CN105990039A - Wear-resistant flexible composite separator material used for supercapacitor - Google Patents

Wear-resistant flexible composite separator material used for supercapacitor Download PDF

Info

Publication number
CN105990039A
CN105990039A CN201610055339.0A CN201610055339A CN105990039A CN 105990039 A CN105990039 A CN 105990039A CN 201610055339 A CN201610055339 A CN 201610055339A CN 105990039 A CN105990039 A CN 105990039A
Authority
CN
China
Prior art keywords
parts
water
wear
graphite oxide
revs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610055339.0A
Other languages
Chinese (zh)
Inventor
杜其信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Surephon Capacitor Co Ltd
Original Assignee
Anhui Surephon Capacitor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Surephon Capacitor Co Ltd filed Critical Anhui Surephon Capacitor Co Ltd
Priority to CN201610055339.0A priority Critical patent/CN105990039A/en
Publication of CN105990039A publication Critical patent/CN105990039A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/14Polyalkenes, e.g. polystyrene polyethylene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/16Polyalkenylalcohols; Polyalkenylethers; Polyalkenylesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/10Composite fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/06Alcohols; Phenols; Ethers; Aldehydes; Ketones; Acetals; Ketals
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/35Polyalkenes, e.g. polystyrene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/66Salts, e.g. alums
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/71Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes
    • D21H17/74Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes of organic and inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)

Abstract

The invention discloses wear-resistant flexible composite separator material used for a supercapacitor. The wear-resistant flexible composite separator material is prepared by the raw material of the following parts by weight: 35-40 parts of polyvinyl alcohol fiber, 33-35 parts of mekralon, 10-13 parts of polyacrylonitrile powder, 30-32 parts of acetone, 72-75 parts of N,N-dimethyl formamide, 8-10 parts of water soluble PVA fiber of 70 DEG C, 2-3 parts of polymethyl methacrylate, 9-11 parts of graphite oxide, 4-5 parts of fast extruding furnace black, 3-4 parts of ptfe emulsion and 2-2.5 parts of ammonium polyphosphate. Graphite oxide, fast extruding furnace black, ptfe emulsion and other components are added in the preparation process of the basic nonwoven fabric through a series of technology processing and uniformly dispersed so that flexibility and wear resistance of the product can be enhanced, strength and toughness of the separator material can be enhanced and the prepared supercapacitor has high specific capacitance.

Description

A kind of ultracapacitor is with wear-resisting pliable and tough composite diaphragm material
Technical field
The present invention relates to capacitor diaphragm technical field, particularly relate to a kind of wear-resisting pliable and tough composite diaphragm material of ultracapacitor.
Background technology
Ultracapacitor is the accumulator of a kind of great market competitiveness, owing to it can realize quick charge, heavy-current discharge, and has the charge lifetimes of more than 100,000 times, needs to occupy critical role in the application of high-multiplying power discharge in short-term at some.The extensive of this Novel energy storage apparatus of ultracapacitor is paid attention in also result in worldwide by hybrid vehicle and the requirement to electrical source of power for the electric automobile.In the composition of ultracapacitor, electrode, electrolyte and the diaphragm paper performance on ultracapacitor plays conclusive impact.The electrode of current ultracapacitor and electrolyte are the focuses of research, but people are not high for research and the attention rate of barrier film.
The diaphragm paper of ultracapacitor is positioned between two porous carbon electrodes, and complete wetting is in the electrolytic solution together with electrode, plays the effect of isolation during repeated charge, stops electronics conduction, prevents from contacting the internal short-circuit causing between the two poles of the earth.This requires the insulator that diaphragm material is electronics, has good isolation performance, and its hole should be as far as possible less than the minimum grain size of electrode active surface material.The necessary aperture of the preferable diaphragm paper of isolation performance is little, the circulation of electrolyte so can be made to decline, battery charging and discharging hydraulic performance decline;And electrolyte to be impregnated with rate higher, ion is more more by the good diaphragm material often hole of property, easily causes and contacts the internal short-circuit causing between the two poles of the earth.The maximum advantage of ultracapacitor be charge/discharge rates fast, can be with high power discharge, therefore, diaphragm material will thinner towards thickness, porosity is higher, aperture is less and the contour performance trend development that is more evenly distributed.
The material being currently used for diaphragm of supercapacitor mainly has cellulosic separator paper and conventional batteries barrier film, and High-performance diaphragm paper manufactures technical difficulty, and price is high;Conventional batteries membrane thicknesses is thicker, and porosity is low, and to electrolyte compatibility difference, and electrostatic spinning nano fiber film manufacturing technology is simple, low cost, and barrier film porosity is up to 90%, good to electrolyte compatibility, but a disadvantage is that intensity is not high.If cellulosic separator paper can be combined with electrospun fibers film, learning from other's strong points to offset one's weaknesses, low cost, the composite diaphragm material that porosity is high, intensity is big can be obtained.
Content of the invention
The object of the invention is contemplated to make up the defect of prior art, provides a kind of ultracapacitor wear-resisting pliable and tough composite diaphragm material.
The present invention is achieved by the following technical solutions:
A kind of ultracapacitor is with wear-resisting pliable and tough composite diaphragm material, it is prepared by the raw materials in: vinal 35-40, polypropylene fibre 33-35, polyacrylonitrile powder 10-13, acetone 30-32, DMF 72-75,70 DEG C of water-soluble PVA fiber 8-10, polymethyl methacrylate 2-3, graphite oxide 9-11, fast extrusion carbon black 4-5, ptfe emulsion 3-4, APP 2-2.5.
According to claims 1, a kind of ultracapacitor is with wear-resisting pliable and tough composite diaphragm material, is prepared from by following concrete grammar:
(1) by acetone and N, dinethylformamide mixes at normal temperatures, add polyacrylonitrile powder, stir 3 hours with the speed of 100 revs/min at normal temperatures, form polyacrylonitrile spinning solution, receiving range be 20cm, voltage be that 25kV, feed flow speed carry out electrostatic spinning 2 hours under conditions of being 1mL/h, spin out the polyacrylonitrile nanofiber film that thickness is 10 μm stand-by;
(2) polypropylene fibre is mixed with vinal, add appropriate water, put in beater, carry out being dispersed into fibrous suspension by 2% concentration, add 70 DEG C of water-soluble PVA fibers, be heated to 70 DEG C while stirring with the speed of 1000 revs/min, until 70 DEG C of water-soluble PVA fibers to be completely dissolved formation mixing suspension stand-by;
(3) graphite oxide washing clean post-drying with water, being subsequently adding in the water of 3 times amount, the speed stirring with 300 revs/min forms suspension, centrifugal after continuing ultrasonic 60 minutes, takes supernatant rotary evaporation, obtains graphite oxide slurry;Cross 400 mesh sieves by extruding carbon black soon, mix with ptfe emulsion, put into ball milling 40 minutes in ball mill, then mix with above-mentioned graphite oxide slurry, send into granulation in comminutor, pulverize after cooling, cross 800 mesh sieves, obtain reinforcer;
(4) mixing suspension that will obtain in step (2) adds step (3) reinforcer that obtains and remaining residual components, continuously add appropriate water, stir 30 minutes with the speed of 600 revs/min, form the slurry that online concentration is 0.1wt%, use wet therapy forming process that above-mentioned slurry is sent into paper machine through wet end and press section drainage and formation, then electricity consumption hot blast is dried 10 minutes, then it is stand-by to use hot forming machine to obtain non-weaving cloth base fabric with the temperature heat pressure adhesive of 135 DEG C;
(5) the polyacrylonitrile nanofiber film obtaining step (1) covers on the non-weaving cloth base fabric that step (4) obtains, and carries out hot binding by the hot-rollings of 135 DEG C, shears, is packaged to be the present invention after cooling.
The invention have the advantage that first polyacrylonitrile is carried out electrostatic spinning and make polyacrylonitrile nanofiber film by the present invention, then vinal is utilized to mix with polypropylene fibre, wet nonwoven fabrics technique is used to make non-weaving cloth, both are well bonded together by way of hot pressing, intensity height, the performance of good permeability can be obtained, and preferably control aperture and the distribution of diaphragm material, aperture less is more evenly distributed, porosity high, it is thus possible to be preferably impregnated with electrolyte so that discharge current is evenly;70 DEG C of water-soluble PVA fibers of interpolation are as reinforcing agent simultaneously, and the composite diaphragm material made also has preferable tensile strength, chemical stability, and fluidity and isolation performance are protected in imbibition.
Graphite oxide, soon the extrusion composition such as carbon black, ptfe emulsion are added in the preparation process of non-weaving cloth base fabric by a series of PROCESS FOR TREATMENT by the present invention, it is uniformly dispersed, enhance pliability and the wearability of product, can improve intensity and the toughness of diaphragm material, the ultracapacitor made is higher than electric capacity.
Detailed description of the invention
A kind of ultracapacitor is with wear-resisting pliable and tough composite diaphragm material, it is made up of the raw material of following weight portion (kilogram): vinal the 35th, polypropylene fibre the 33rd, polyacrylonitrile powder the 10th, acetone the 30th, DMF the 72nd, 70 DEG C of water-soluble PVA fiber the 8th, polymethyl methacrylate the 2nd, graphite oxide the 9th, fast extrusion carbon black the 4th, ptfe emulsion the 3rd, APP 2.
According to claims 1, a kind of ultracapacitor is with wear-resisting pliable and tough composite diaphragm material, is prepared from by following concrete grammar:
(1) by acetone and N, N-dimethylformamide mixes at normal temperatures, add polyacrylonitrile powder, stir 3 hours with the speed of 100 revs/min at normal temperatures, form polyacrylonitrile spinning solution, receiving range be 20cm, voltage be that 25kV, feed flow speed carry out electrostatic spinning 2 hours under conditions of being 1mL/h, spin out the polyacrylonitrile nanofiber film that thickness is 10 μm stand-by;
(2) polypropylene fibre is mixed with vinal, add appropriate water, put in beater, carry out being dispersed into fibrous suspension by 2% concentration, add 70 DEG C of water-soluble PVA fibers, be heated to 70 DEG C while stirring with the speed of 1000 revs/min, until 70 DEG C of water-soluble PVA fibers to be completely dissolved formation mixing suspension stand-by;
(3) graphite oxide washing clean post-drying with water, being subsequently adding in the water of 3 times amount, the speed stirring with 300 revs/min forms suspension, centrifugal after continuing ultrasonic 60 minutes, takes supernatant rotary evaporation, obtains graphite oxide slurry;Cross 400 mesh sieves by extruding carbon black soon, mix with ptfe emulsion, put into ball milling 40 minutes in ball mill, then mix with above-mentioned graphite oxide slurry, send into granulation in comminutor, pulverize after cooling, cross 800 mesh sieves, obtain reinforcer;
(4) mixing suspension that will obtain in step (2) adds step (3) reinforcer that obtains and remaining residual components, continuously add appropriate water, stir 30 minutes with the speed of 600 revs/min, form the slurry that online concentration is 0.1wt%, use wet therapy forming process that above-mentioned slurry is sent into paper machine through wet end and press section drainage and formation, then electricity consumption hot blast is dried 10 minutes, then it is stand-by to use hot forming machine to obtain non-weaving cloth base fabric with the temperature heat pressure adhesive of 135 DEG C;
(5) the polyacrylonitrile nanofiber film obtaining step (1) covers on the non-weaving cloth base fabric that step (4) obtains, and carries out hot binding by the hot-rollings of 135 DEG C, shears, is packaged to be the present invention after cooling.
By testing the present embodiment diaphragm material, thickness is 70 μm, and average pore size is 0.24 μm, and porosity is 63%, and pick up is 603%, and at 110 DEG C, percent thermal shrinkage is less than 1%, and at 150 DEG C, percent thermal shrinkage is less than 1%.

Claims (2)

1. a ultracapacitor is with wear-resisting pliable and tough composite diaphragm material, it is characterized in that, it is prepared by the raw materials in: vinal 35-40, polypropylene fibre 33-35, polyacrylonitrile powder 10-13, acetone 30-32, DMF 72-75,70 DEG C of water-soluble PVA fiber 8-10, polymethyl methacrylate 2-3, graphite oxide 9-11, fast extrusion carbon black 4-5, ptfe emulsion 3-4, APP 2-2.5.
2. according to claims 1 a kind of ultracapacitor with wear-resisting pliable and tough composite diaphragm material, it is characterised in that be prepared from by following concrete grammar:
(1) by acetone and N, dinethylformamide mixes at normal temperatures, add polyacrylonitrile powder, stir 3 hours with the speed of 100 revs/min at normal temperatures, form polyacrylonitrile spinning solution, receiving range be 20cm, voltage be that 25kV, feed flow speed carry out electrostatic spinning 2 hours under conditions of being 1mL/h, spin out the polyacrylonitrile nanofiber film that thickness is 10 μm stand-by;
(2) polypropylene fibre is mixed with vinal, add appropriate water, put in beater, carry out being dispersed into fibrous suspension by 2% concentration, add 70 DEG C of water-soluble PVA fibers, be heated to 70 DEG C while stirring with the speed of 1000 revs/min, until 70 DEG C of water-soluble PVA fibers to be completely dissolved formation mixing suspension stand-by;
(3) graphite oxide washing clean post-drying with water, being subsequently adding in the water of 3 times amount, the speed stirring with 300 revs/min forms suspension, centrifugal after continuing ultrasonic 60 minutes, takes supernatant rotary evaporation, obtains graphite oxide slurry;Cross 400 mesh sieves by extruding carbon black soon, mix with ptfe emulsion, put into ball milling 40 minutes in ball mill, then mix with above-mentioned graphite oxide slurry, send into granulation in comminutor, pulverize after cooling, cross 800 mesh sieves, obtain reinforcer;
(4) mixing suspension that will obtain in step (2) adds step (3) reinforcer that obtains and remaining residual components, continuously add appropriate water, stir 30 minutes with the speed of 600 revs/min, form the slurry that online concentration is 0.1wt%, use wet therapy forming process that above-mentioned slurry is sent into paper machine through wet end and press section drainage and formation, then electricity consumption hot blast is dried 10 minutes, then it is stand-by to use hot forming machine to obtain non-weaving cloth base fabric with the temperature heat pressure adhesive of 135 DEG C;
(5) the polyacrylonitrile nanofiber film obtaining step (1) covers on the non-weaving cloth base fabric that step (4) obtains, and carries out hot binding by the hot-rollings of 135 DEG C, shears, is packaged to be the present invention after cooling.
CN201610055339.0A 2016-01-27 2016-01-27 Wear-resistant flexible composite separator material used for supercapacitor Pending CN105990039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610055339.0A CN105990039A (en) 2016-01-27 2016-01-27 Wear-resistant flexible composite separator material used for supercapacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610055339.0A CN105990039A (en) 2016-01-27 2016-01-27 Wear-resistant flexible composite separator material used for supercapacitor

Publications (1)

Publication Number Publication Date
CN105990039A true CN105990039A (en) 2016-10-05

Family

ID=57040067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610055339.0A Pending CN105990039A (en) 2016-01-27 2016-01-27 Wear-resistant flexible composite separator material used for supercapacitor

Country Status (1)

Country Link
CN (1) CN105990039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544786A (en) * 2016-11-08 2017-03-29 铜陵市启动电子制造有限责任公司 A kind of titanium doped modified Static Spinning diaphragm of supercapacitor material of lanthanum lithium
CN112981717A (en) * 2021-02-05 2021-06-18 广州金立电子有限公司 Capacitor diaphragm and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587040A (en) * 2012-02-17 2012-07-18 浙江大东南集团有限公司 Preparation method of nanofiber membrane for lithium ion battery diaphragm
CN103100264A (en) * 2013-02-06 2013-05-15 吕凯 Battery and capacitor diaphragm filter material formed by wet nonwoven fabrics and preparation method of filter material
CN104466064A (en) * 2014-12-12 2015-03-25 天津工业大学 Preparation method of battery diaphragm
CN104766938A (en) * 2015-02-10 2015-07-08 龙岩紫荆创新研究院 Composite lithium ion battery diaphragm and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587040A (en) * 2012-02-17 2012-07-18 浙江大东南集团有限公司 Preparation method of nanofiber membrane for lithium ion battery diaphragm
CN103100264A (en) * 2013-02-06 2013-05-15 吕凯 Battery and capacitor diaphragm filter material formed by wet nonwoven fabrics and preparation method of filter material
CN104466064A (en) * 2014-12-12 2015-03-25 天津工业大学 Preparation method of battery diaphragm
CN104766938A (en) * 2015-02-10 2015-07-08 龙岩紫荆创新研究院 Composite lithium ion battery diaphragm and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何云 等: "PVA纤维在造纸业的应用浅析", 《四川纺织科技》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544786A (en) * 2016-11-08 2017-03-29 铜陵市启动电子制造有限责任公司 A kind of titanium doped modified Static Spinning diaphragm of supercapacitor material of lanthanum lithium
CN112981717A (en) * 2021-02-05 2021-06-18 广州金立电子有限公司 Capacitor diaphragm and preparation method thereof
CN112981717B (en) * 2021-02-05 2022-04-05 广州金立电子有限公司 Capacitor diaphragm and preparation method thereof

Similar Documents

Publication Publication Date Title
CN105990035A (en) Ultrathin low-impedance supercapacitor-used separator material
CN108221487B (en) Low-internal-resistance super electrolytic capacitor paper and preparation method thereof
CN104157815B (en) A kind of Bacterial cellulose porous membrane and preparation method thereof
Huang et al. Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators
CN105990034A (en) Nonwoven fabric anti-tear and antibacterial capacitor composite separator material
EA029971B1 (en) Single-layer lithium ion battery separator
JP5695477B2 (en) Electrochemical element separator and electrochemical element using the same
KR20110076893A (en) Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet
KR101827617B1 (en) Separator for electric double layer capacitors, and electric double layer capacitor
CN106654122A (en) Preparation method of power lithium ion battery diaphragm
CN105990036A (en) Supercapacitor composite separator material of high mechanical strength
CN106592322B (en) A kind of preparation method of diaphragm paper of alkaline cell
CN106128793A (en) The hybrid supercapacitor diaphragm material that a kind of isolation performance is good
CN105931859A (en) High performance capacitor membrane material with uniform character
CN105990039A (en) Wear-resistant flexible composite separator material used for supercapacitor
CN103441228B (en) Aromatic polysulfonamide base lithium ion battery diaphragm prepared by a kind of wet method copy paper technique
CN107527749A (en) A kind of fine and close low-resistance diaphragm of supercapacitor material and preparation method thereof
CN106544786A (en) A kind of titanium doped modified Static Spinning diaphragm of supercapacitor material of lanthanum lithium
CN110444719A (en) A kind of high-strength composite lithium ion battery separator
CN106120156A (en) Composite diaphragm material is worn in a kind of ultracapacitor resistance
CN105990040A (en) High-porosity composite supercapacitor separator material
CN105990038A (en) Safe environment-friendly and simple-preparation supercapacitor separator material
JP6317639B2 (en) Method for producing separator for electrochemical device
CN106328388A (en) Compound electrostatic spun diaphragm material with added dopamine modified aluminum sulfate
CN105977055A (en) Environment-friendly degradable super capacitor diaphragm material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161005

RJ01 Rejection of invention patent application after publication