接具有相同链接基团的碳氟化合物,其中聚乙二醇与碳氟化合物的摩尔比为0.1-10之间,其中碳氟化合物的碳链长度为4-20个碳原子,反应后得到的磁性微粒既可以与分散在水中又能够吸附水中溶解的碳氟表面活性剂。
4.根据权利要求1所述回收水中碳氟表面活性剂的新工艺,其特征在于步骤4)中记载的聚乙二醇的分子量为100-10000。
CN201610413542.0A 2016-06-14 2016-06-14 一种回收水中碳氟表面活性剂的工艺 Expired - Fee Related CN106000355B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610413542.0A CN106000355B (zh) 2016-06-14 2016-06-14 一种回收水中碳氟表面活性剂的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610413542.0A CN106000355B (zh) 2016-06-14 2016-06-14 一种回收水中碳氟表面活性剂的工艺

Publications (2)

Publication Number Publication Date
CN106000355A true CN106000355A (zh) 2016-10-12
CN106000355B CN106000355B (zh) 2018-08-17

Family

ID=57087496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610413542.0A Expired - Fee Related CN106000355B (zh) 2016-06-14 2016-06-14 一种回收水中碳氟表面活性剂的工艺

Country Status (1)

Country Link
CN (1) CN106000355B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107324584A (zh) * 2017-09-01 2017-11-07 四川理工学院 一种靶向捕获污水处理方法
CN107446546A (zh) * 2017-09-01 2017-12-08 四川理工学院 一种新型磁性密封材料及其制备方法
CN107935236A (zh) * 2017-11-21 2018-04-20 四川理工学院 一种含表面活性剂废水处理的方法
CN108067255A (zh) * 2017-12-11 2018-05-25 南京工业职业技术学院 一种CdNiS2/CoFe2TiO6光催化剂及其制备方法
CN110465271A (zh) * 2019-08-22 2019-11-19 四川轻化工大学 一种温控靶向捕获材料的合成方法及应用
CN112429800A (zh) * 2020-11-16 2021-03-02 四川轻化工大学 一种磁性纳米功能材料及其合成方法和应用
CN112439394A (zh) * 2020-11-16 2021-03-05 四川轻化工大学 一种新型磁性纳米功能材料及其应用
CN112642411A (zh) * 2020-12-17 2021-04-13 江苏大学 一种多孔/富离子通道微球吸附剂的制备方法及其应用
CN112915972A (zh) * 2021-01-22 2021-06-08 广州大学 一种高Cr(Ⅵ)吸附量的核壳结构高分子磁性纳米球及其制备方法和应用
CN114890477A (zh) * 2022-04-08 2022-08-12 东南大学 一种有机溶剂响应型磁珠、制法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000947A1 (en) * 2008-07-04 2010-01-07 Daikin Industries, Ltd. Treating method of a fluorinated surfactant-containing aqueous solution
CN102500338A (zh) * 2011-11-23 2012-06-20 清华大学 Pfoa吸附剂及其制备方法
CN102643189A (zh) * 2012-03-31 2012-08-22 中昊晨光化工研究院 一种从尾气中回收全氟辛酸的系统和方法
CN103170308A (zh) * 2013-04-02 2013-06-26 南京理工大学 磁性介孔氮化碳吸附剂的制备及用于去除水中全氟辛烷化合物
CN104492378A (zh) * 2014-11-13 2015-04-08 华中科技大学 一种吸附全氟化合物的磁性纳米复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000947A1 (en) * 2008-07-04 2010-01-07 Daikin Industries, Ltd. Treating method of a fluorinated surfactant-containing aqueous solution
CN102500338A (zh) * 2011-11-23 2012-06-20 清华大学 Pfoa吸附剂及其制备方法
CN102643189A (zh) * 2012-03-31 2012-08-22 中昊晨光化工研究院 一种从尾气中回收全氟辛酸的系统和方法
CN103170308A (zh) * 2013-04-02 2013-06-26 南京理工大学 磁性介孔氮化碳吸附剂的制备及用于去除水中全氟辛烷化合物
CN104492378A (zh) * 2014-11-13 2015-04-08 华中科技大学 一种吸附全氟化合物的磁性纳米复合材料及其制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107446546A (zh) * 2017-09-01 2017-12-08 四川理工学院 一种新型磁性密封材料及其制备方法
CN107324584A (zh) * 2017-09-01 2017-11-07 四川理工学院 一种靶向捕获污水处理方法
CN107935236A (zh) * 2017-11-21 2018-04-20 四川理工学院 一种含表面活性剂废水处理的方法
CN108067255A (zh) * 2017-12-11 2018-05-25 南京工业职业技术学院 一种CdNiS2/CoFe2TiO6光催化剂及其制备方法
CN108067255B (zh) * 2017-12-11 2020-08-07 南京工业职业技术学院 一种CdNiS2/CoFe2TiO6光催化剂及其制备方法
CN110465271B (zh) * 2019-08-22 2022-06-03 四川轻化工大学 一种温控靶向捕获材料的合成方法及应用
CN110465271A (zh) * 2019-08-22 2019-11-19 四川轻化工大学 一种温控靶向捕获材料的合成方法及应用
CN112429800A (zh) * 2020-11-16 2021-03-02 四川轻化工大学 一种磁性纳米功能材料及其合成方法和应用
CN112439394A (zh) * 2020-11-16 2021-03-05 四川轻化工大学 一种新型磁性纳米功能材料及其应用
CN112429800B (zh) * 2020-11-16 2022-11-15 四川轻化工大学 一种磁性纳米功能材料及其合成方法和应用
CN112642411A (zh) * 2020-12-17 2021-04-13 江苏大学 一种多孔/富离子通道微球吸附剂的制备方法及其应用
CN112642411B (zh) * 2020-12-17 2023-05-05 江苏大学 一种多孔/富离子通道微球吸附剂的制备方法及其应用
CN112915972A (zh) * 2021-01-22 2021-06-08 广州大学 一种高Cr(Ⅵ)吸附量的核壳结构高分子磁性纳米球及其制备方法和应用
CN114890477A (zh) * 2022-04-08 2022-08-12 东南大学 一种有机溶剂响应型磁珠、制法及其应用
CN114890477B (zh) * 2022-04-08 2024-04-05 东南大学 一种有机溶剂响应型磁珠、制法及其应用

Also Published As

Publication number Publication date
CN106000355B (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
CN106000355A (zh) 一种回收水中碳氟表面活性剂的新工艺
Motaghi et al. Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@ UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application
Lu et al. Fabrication of cross-linked chitosan beads grafted by polyethylenimine for efficient adsorption of diclofenac sodium from water
Wang et al. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars
Hasanzadeh et al. Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@ Fe3O4 nanoparticles
Mousavi et al. Synthesis of Fe3O4 nanoparticles modified by oak shell for treatment of wastewater containing Ni (II)
Cai et al. Selective adsorption of Cu (II) from an aqueous solution by ion imprinted magnetic chitosan microspheres prepared from steel pickling waste liquor
HUANG et al. Adsorptive removal of copper ions from aqueous solution using cross-linked magnetic chitosan beads
CN102319558B (zh) 二硫代氨基甲酸盐改性磁性微球的制备方法及应用方法
Rasoulpoor et al. Competitive chemisorption and physisorption processes of a walnut shell based semi-IPN bio-composite adsorbent for lead ion removal from water: Equilibrium, Kinetic and Thermodynamic studies
Xu et al. Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution
CN105344325A (zh) 一种处理重金属污染水体的纳米铁/介孔硅复合材料的制备方法
CN108514870B (zh) 水滑石-聚间苯二胺复合材料及其制备方法和应用
Pengfei et al. Synthesis of PGMA microspheres with amino groups for high-capacity adsorption of Cr (VI) by cerium initiated graft polymerization
Zhou et al. Ingenious route for ultraviolet-induced graft polymerization achieved on inorganic particle: Fabricating magnetic poly (acrylic acid) densely grafted nanocomposites for Cu2+ removal
WO2008038624A1 (fr) Particules revêtues, procédé pour les produire, adsorbeurs de cations et système de traitement de l&#39;eau
Xie et al. Aminated cassava residue-based magnetic microspheres for Pb (II) adsorption from wastewater
Rajabi et al. Efficient removal of lead and copper from aqueous solutions by using modified polyacrylonitrile nanofiber membranes
Ding et al. Novel chitosan/GO@ Fe3O4 porous microspheres with magnetic separation function for the removal of Congo red from aqueous solutions
Liu et al. Amphiphilic magnetic copolymer for enhanced removal of anionic dyes: Fabrication, application and adsorption mechanism
Moharramzadeh et al. In situ sludge magnetic impregnation (ISSMI) as an efficient technology for enhancement of sludge sedimentation: Removal of methylene blue using nitric acid treated graphene oxide as a test process
Kumarage et al. Electrospun amine-functionalized silica nanoparticles–cellulose acetate nanofiber membranes for effective removal of hardness and heavy metals (As (v), Cd (ii), Pb (ii)) in drinking water sources
Pournamdari Response surface methodology for adsorption of humic acid by polyetheretherketone/polyvinylalcohol nanocomposite modified with zinc oxide nanoparticles from industrial wastewater
Tang et al. Simultaneous removal of nitrogen and phosphorus nutrients from secondary effluent by magnetic resin containing two types of quaternary ammonium adsorption sites: Preparation, characterization, and application
KR101765889B1 (ko) 난분해성 미량 독성 유기물 제거제, 이의 제조방법 및 이를 포함하는 수처리장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180817

CF01 Termination of patent right due to non-payment of annual fee