CN105992944A - 包括其尖端被包覆的大直径光学纤维的氧气传感器 - Google Patents

包括其尖端被包覆的大直径光学纤维的氧气传感器 Download PDF

Info

Publication number
CN105992944A
CN105992944A CN201580008018.9A CN201580008018A CN105992944A CN 105992944 A CN105992944 A CN 105992944A CN 201580008018 A CN201580008018 A CN 201580008018A CN 105992944 A CN105992944 A CN 105992944A
Authority
CN
China
Prior art keywords
oxygen
sensor
dyestuff
optical fiber
fluorogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580008018.9A
Other languages
English (en)
Other versions
CN105992944B (zh
Inventor
K·马达夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EATON Co
Original Assignee
EATON Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1402734.6A external-priority patent/GB201402734D0/en
Priority claimed from GBGB1416438.8A external-priority patent/GB201416438D0/en
Application filed by EATON Co filed Critical EATON Co
Publication of CN105992944A publication Critical patent/CN105992944A/zh
Application granted granted Critical
Publication of CN105992944B publication Critical patent/CN105992944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/772Tip coated light guide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/773Porous polymer jacket; Polymer matrix with indicator

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明涉及一种氧气传感器,包括减少或消除错误解释氧气浓度的可能性的氧气敏感荧光材料。

Description

包括其尖端被包覆的大直径光学纤维的氧气传感器
技术领域
本发明涉及氧气传感器,更具体地涉及用于在飞机应用中使用的氧气传感器,更具体地是在燃料箱或空气分离模块应用中。
本发明在测量氧气浓度上提供了改进。在测量飞机燃料箱气隙或空气分离模块中氧气浓度方面,本发明将是特别有用的。
背景技术
使用荧光淬灭来指示某些感兴趣的物质的存在是已知的。在由比所发射的波长短的特定的波长激发时,荧光材料发射具有特定的发射寿命的特定波长和强度的光。发射的强度和寿命取决于与荧光材料接触的氧气的浓度。随着氧气浓度增加,荧光发射强度和寿命降低,并且上述增加和降低彼此成正比。
在燃料箱中使用的传感器由暴露于燃料箱环境的荧光材料表面组成。在氧气存在情况下,荧光材料的发射强度和寿命的降低给出了围绕传感器表面的氧气浓度的直接测量。被电磁地激发的材料的荧光发射减少与感兴趣的物质的浓度成正比。例如铂四五氟化苯基卟啉和铂八乙基卟啉的材料被用于气态氧气传感材料。然而,燃料箱环境是严酷的,且能导致荧光材料降解。该材料的这种降解将导致强度的降低和荧光发射的寿命的改变,这可以被错误地解释为更高的氧气水平。
荧光发射的过程可以概括如下:
激发:L+hν1=L* (方程1)
荧光:L*=L+hν2 (方程2)
淬灭:L*+O2=L+O2* (方程3)
方程1示出了通过具有能量hν1的光子的荧光团的电磁激发的过程。方程2示出了当激发的荧光团L*返回至去激发状态L时,发射能量hν2的光子,其中hν2<hν1。在氧气存在的情况下,荧光团通过碰撞转移能量至氧气分子,如方程3所示。在被定义为淬灭的过程中,这个能量转移不会释放光子。激发的荧光团通过氧气分子的淬灭导致发射的总强度和寿命的减少。正是这种机理,允许开发光学氧气传感器。已发现该传感器在航空燃料箱中特别有用,但是已经发现,当传感器暴露于液体燃料时,氧气敏感材料降解。另外,当荧光材料暴露于箱中的燃料,荧光团会被燃料中的碳氢分子掩蔽。这种相互作用能导致光致漂白,光致漂白可导致荧光团的不可逆的降解。如果荧光团和氧气不相互作用,则整体发射强度和寿命增加。这种增加可能被错误地解释为较低的氧气浓度。校准或参考来自氧气敏感的荧光团的发射也将是必要的。
发明内容
本发明旨在通过提供包括氧气敏感荧光材料的氧气传感器来克服现有技术的问题,氧气敏感荧光材料包括组合:氧气敏感染料和氧气不敏感染料,其中两种染料是荧光团。氧气不敏感染料可以是硅八乙基卟啉。氧敏感材料可以是铂四五氟化苯基卟啉和铂八乙基卟啉。这两种染料可以被分散在聚合物基质中,例如聚二甲基硅氧烷。可选择地,该材料可以使用溶胶-凝胶的干凝胶方法来制备。使用这种技术,将这个材料分散在耐油和透氧的氟硅橡胶中是可能的。
可以在相同波长下激发氧气敏感染料和氧气不敏感染料。每一种染料发射与另一种不同的波长、强度和寿命。在与氧气分子相互作用下,对于氧气敏感染料,发射强度和寿命降低,然而氧气不敏感染料的发射强度和寿命保持不变。
传感器具有包括氧气不敏感染料和氧气敏感染料的组合的尖端。该尖端处于大光学直径纤维的端部。大光学直径纤维的另一端部可连接至棱镜或传感器以分离波长。大直径纤维被容纳在管中,优选由钢制成。该管的一个端部具有橡胶膜和一个或多个通气孔,防止液体燃料与荧光团接触,但是允许荧光团和氧气之间相互作用。该膜可以由任何防止航空燃料透过且允许气态氧气透过的合适的材料制成,例如氟硅橡胶、聚二甲基硅氧烷。
用于传输激发光和收集来自氧气敏感荧光材料的发射的装置包括光学纤维。这种纤维优选是大直径。该装置还包括三色棱镜以及两个光检测器或三色传感器(例如集成的RGB传感器)。三色棱镜以及两个光检测器或三色传感器(例如集成的RGB传感器)分离三个波长;激发以及来自每个染料的发射。强度或寿命被转换成比例电流。互阻抗放大器被用于将电流转换成与来自氧气不敏感染料的发射的强度或寿命成比例的电压(V1)和与来自氧气敏感染料的发射的强度或寿命成比例的电压(V2)。为了测量发射的寿命,激发是脉冲。通常,荧光寿命在70和100μs之间,且在已知的时间内进行监测。可以一起测量寿命和强度。
在传感器的操作中,电压(V1和V2)被相互比较来推断氧气敏感荧光材料的性能。随着氧气含量的增加,V2降低且V1保持不变。如果材料在氧气浓度没有改变的情况下降解,那么V1和V2将一起降低。材料的性能、氧气浓度和敏感度可以通过V1/V2的比例进行校准。电压的这个比较有效地是内置自检。
附图说明
现在将参考附图描述本发明,其中:
图1示出了具有根据本发明传感器的传感器探头。
图2示出了根据本发明的用于分离来自荧光团和激发的发射的波长的传感器和装置。
图3示出了来自两个荧光团的荧光发射的一个示例。
图4示出了已知的时间的窗口,其中测量发射的寿命。
具体实施方式
图1示出了包括大直径纤维22的传感器探头20,该大直径纤维22具有用于将该纤维连接至三色棱镜或三色传感器的纤维连接器24。大直径纤维22具有尖端26(在分解部分更详细地示出),尖端26终止于包括氧气敏感染料和氧气不敏感染料的氧气敏感荧光材料28,其中所述染料都是荧光团。大直径纤维22被放置在管30内进行保护。管具有可附接至其上的通气孔32,其包括用于防止液体燃料与双荧光团尖端28相接触的膜。
图2示出了图1所示的传感器探头的简化版本。氧气敏感荧光材料28位于大直径光学纤维22的一端。在光学纤维22的另一端是三色棱镜40。光子穿过棱镜40发送,且通过光学纤维22传输以激发尖端28中的荧光团。来自荧光团的发射通过纤维22被传输且穿过三色棱镜40以分离由激发、来自氧气敏感染料36和氧气不敏感染料38的发射组成的三个波长。两个光检测器(未示出)被用于将强度或寿命信息转换成比例电流I1和I2。然后通过互阻抗放大器将电流转换成电压。
图3示出了能量对荧光强度的图。可以看出,来自氧气敏感染料的发射的强度减小,氧气浓度增加。然而,通过改变氧气浓度,来自氧气不敏感染料的发射的强度保持不受影响。
图4示出了已知的时间的测量窗口50,其中发射寿命被测量。在测量窗口50中的总积分强度给出了氧气浓度的测量值。
所描述和示出的氧气传感器的相同设计可用于燃料箱和空气分离模块应用中。
在前面说明书中、或所附权利要求书、或附图中公开的特征以它们的具体形式或依据用于执行公开的功能的手段,或在用于获得所公开的结果的方法中被表示,这些特征可以酌情单独地或以这些特征的任何组合被用于以其不同的形式实现本发明。

Claims (14)

1.一种用于测量在飞机应用、更具体地在燃料箱应用或空气分离模块应用中的氧气浓度的氧气传感器,所述传感器包括氧气敏感荧光材料,该氧气敏感荧光材料包括组合:氧气敏感染料和氧气不敏感染料,其中两种所述染料是荧光团,其特征在于,所述传感器还包括大直径光学纤维,以传送光子和传输来自激发的荧光团的发射,其中所述纤维具有两个端部,所述荧光材料位于所述大直径光学纤维的端部。
2.根据权利要求1所述的氧气传感器,其中所述大直径光学纤维被容纳在管中。
3.根据权利要求2所述的氧气传感器,其中所述管具有两个端部,该两个端部中的一个具有橡胶膜和能够附接至所述橡胶膜的一个或多个通气孔。
4.根据权利要求3所述的氧气传感器,其中所述橡胶膜防止航空燃料透过且允许气态氧气透过。
5.根据前述任一项权利要求所述的氧气传感器,其中所述氧气敏感染料与所述氧气不敏感染料能够在相同的波长下激发。
6.根据前述任一项权利要求所述的氧气传感器,所述氧气敏感染料和氧气不敏感染料被分散在耐油和透氧橡胶中。
7.根据权利要求6所述的氧气传感器,其中所述橡胶是氟硅橡胶。
8.一种用于测量燃料箱中的氧气浓度的装置,包括:根据前述任一项权利要求所述的传感器,其中所述大直径光学纤维在远离所述荧光材料的端部被连接至三色棱镜和用于激发所述荧光团的激发源。
9.根据权利要求8所述的装置,其中,所述三色棱镜与两个光检测器一起使用,以分离来自每种染料和所述激发的发射的波长。
10.一种用于测量燃料箱中的氧气浓度的装置,包括:根据权利要求1-7所述的具有大直径光学纤维的传感器,所述大直径光学纤维在远离所述荧光材料的端部被连接至三色传感器和用于激发所述荧光团的激发源。
11.根据权利要求10所述的装置,其中所述三色传感器是集成的RGB。
12.根据权利要求8-11中任一项所述的装置,其中由所述激发的荧光团发射的所述荧光的强度或寿命被转换成比例电流,且所述比例电流被转换成电压。
13.根据权利要求12所述的装置,其中互阻抗放大器被用于将所述电流转换成电压。
14.一种使用根据权利要求12或13所述的装置的方法,其中所述电压被相互比较来推断所述氧气敏感荧光材料的性能。
CN201580008018.9A 2014-02-17 2015-02-17 包括其尖端被包覆的大直径光学纤维的氧气传感器 Active CN105992944B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1402734.6 2014-02-17
GBGB1402734.6A GB201402734D0 (en) 2014-02-17 2014-02-17 Oxygen sensor
GB1416438.8 2014-09-17
GBGB1416438.8A GB201416438D0 (en) 2014-09-17 2014-09-17 Oxygen sensor
PCT/EP2015/053328 WO2015121499A1 (en) 2014-02-17 2015-02-17 Oxygen sensor comprising a tip coated optical fibre with a large diameter

Publications (2)

Publication Number Publication Date
CN105992944A true CN105992944A (zh) 2016-10-05
CN105992944B CN105992944B (zh) 2020-03-17

Family

ID=52472339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580008018.9A Active CN105992944B (zh) 2014-02-17 2015-02-17 包括其尖端被包覆的大直径光学纤维的氧气传感器

Country Status (7)

Country Link
US (1) US10620128B2 (zh)
EP (1) EP3108222B1 (zh)
CN (1) CN105992944B (zh)
CA (1) CA2939975C (zh)
ES (1) ES2920777T3 (zh)
RU (1) RU2689286C2 (zh)
WO (1) WO2015121499A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT110889B (pt) * 2018-07-30 2021-07-21 Inst Superior Tecnico Sensores de oxigénio luminescentes não-metálicos para tanques de combustível de aeronaves e o seu método de funcionamento.
RU2729170C1 (ru) * 2019-11-12 2020-08-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный аграрный университет" Устройство для определения содержания воды и других примесей в дизельном топливе
CN115561217B (zh) * 2022-11-21 2023-03-21 深圳湃诺瓦医疗科技有限公司 生物传感器以及监测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792689A (en) * 1985-11-12 1988-12-20 The United States Of America As Represented By The Department Of Health And Human Services Method for obtaining a ratio measurement for correcting common path variations in intensity in fiber optic sensors
CN1130943A (zh) * 1993-09-13 1996-09-11 光传感器股份有限公司 氧气的比率荧光测量法
US20060160241A1 (en) * 2004-12-03 2006-07-20 Gamal-Eddin Khalil Dual-luminophor compositions and related methods
CN100520372C (zh) * 2001-05-04 2009-07-29 医药及科学传感器公司 带有参考通道的电光传感器件

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE13788T1 (de) * 1980-12-17 1985-06-15 Ici Plc Vorrichtung zum zusammenfassen von daten aus mehreren zustandsabhaengigen optischen sensoren.
US4810655A (en) * 1985-07-03 1989-03-07 Abbott Laboratories Method for measuring oxygen concentration
US4709144A (en) * 1986-04-02 1987-11-24 Hewlett-Packard Company Color imager utilizing novel trichromatic beamsplitter and photosensor
US4900933A (en) * 1986-09-08 1990-02-13 C. R. Bard, Inc. Excitation and detection apparatus for remote sensor connected by optical fiber
US4861727A (en) 1986-09-08 1989-08-29 C. R. Bard, Inc. Luminescent oxygen sensor based on a lanthanide complex
US4712865A (en) * 1987-01-05 1987-12-15 Baxter Travenol Laboratories Dye containing silicon polymer composition
JPS6463842A (en) * 1987-09-03 1989-03-09 Terumo Corp Method and apparatus for measuring concentration of optical material
US5039491A (en) * 1989-01-27 1991-08-13 Metricor, Inc. Optical oxygen sensor
US5094959A (en) * 1989-04-26 1992-03-10 Foxs Labs Method and material for measurement of oxygen concentration
US5155046A (en) * 1990-08-10 1992-10-13 Puritan-Bennett Corporation System and method for measuring oxygen in the presence of halothane
US5094958A (en) * 1990-08-30 1992-03-10 Fiberchem Inc. Method of self-compensating a fiber optic chemical sensor
WO1992005441A1 (en) 1990-09-17 1992-04-02 Baxter International Inc. Water insensitive tissue oxygen sensor
US5234835A (en) * 1991-09-26 1993-08-10 C.R. Bard, Inc. Precalibrated fiber optic sensing method
US5237631A (en) * 1992-03-31 1993-08-17 Moshe Gavish Method for the manufacture of a fluorescent chemical sensor for determining the concentration of gases, vapors or dissolved gases in a sample
US6293911B1 (en) * 1996-11-20 2001-09-25 Olympus Optical Co., Ltd. Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum
US7179222B2 (en) * 1996-11-20 2007-02-20 Olympus Corporation Fluorescent endoscope system enabling simultaneous achievement of normal light observation based on reflected light and fluorescence observation based on light with wavelengths in infrared spectrum
US6180415B1 (en) * 1997-02-20 2001-01-30 The Regents Of The University Of California Plasmon resonant particles, methods and apparatus
US6142855A (en) * 1997-10-31 2000-11-07 Canon Kabushiki Kaisha Polishing apparatus and polishing method
US6051437A (en) * 1998-05-04 2000-04-18 American Research Corporation Of Virginia Optical chemical sensor based on multilayer self-assembled thin film sensors for aquaculture process control
US6610848B1 (en) * 1998-07-27 2003-08-26 Lumet Llc Platinum complex dioxygen sensors
CA2340005C (en) 1998-08-26 2014-05-06 Sensors For Medicine And Science, Inc. Optical-based sensing devices
EP1169722A1 (en) * 1999-03-18 2002-01-09 Cambridge Research &amp; Instrumentation, Inc. High-efficiency multiple probe imaging system
US20030098918A1 (en) * 1999-05-27 2003-05-29 Miller Peter J. Imaging system using color sensors and tunable filters
US6636658B2 (en) * 2001-04-23 2003-10-21 Optical Coating Laboratory, Inc. Wavelength division multiplexing/demultiplexing systems
US20040171094A1 (en) 2001-06-18 2004-09-02 Ingo Klimant Oxygen sensors disposed on a microtiter plate
US6634598B2 (en) * 2001-11-28 2003-10-21 Kenneth Susko On-board fuel inerting system
US6925852B2 (en) * 2002-11-05 2005-08-09 Kenneth Susko Oxygen monitoring device
US9312953B2 (en) 2003-03-03 2016-04-12 Alexander Ivan Soto System and method for performing in-service optical network certification
US7496392B2 (en) * 2003-11-26 2009-02-24 Becton, Dickinson And Company Fiber optic device for sensing analytes
US7352464B2 (en) * 2004-01-05 2008-04-01 Southwest Sciences Incorporated Oxygen sensor for aircraft fuel inerting systems
US20060171845A1 (en) * 2005-01-31 2006-08-03 Dakota Technologies, Inc. Sensors for measuring analytes
US7740904B2 (en) * 2005-07-11 2010-06-22 Ocean Optics, Inc. High performance materials for optical sensors for hydrocarbons environment
US7585211B2 (en) 2005-08-17 2009-09-08 Adc Telecommunications, Inc. Tubular membrane vent
US7385692B1 (en) * 2006-04-28 2008-06-10 The United Of America As Represented By The Administrator Of Nasa Method and system for fiber optic determination of gas concentrations in liquid receptacles
GB2438214A (en) 2006-05-19 2007-11-21 Heraeus Electro Nite Int Measuring a parameter of a molten bath
JP4357557B2 (ja) * 2006-12-27 2009-11-04 株式会社東芝 光ヘッド,および光ディスク装置
US8081313B2 (en) * 2007-05-24 2011-12-20 Airbus Operations Limited Method and apparatus for monitoring gas concentration in a fluid
US8804111B2 (en) * 2007-10-04 2014-08-12 Kla-Tencor Corporation Multichip CCD camera inspection system
US8105841B2 (en) 2007-10-15 2012-01-31 Bayer Healthcare Llc Method and assembly for determining the temperature of a test sensor
US7806966B2 (en) * 2007-12-27 2010-10-05 Bose Ranendra K Nitrogen inerting system for explosion prevention in aircraft fuel tank and oxygenating system for improving combustion efficiency of aerospace rockets/ aircraft engines
GB0813715D0 (en) 2008-07-28 2008-09-03 Airbus Uk Ltd A monitor and a method for measuring oxygen concentration
US20100182415A1 (en) * 2008-12-09 2010-07-22 Elster Eric A Image contrast enhancement for in vivo oxygenation measurements during surgery
AU2010221241A1 (en) * 2009-03-04 2011-10-27 Paul A. Wagner Temporally aligned exposure bracketing for high dynamic range imaging
EP2630451B1 (en) * 2010-10-22 2018-12-12 Kenneth Susko Optical probe containing oxygen, temperature, and pressure sensors and monitoring and control systems containing the same
US9298193B2 (en) * 2010-10-22 2016-03-29 Kenneth Susko Optical probe containing oxygen, temperature, and pressure sensors and monitoring and control systems containing the same
WO2012083438A1 (en) * 2010-12-24 2012-06-28 Huron Technologies International Inc. Pathology slide scanner
DK2663890T3 (en) * 2011-01-12 2015-11-30 Idea Machine Dev Design & Production Ltd COMPACT MICROSCOPY SYSTEM AND PROCEDURE
GB2487940B (en) * 2011-02-09 2014-12-17 Tel Hashomer Medical Res Infrastructure & Services Ltd Methods and devices suitable for imaging blood-containing tissue
FI20115999A0 (fi) * 2011-10-11 2011-10-11 Teknologian Tutkimuskeskus Vtt Oy Optinen mittaus
US8748192B2 (en) * 2011-10-25 2014-06-10 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Optical fluorescence dual sensors and methods of preparing and using them
KR20130124742A (ko) 2012-05-07 2013-11-15 한국산업기술대학교산학협력단 비율 계량 감지법을 이용한 산소 농도 측정 방법 및 장치
US9575304B2 (en) * 2012-06-25 2017-02-21 Huron Technologies International Inc. Pathology slide scanners for fluorescence and brightfield imaging and method of operation
US10156573B2 (en) * 2013-03-14 2018-12-18 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Tri-color dual glucose and oxygen sensors and methods of preparing and using them
WO2014152757A2 (en) * 2013-03-15 2014-09-25 Stryker Corporation Endoscopic light source and imaging system
KR101293690B1 (ko) * 2013-06-14 2013-08-06 한국해양과학기술원 알지비 센서를 이용한 수질측정용 광센서장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792689A (en) * 1985-11-12 1988-12-20 The United States Of America As Represented By The Department Of Health And Human Services Method for obtaining a ratio measurement for correcting common path variations in intensity in fiber optic sensors
CN1130943A (zh) * 1993-09-13 1996-09-11 光传感器股份有限公司 氧气的比率荧光测量法
CN100520372C (zh) * 2001-05-04 2009-07-29 医药及科学传感器公司 带有参考通道的电光传感器件
US20060160241A1 (en) * 2004-12-03 2006-07-20 Gamal-Eddin Khalil Dual-luminophor compositions and related methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN-SHANE CHU 等: "Ratiometric fiber-optic oxygen sensors based on sol-gel matrix doped with metalloporphyrin and 7-amino-4-trifluoromethyl coumarin", 《SENSORS AND ACTUATORS B》 *
马守清: "《现代影视技术辞典 第一版》", 30 August 1998, 北京:中国电影出版社 *

Also Published As

Publication number Publication date
ES2920777T3 (es) 2022-08-09
RU2016135524A (ru) 2018-03-22
RU2016135524A3 (zh) 2018-11-21
WO2015121499A1 (en) 2015-08-20
CA2939975C (en) 2022-05-10
RU2689286C2 (ru) 2019-05-24
CA2939975A1 (en) 2015-08-20
US10620128B2 (en) 2020-04-14
US20170030837A1 (en) 2017-02-02
EP3108222A1 (en) 2016-12-28
EP3108222B1 (en) 2022-03-30
CN105992944B (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
EP2635624B1 (en) Optical sensor and sensing system for oxygen monitoring in fluids using molybdenum cluster phosphorescence
KR102390747B1 (ko) 미생물의 검사 방법 및 그 장치
CN105992944A (zh) 包括其尖端被包覆的大直径光学纤维的氧气传感器
US20070160500A1 (en) Oxygen sensor and measuring method
CN115046974A (zh) 荧光性检测能力到光吸收率测量装置中的结合
CN105675497A (zh) 一种同时快速检测多种重金属离子的光纤传感系统
Schartner et al. Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization
WO2008078526A1 (ja) 蛍光共鳴エネルギー移動を用いたdnaとdna結合性タンパク質の相互作用の検出方法
WO2022183895A1 (en) Methods and apparatus for integrating diamond with led towards on-chip quantum sensing
US20090079975A1 (en) Fiber optic detection system
US20030032197A1 (en) Method of signal amplification in multi-chromophore luminescence sensors
EP2171432B1 (en) A detection apparatus and method
Sinchenko et al. Characterization of time-resolved fluorescence response measurements for distributed optical-fiber sensing
KR101484523B1 (ko) 광 형광식 수소이온농도센서
Zolkapli et al. Fluorescence characteristic of ruthenium nanoparticles as a dissolved oxygen sensing material in gas and aqueos phase
JP6573405B2 (ja) 応力センサ、応力センサシステム
Fuentes-Rubio et al. Fiber optic sensor based on fluorescence quenching for heavy metal detection
EP0539968B1 (en) Exciplex-based sensors and methods for sensing
Pieper et al. Optical properties of Ru (dpp) 3 for phosphorescence biosensors
CN116601482A (zh) 用于测量测量介质中发光分析物的光化学传感器和方法
Hu et al. Performance of a Fiber Optic Spectrofluorometer with Applications for In Situ Sensing and Eddy Correlatio
Henning et al. Absorption‐Modulated Crossed‐Optical Fiber‐Sensor Platform for Measurements in Liquid Environments and Flow Streams
Chaudhari et al. Development of fiber optic p H meter based on colorimetric principle
Munzke et al. Fluorescence excitation emission matrix spectroscopy of strongly absorbing samples using fibre-optic probes
Wu A dissolved oxygen measurement based on fiber optical oxygen sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant