CN105973917B - X射线ct转台单侧两次螺旋扫描单层重排重建方法 - Google Patents

X射线ct转台单侧两次螺旋扫描单层重排重建方法 Download PDF

Info

Publication number
CN105973917B
CN105973917B CN201610512467.3A CN201610512467A CN105973917B CN 105973917 B CN105973917 B CN 105973917B CN 201610512467 A CN201610512467 A CN 201610512467A CN 105973917 B CN105973917 B CN 105973917B
Authority
CN
China
Prior art keywords
projection
helical scanning
turntable
indicates
parallel beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610512467.3A
Other languages
English (en)
Other versions
CN105973917A (zh
Inventor
韩玉
李磊
程根阳
闫镔
席晓琦
王林元
王彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLA Information Engineering University
Original Assignee
PLA Information Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLA Information Engineering University filed Critical PLA Information Engineering University
Priority to CN201610512467.3A priority Critical patent/CN105973917B/zh
Publication of CN105973917A publication Critical patent/CN105973917A/zh
Application granted granted Critical
Publication of CN105973917B publication Critical patent/CN105973917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing

Abstract

本发明涉及一种X射线CT转台单侧两次螺旋扫描单层重排重建方法,首先在转台的同一侧进行两次螺旋扫描,将两组螺旋锥形束投影重排成多层平行束投影,然后利用平行束投影的对称性质去除数据的横向截断,得到一组完全覆盖物体横截面的平行束投影数据,再通过滤波反投影方式进行图像重建。本发明通过在转台的同一侧进行两次螺旋扫描成像,能够更大程度上扩展螺旋锥束CT的横向成像视野,通过实验验证,能够扩展至2.56倍的成像视野,在更大程度上扩展成像视野的同时成像质量没有明显下降,具有与传统全覆盖算法相当的成像质量。

Description

X射线CT转台单侧两次螺旋扫描单层重排重建方法
技术领域
本发明属于CT扫描成像技术领域,特别涉及一种X射线CT转台单侧两次螺旋扫描单层重排重建方法。
背景技术
X射线计算机断层成像(Computed Tomography,CT)是指利用X射线穿透物体的投影数据进行重建来获得物体内部结构信息的技术,其成像过程涉及物理学、数学、计算机学、图形图像学和机械学等多学科技术领域。随着面阵探测器在采集效率、耐辐射和抗干扰等技术上的不断进步,以锥形束射线源和面阵探测器为基础的锥束CT在诸多领域获得了越来越广泛的应用。与CT硬件发展对应的是扫描方式的不断进步。基于面阵探测器和第四代扫描方式的螺旋锥束CT具有成像时间短、射线利用率高和分辨率各向同性的优势。此外,与圆轨迹锥束CT相比,螺旋锥束CT能够获得更加充分的投影数据,解决大锥角时重建图像质量退化的问题,并且能够解决轴向截断投影数据的重建问题,更加适合于对长物体的快速、连续成像。目前,螺旋锥束CT已经越来越广泛的应用于医学临床诊断和工业无损检测、逆向工程和材料组织分析等领域。
由于成像系统中成像视野与成像分辨率通常相互制约,使得常规CT系统中很难同时实现大视野和高分辨成像。螺旋锥束CT能够扩展锥束CT轴向的成像视野,但是受面阵探测器等硬件尺寸的限制,其横向成像视野仍然是受限的。目前,基于视野扩展的成像方法在很多方面得到了应用,比如对发动机、大型涡轮叶片以及印刷电路板的三维成像中。对于螺旋锥束CT的横向视野扩展方法,目前的研究较少,主要有:半覆盖螺旋扫描和多次螺旋扫描。半覆盖螺旋锥束CT成像能够扩展接近2倍的横向视野,但是,随着螺距的增大,这种扫描方式缺失的投影数据越来越多,会使重建图像质量严重下降,由于半覆盖扫描几何下每个投影角度的数据存在严重的横向截断,而该算法采用全局的斜坡滤波器,重建结果存在较为严重的截断伪影。针对半覆盖螺旋FDK算法存在的问题,Guo等人提出了改进的半覆盖螺旋FDK算法,该算法借鉴2维CT中局部滤波的思想,重建过程中采用一种具有局部特性的滤波器,新滤波器能够在一定程度上抑制由于数据截断和全局滤波带来的截断伪影;进一步出现的工业双螺旋锥束CT,其扫描方式为:螺旋扫描前先控制载物台沿探测器行方向平移一段距离,使射束能够覆盖物体横截面的一半,进行第一次螺旋轨迹扫描;然后控制载物台沿相反的方向平移,使射束能够覆盖物体横截面的另一半,进行第二次螺旋扫描,利用两次螺旋扫描得到的投影进行图像重建,但是,由于只采集了相对于成像视野两倍的投影数据,因此其横向视野扩展率的极限只能达到2倍,这在很多情况下仍然不能满足实际应用的需求。
发明内容
为克服现有技术中的不足,本发明提供一种X射线CT转台单侧两次螺旋扫描单层重排重建方法,通过在转台的同一侧进行两次螺旋扫描,将两组螺旋锥形束投影重排成多层平行束投影,利用平行束投影的对称性质去除数据的横向截断,得到一组完全覆盖物体横截面的平行束投影数据,通过滤波反投影方式进行图像重建,能够更加有效的扩展锥束CT的成像视野。
按照本发明所提供的设计方案,一种X射线CT转台单侧两次螺旋扫描单层重排重建方法,包含如下步骤:
步骤1、对被扫描物体在转台的同一侧进行两次螺旋扫描,两次螺旋扫描射线对被扫描物体横截面的覆盖区域之间相互有交叠,两次螺旋扫描总的覆盖区域大于等于被扫描物体横截面的一半;
步骤2、通过螺旋扫描得到相应的螺旋锥形束投影,在成像几何下将螺旋锥形束投影分别重排成相应的多层扇形束投影;
步骤3、将多层扇形束投影分别重排成相应的多层平行束投影,并在重排过程中对平行束几何进行统一,同时利用平行束投影的对称性质去除数据的横向截断,得到一组完全覆盖被扫描物体横截面的平行束投影数据;
步骤4、利用滤波反投影方法完成图像重建。
上述的,步骤2中具体包含如下内容:
步骤2.1、构建成像几何的等价几何模型,承载被扫描物体的转台做顺时针螺旋轨迹运动等价于光源和探测器同步做逆时针螺旋轨迹运动,转台在水平方向的偏移等同于光源和探测器同步沿相反方向的平移,以螺旋扫描的面阵探测器中心为原点定义旋转的笛卡尔直角坐标系(ui,vi,wi),坐标轴的方向向量为 其中,i等于1或2,表示第i次螺旋扫描,w轴与面阵探测器的法向量平行,u轴和v轴分别沿面阵探测器的行方向和列方向;在固定坐标系(x,y,z)情况下,坐标轴方向向量表示为:
步骤2.2、根据等价几何模型,沿探测器水平方向同步偏移光源和探测器进行螺旋扫描,得到螺旋锥形束投影bi(λ,u,v),λ为投影角度,(u,v)表示面探测器上的点;
步骤2.3、根据重排公式:得到相应的重排后的多层扇形束投影pi z(θ,u),θ表示扇形投影角度,u表示线阵探测器探元位置,z表示被扫描物体第z层横截面,对于任意z层,pi z(θ,u)包含360角度范围内的投影数据,其中,λ和θ满足θ=λ%2π,%表示求余运算,S表示光源到探测器的距离,Δz表示锥形束源点与虚拟扇形束源点的距离,D表示螺旋扫描中心射束位置到转台中心轴的距离。
上述的,所述步骤3具体包含如下内容:
步骤3.1、相应的多层平行束投影qz(β,t)重排公式表示为:
,β表示平行束投影角度,且β∈[0,2π),t表示旋转轴到平行束的距离,R1表示第一次螺旋扫描的旋转半径,R2表示第二次螺旋扫描的旋转半径,L表示第一次螺旋扫描旋转轴到第二次螺旋扫描旋转轴的距离,t1min、t1max分别表示旋转轴到p1 z(λ,u)中射束的最小、最大距离;t2min、t2max分别表示旋转轴到p2 z(λ,u)中射束最小、最大距离;
步骤3.2、根据平行束投影的对称性质gz(φ,t)=gz(π+φ,-t),其中,β和φ的关系表示为:完全覆盖被扫描物体横截面的平行束投影数据重排公式表示为:gz(φ,t)包含180角度范围内完全覆盖被扫描物体横截面的投影数据,其中,φ表示平行束的投影角度,且满足φ∈[0,π)及t∈[-R0,R0],R0表示为转台横截面的半径。
上述的,步骤4中利用滤波反投影方法完成图像重建包含:根据平行束投影数据gz(φ,t),采用平行束FBP方法完成图像重建,公式如下:其中,f(x,y,z)表示三维图像重建结果,Kz(φ,t)表示斜坡滤波后的数据,表示点(x,y,z)最终投影到平行束几何中位置。
本发明的有益效果:
本发明解决现有技术中受面阵探测器尺寸等硬件条件的限制,锥束CT成像视野有限,难以满足应用中对大尺寸物体成像的需求的问题,通过在转台的同一侧进行两次螺旋扫描,将两组螺旋锥形束投影重排成多层平行束投影,利用平行束投影的对称性质去除数据的横向截断,得到一组完全覆盖物体横截面的平行束投影数据,通过滤波反投影方式进行图像重建;相比现有成像视野扩展方法,该扫描方式通过在转台的同一侧进行两次螺旋扫描成像,能够更大程度上扩展螺旋锥束CT的横向成像视野,通过实验验证,能够扩展至2.56倍的成像视野,在更大程度上扩展成像视野的同时成像质量没有明显下降,具有与传统全覆盖算法相当的成像质量。
附图说明:
图1为本发明的流程示意图;
图2为螺旋锥束CT转台单侧两次扫描成像几何示意图;
图3为螺旋锥束CT转台单侧两次扫描等价成像几何示意图;
图4为多层扇形束投影成像几何示意图;
图5为扇形束投影到平行束投影重排几何示意图;
图6为仿真实验参数示意图;
图7为转台单侧两侧螺旋扫描和标准螺旋扫描第360度投影示意图;
图8为利用本发明和螺旋FDK方法进行图像重建的结果对比图;
图9为图8所示重建结果中的部分垂直剖线示意图;
图10为重建图像误差均方根对比示意图。
具体实施方式:
下面结合附图和技术方案对本发明作进一步详细的说明,并通过优选的实施例详细说明本发明的实施方式,但本发明的实施方式并不限于此。
实施例一,参见图1所示,一种X射线CT转台单侧两次螺旋扫描单层重排重建方法,包含如下步骤:
步骤1、对被扫描物体在转台的同一侧进行两次螺旋扫描,两次螺旋扫描射线对被扫描物体横截面的覆盖区域之间相互有交叠,两次螺旋扫描总的覆盖区域大于等于被扫描物体横截面的一半;
步骤2、通过螺旋扫描得到相应的螺旋锥形束投影,在成像几何下将螺旋锥形束投影分别重排成相应的多层扇形束投影;
步骤3、将多层扇形束投影分别重排成相应的多层平行束投影,并在重排过程中对平行束几何进行统一,同时利用平行束投影的对称性质去除数据的横向截断,得到一组完全覆盖被扫描物体横截面的平行束投影数据;
步骤4、利用滤波反投影方法完成图像重建。
本发明通过在转台的同一侧进行两次螺旋扫描,将两组螺旋锥形束投影重排成多层平行束投影,利用平行束投影的对称性质去除数据的横向截断,得到一组完全覆盖物体横截面的平行束投影数据,通过滤波反投影方式进行图像重建;相比现有成像视野扩展方法,该扫描方式通过在转台的同一侧进行两次螺旋扫描成像,能够更大程度上扩展螺旋锥束CT的横向成像视野。
实施例二,参见图1~10所示,一种X射线CT转台单侧两次螺旋扫描单层重排重建方法,包含如下内容:
对被扫描物体在转台的同一侧进行两次螺旋扫描,两次螺旋扫描射线对被扫描物体横截面的覆盖区域之间相互有交叠,两次螺旋扫描总的覆盖区域大于等于被扫描物体横截面的一半;通过螺旋扫描得到相应的螺旋锥形束投影,在成像几何下将螺旋锥形束投影分别重排成相应的多层扇形束投影;将多层扇形束投影分别重排成相应的多层平行束投影,并在重排过程中对平行束几何进行统一,同时利用平行束投影的对称性质去除数据的横向截断,得到一组完全覆盖被扫描物体横截面的平行束投影数据;利用滤波反投影方法完成图像重建。具体内容如下:
螺旋锥束CT的转台位于光源和面阵探测器之间,扫描时,光源和探测器固定,转台承载着被扫描物体做螺旋轨迹运动,具体成像几何参见图2所示,2(a)为俯视图、2(b)为侧视图,两次螺旋扫描的轨迹分别对应2(a)中的虚线圆和实线圆,以及2(b)中的虚线螺旋线和实线螺旋线,其旋转轴分别位于对应的o1和o2,两次螺旋扫描转台旋转轴所处的水平位置不同,且都位于光源到探测垂线的一侧。转台做顺时针螺旋轨迹运动等价于光源和探测器同步做逆时针螺旋轨迹运动;转台在水平方向上的偏移等同于光源和探测器同步沿相反方向的平移,等价几何模型如图3所示,3(a)表示俯视图、3(b)表示侧视图,以转台中心o2为原点建立固定的直角坐标系(x,y,z),定义转台横截面的半径为R0,而物体的最大支撑为半径为R0的圆柱体,在图3(a)中物体的支撑与转台重合;定义光源垂直探测器的射束为中心射束,等价几何模型中两次螺旋扫描是通过沿探测器水平方向同步偏移光源和探测器实现的,其中,第一次中心射束位于o1处,实现对物体外侧的扫描;第二次中心射束位于转台旋转轴o2处,实现对物体中部的扫描,两次扫描都以转台中心轴o2为旋转轴,光源到探测器的距离表示为S,图中所示,s1到o1的距离和s2到o2的距离相同且等于D,o1到o2的距离为L,则两次螺旋扫描的旋转半径分别为和R2=D,如图3(b)所示,两次扫描的起始高度、螺距是相同的。
在固定坐标系(x,y,z)下两次扫描光源的轨迹分别表示为:
其中,λ表示旋转角度,h表示螺距,λ0为无符号角度且λ0=arctan(L/D),以螺旋扫描的面阵探测器中心为原点定义旋转的笛卡尔直角坐标系(ui,vi,wi),坐标轴的方向向量为 其中,w轴与面阵探测器的法向量平行,u轴和v轴分别沿面阵探测器的行方向和列方向;在固定坐标系(x,y,z)情况下,坐标轴方向向量表示为:
图3(a)中,定义转台中心到射束方向的距离t,从光源向转台中心,如果射线位于转台的左侧则t为负的,反之,则t为正的;定义转台中心到两次螺旋扫描中射束的最小和最大距离分别为t1min、t1max和t2min、t2max,满足:
根据等价几何模型,沿探测器水平方向同步偏移光源和探测器进行螺旋扫描,得到螺旋锥形束投影bi(λ,u,v),λ为投影角度,(u,v)表示面探测器上的点,两组投影数据的重排相互独立;根据重排公式:得到相应的重排后的多层扇形束投影pi z(θ,u),θ表示扇形投影角度,u表示线阵探测器探元位置,z表示被扫描物体第z层横截面;多层扇形束投影各层之间的数据相互独立,从扇形束投影到平行束投影的重排只涉及到相同z层的数据,对于任意z层,pi z(θ,u)包含360角度范围内的投影数据,其中,λ和θ满足θ=λ%2π,%表示求余运算,S表示光源到探测器的距离,Δz表示锥形束源点与虚拟扇形束源点的距离,D表示螺旋扫描中心射束位置到转台中心轴的距离。
对于任意z层,定义旋转轴到p1 z(λ,u)和p2 z(λ,u)中射束的最小和最大距离分别为t1min、t1max和t2min、t2max,重排后qz(β,t)内所有到旋转轴的距离小于t2min的射线全部来源于p1 z(λ,u),而所有到旋转轴的距离大于等于t2min的射线全部来源于p2 z(λ,u),通过这种方式,便可以将两组独立的扇形束投影融合成一组完整的平行束投影,并且能够去除两组投影之间的冗余数据。具体的,重排过程中的几何关系如图5所示,其中,光源到探测器的距离为S,s1到o1的距离和s2到o2的距离相同且等于D,而o1到o2的距离为L,两次螺旋扫描的旋转半径分别为和R2=D,由图5所示的成像几何可知,γ表示带符号扇角,M表示转台中心到o1(o2)的距离。对于第一组扇形束投影,M=L,而对于第二组扇形束投影,M=0,由于,当t<t2min时射线全部来源于p1 z(λ,u);当t≥t2min时射线全部来源于p2 z(λ,u),相应的多层平行束投影qz(β,t)重排公式表示为:
,β表示平行束投影角度,且β∈[0,2π),t表示旋转轴到平行束的距离,R1表示第一次螺旋扫描的旋转半径,R2表示第二次螺旋扫描的旋转半径,L表示第一次螺旋扫描旋转轴到第二次螺旋扫描旋转轴的距离;根据平行束投影的对称性质gz(φ,t)=gz(π+φ,-t),其中,β和φ的关系表示为:完全覆盖被扫描物体横截面的平行束投影数据重排公式表示为:
gz(φ,t)包含180角度范围内完全覆盖被扫描物体横截面的投影数据,其中,φ表示平行束的投影角度,且满足φ∈[0,π)及t∈[-R0,R0],R0表示为转台横截面的半径。
利用滤波反投影方法完成图像重建,根据平行束投影数据gz(φ,t),采用平行束FBP方法完成图像重建,公式如下:其中,f(x,y,z)表示三维图像重建结果,Kz(φ,t)表示斜坡滤波后的数据,表示点(x,y,z)最终投影到平行束几何中位置;为减少重排误差在反投影重建中对重建图像质量的影响,反投影重建方法也可以通过最初的成像几何计算投影位置来完成图像重建。
下面通过具体的数字仿真实验进一步验证本发明的有效性,并将实验结果与经典螺旋FDK方法进行比较:
构建如图3所示的螺旋锥束CT转台单侧两次螺旋扫描成像几何,并对三维Shepp-Logan体模进行数据采集;同时,在标准螺旋成像几何下对Shepp-Logan体模进行数据采集。两次采得的投影数据分别使用本发明和经典螺旋FDK方法进行重建,具体的成像几何参数如图6所示,转台单侧使用的探测器的尺寸为200×100,而Shepp-Logan体模尺寸为256×256×256,即物体在横向上超出成像视野,投影数据存在数据截断;标准螺旋扫描仿真实验中探测器尺寸为200×256,而物体的尺寸为256×256×256,即投影数据不存在横向数据截断。转台单侧两次螺旋扫描的第360度投影数据分别如图7中7(a)和7(b)所示,图7(a)和7(b)分别表示第一次螺旋扫描和第二次螺旋扫描;而标准螺旋扫描第360度投影数据如图7(c)所示;本发明和经典螺旋FDK方法的重建结果如图8所示,图8中:(a)、(b)、(c)分别表示经典螺旋FDK方法重建结果的x-y、y-z和x-z中心切片,(d)、(e)、(f)分别表示本发明重建结果的x-y、y-z和x-z中心切片;重建结果剖线如图9所示,图9中(a)、(b)、(c)分别表示图8中所示的x-y、y-z和x-z中心切片的垂直剖线。
为进一步对重建结果进行评价,通过对重建三维图像的误差均方根进行比较,如图10,误差均方根可根据式计算得到,其中,fp和fr分别表示真值和重建结果,N表示体素个数。
由图8的重建结果可以看出,本发明能够有效对螺旋锥束CT转台单侧两次扫描的投影数据实施重建,重建结果中没有明显的截断伪影和图像不均匀现象;进一步从图9中的剖线图数值比较可以看出,本发明重建结果在数值上与真值相差很小,表明本发明重建结果具有较高的数值准确性;图9和图10中与经典螺旋FDK方法使用标准螺旋锥束投影重建结果的对比可以说明,本发明重建结果没有引入新的误差,重建图像质量与标准螺旋FDK算法的重建质量相当。
以上说明本发明能够有效的处理投影数据的融合和数据截断问题,在扩大CT成像视野的同时,成像不会引入额外误差,重建质量较好,与标准螺旋FDK算法重建质量相当;同时,与目前螺旋锥束CT扩展视野算法的横向视野扩展率不能大于2倍的现状相比,本发明能够更有效地扩展螺旋锥束CT的横向成像视野,如图6所示,本次实验的横向视野扩展率为2.56。
本发明不局限于上述具体实施方式,本领域技术人员还可据此做出多种变化,但任何与本发明等同或者类似的变化都应涵盖在本发明权利要求的范围内。

Claims (2)

1.一种X射线CT转台单侧两次螺旋扫描单层重排重建方法,其特征在于:包含如下步骤:
步骤1、对被扫描物体在转台的同一侧进行两次螺旋扫描,两次螺旋扫描射线对被扫描物体横截面的覆盖区域之间相互有交叠,两次螺旋扫描总的覆盖区域大于等于被扫描物体横截面的一半;
步骤2、通过螺旋扫描得到相应的螺旋锥形束投影,在成像几何下将螺旋锥形束投影分别重排成相应的多层扇形束投影;具体包含如下内容:
步骤2.1、构建成像几何的等价几何模型,承载被扫描物体的转台做顺时针螺旋轨迹运动等价于光源和探测器同步做逆时针螺旋轨迹运动,转台在水平方向的偏移等同于光源和探测器同步沿相反方向的平移,以螺旋扫描的面阵探测器中心为原点定义旋转的笛卡尔直角坐标系(ui,vi,wi),坐标轴的方向向量为 其中,i等于1或2,表示第i次螺旋扫描,w轴与面阵探测器的法向量平行,u轴和v轴分别沿面阵探测器的行方向和列方向;在固定坐标系(x,y,z)情况下,坐标轴方向向量表示为:
步骤2.2、根据等价几何模型,沿探测器水平方向同步偏移光源和探测器进行螺旋扫描,得到螺旋锥形束投影bi(λ,u,v),λ为投影角度,(u,v)表示面探测器上的点;
步骤2.3、根据重排公式:得到相应的重排后的多层扇形束投影pi z(θ,u),θ表示扇形投影角度,u表示线阵探测器探元位置,z表示被扫描物体第z层横截面,对于任意z层,pi z(θ,u)包含360角度范围内的投影数据,其中,λ和θ满足θ=λ%2π,%表示求余运算,S表示光源到探测器的距离,Δz表示锥形束源点与虚拟扇形束源点的距离,D表示螺旋扫描中心射束位置到转台中心轴的距离;
步骤3、将多层扇形束投影分别重排成相应的多层平行束投影,并在重排过程中对平行束几何进行统一,同时利用平行束投影的对称性质去除数据的横向截断,得到一组完全覆盖被扫描物体横截面的平行束投影数据;具体包含如下内容:
步骤3.1、相应的多层平行束投影qz(β,t)重排公式表示为:
β表示平行束投影角度,且β∈[0,2π),t表示旋转轴到平行束的距离,R1表示第一次螺旋扫描的旋转半径,R2表示第二次螺旋扫描的旋转半径,L表示第一次螺旋扫描旋转轴到第二次螺旋扫描旋转轴的距离,t1min表示旋转轴到p1 z(λ,u)中射束的最小距离;t2min表示旋转轴到p2 z(λ,u)中射束最小距离;
步骤3.2、根据平行束投影的对称性质gz(φ,t)=gz(π+φ,-t),其中,β和φ的关系表示为:完全覆盖被扫描物体横截面的平行束投影数据重排公式表示为:gz(φ,t)包含180角度范围内完全覆盖被扫描物体横截面的投影数据,其中,φ表示平行束的投影角度,且满足φ∈[0,π)及t∈[-R0,R0],R0表示为转台横截面的半径;
步骤4、利用滤波反投影方法完成图像重建。
2.根据权利要求1所述的X射线CT转台单侧两次螺旋扫描单层重排重建方法,其特征在于:步骤4中利用滤波反投影方法完成图像重建包含:根据平行束投影数据gz(φ,t),采用平行束FBP方法完成图像重建,公式如下:其中,f(x,y,z)表示三维图像重建结果,表示斜坡滤波后的数据,表示点(x,y,z)最终投影到平行束几何中位置。
CN201610512467.3A 2016-06-29 2016-06-29 X射线ct转台单侧两次螺旋扫描单层重排重建方法 Active CN105973917B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610512467.3A CN105973917B (zh) 2016-06-29 2016-06-29 X射线ct转台单侧两次螺旋扫描单层重排重建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610512467.3A CN105973917B (zh) 2016-06-29 2016-06-29 X射线ct转台单侧两次螺旋扫描单层重排重建方法

Publications (2)

Publication Number Publication Date
CN105973917A CN105973917A (zh) 2016-09-28
CN105973917B true CN105973917B (zh) 2019-01-18

Family

ID=56953428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610512467.3A Active CN105973917B (zh) 2016-06-29 2016-06-29 X射线ct转台单侧两次螺旋扫描单层重排重建方法

Country Status (1)

Country Link
CN (1) CN105973917B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108283502B (zh) * 2018-02-12 2021-05-25 沈阳晟诺科技有限公司 一种焦点移动式ct机、扫描方法及图像重建方法
CN114781096B (zh) * 2022-05-10 2023-08-11 西华大学 一种基于2MeV加速器CT成像系统的叶片设计与实物比较方法
CN114983452A (zh) * 2022-05-11 2022-09-02 赛诺威盛科技(北京)股份有限公司 Ct螺旋重建图像伪影去除方法及装置
CN116543071B (zh) * 2023-07-06 2023-09-19 有方(合肥)医疗科技有限公司 大视野ct成像方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393145A (zh) * 2008-10-22 2009-03-25 重庆大学 大尺寸物体的锥束双螺旋ct扫描成像方法
WO2011055741A1 (ja) * 2009-11-06 2011-05-12 株式会社 日立メディコ X線ct装置及びx線ct撮影方法
CN102599887A (zh) * 2011-12-22 2012-07-25 中国科学院自动化研究所 一种基于螺旋扫描轨道的光学投影断层成像方法
CN102973291A (zh) * 2012-12-20 2013-03-20 电子科技大学 C型臂半精确滤波反投影断层成像方法
CN103714578A (zh) * 2014-01-24 2014-04-09 中国人民解放军信息工程大学 针对半覆盖螺旋锥束ct的单层重排滤波反投影重建方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785441B2 (ja) * 2005-06-23 2011-10-05 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393145A (zh) * 2008-10-22 2009-03-25 重庆大学 大尺寸物体的锥束双螺旋ct扫描成像方法
WO2011055741A1 (ja) * 2009-11-06 2011-05-12 株式会社 日立メディコ X線ct装置及びx線ct撮影方法
CN102599887A (zh) * 2011-12-22 2012-07-25 中国科学院自动化研究所 一种基于螺旋扫描轨道的光学投影断层成像方法
CN102973291A (zh) * 2012-12-20 2013-03-20 电子科技大学 C型臂半精确滤波反投影断层成像方法
CN103714578A (zh) * 2014-01-24 2014-04-09 中国人民解放军信息工程大学 针对半覆盖螺旋锥束ct的单层重排滤波反投影重建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大视场螺旋锥束工业CT的扫描方法与重建算法研究;邹晓兵;《中国博士学位论文全文数据库 信息科技辑》;20101215(第12期);摘要,第68-73页 *

Also Published As

Publication number Publication date
CN105973917A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
Schaller et al. Exact Radon rebinning algorithm for the long object problem in helical cone-beam CT
CN105973917B (zh) X射线ct转台单侧两次螺旋扫描单层重排重建方法
CN100435733C (zh) X-ct扫描系统
CN102711613B (zh) 计算断层摄影成像方法及系统
US8050480B2 (en) Method and image reconstruction device for generating computed tomography image data
US6130930A (en) Exact region of interest cone beam imaging without circle scans
JP2005518892A (ja) 高速発散ビーム断層撮影のための方法及び装置
CN1971620A (zh) 采用直线轨迹扫描的图像重建系统和方法
US6983034B2 (en) Methods and devices for CT reconstruction using a grangeat approach
EP1644897B1 (en) A fourier tomographic image reconstruction method for fan-beam data
CN107192726B (zh) 板壳物体快速高分辨三维锥束计算机层析成像方法及装置
CN103714578A (zh) 针对半覆盖螺旋锥束ct的单层重排滤波反投影重建方法
CN110057847B (zh) Tr层析扫描投影重排方法及装置
JP2001057976A (ja) 立体画像再構成方法及び装置並びにctスキャナー
CN109991251A (zh) 一种基于多层扇束扫描的工业ct扫描方法
Fu et al. Large field of view computed laminography with the asymmetric rotational scanning geometry
Lesaint Data consistency conditions in X-ray transmission imaging and their application to the self-calibration problem.
CN105319225B (zh) 一种实现板状样品高分辨率大视野cl成像的扫描方法
US8861829B2 (en) Method and system for reconstruction of tomographic images
US6333960B1 (en) Exact region of interest cone beam imaging without circle scans
CN100401983C (zh) 基于双源双螺旋多层螺旋ct的重建方法
US7272205B2 (en) Methods, apparatus, and software to facilitate computing the elements of a forward projection matrix
CN102599887B (zh) 一种基于螺旋扫描轨道的光学投影断层成像方法
CN106228584B (zh) 锥束ct圆加直线轨迹反投影滤波重建方法
CN106097411A (zh) Ct扫描机模式、图像重建方法及高分辨ct扫描机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant