CN105969177B - 一种涂料组合物及其制备方法与应用 - Google Patents

一种涂料组合物及其制备方法与应用 Download PDF

Info

Publication number
CN105969177B
CN105969177B CN201610580922.3A CN201610580922A CN105969177B CN 105969177 B CN105969177 B CN 105969177B CN 201610580922 A CN201610580922 A CN 201610580922A CN 105969177 B CN105969177 B CN 105969177B
Authority
CN
China
Prior art keywords
parts
nanometers
hydrophobic
coating composition
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610580922.3A
Other languages
English (en)
Other versions
CN105969177A (zh
Inventor
陈凯
王强
夏祖西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Research Institute of CAAC
Original Assignee
Second Research Institute of CAAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Research Institute of CAAC filed Critical Second Research Institute of CAAC
Priority to CN201610580922.3A priority Critical patent/CN105969177B/zh
Publication of CN105969177A publication Critical patent/CN105969177A/zh
Application granted granted Critical
Publication of CN105969177B publication Critical patent/CN105969177B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

本发明公开了一种涂料组合物,它包括以下重量份数的组分:树脂10份~30份、纳米颗粒2份~16份、有机溶剂30份~80份;所述的纳米颗粒中,粒径为10纳米~100纳米的质量分数为5%~48%。本发明的涂料组合物,通过将10纳米~50纳米的纳米颗粒在无机纳米颗粒中的质量分数控制在特定的范围内,所制备的超疏水材料,在经过多次结冰除冰循环后,仍然能够将接触角保持在150°以上,具有超高的疏水性以及保持能力;同时,还能够将水滴在表面结冰的时间延长保持在190s以上,将冰块在表面的剪切强度保持在210kPa以下,具有良好的防冰、疏冰效果。

Description

一种涂料组合物及其制备方法与应用
技术领域
本发明涉及一种涂料组合物及其制备方法与应用。
背景技术
水、冰在飞机表面的附着和积聚,将会改变机身的重量以及机翼上的气流,减小升力并增大阻力,对飞机的飞行安全造成极大的危害;因此,通常需要采用疏水性高的材料来制造飞机的机身和机翼,尽量防止水、冰在其表面的附着和积累,从而能够更好地保障飞行安全。
材料疏水性的高低,通常用材料表面与水滴的接触角大小来进行评价,接触角越大,表明材料的疏水性越高;特别是,当接触角大于150°时,则表明材料具有超高的疏水性,能够更有效地防止水、冰在其表面的附着和积累,而该材料也被称为超疏水材料。
通常情况下,超疏水材料包括基底和涂层,其疏水性主要取决于形成涂层的涂料组合物;如:中国专利CN 101704410 A公开的一种由基底和修饰膜(即涂层)组成的材料,其形成修饰膜(即涂层)的涂料组合物包括以下特定质量百分比的特定组分:10~50纳米颗粒10~50%、调节剂(即溶剂)90~50%;所制备的材料表面与水的接触角能够大于150°,具有超高的疏水性。
然而,本发明研究发现,由10~50纳米颗粒和溶剂组成的涂料组合物,所制备的超疏水材料与水的接触角,虽然初始的时候能够大于150°,但经过多次结冰除冰循环后,其接触角很快就会小于150°,如:经过20次结冰除冰循环后,其接触角就减小到了128°,此时材料的疏水性明显变劣,这意味着,材料防止水、冰在其表面附着和积累的能力明显变差。
为了克服现有涂料组合物的缺陷,亟需发明一种新的涂料组合物,能够使得由其制备的超疏水材料经过多次结冰除冰循环后仍能保持超高的疏水性。
发明内容
本发明的目的在于提供一种新的涂料组合物,能够使得由其制备的超疏水材料经过多次结冰除冰循环后仍能保持超高的疏水性。
本发明提供的一种涂料组合物,它包括以下重量份数的组分:树脂10份~30份、纳米颗粒2份~16份、有机溶剂30份~80份;所述的纳米颗粒中,粒径为10纳米~100纳米的质量分数为5%~48%。
进一步的,它是由以下重量份数的组分组成:树脂10份~30份、纳米颗粒2份~16份、有机溶剂30份~80份;所述的纳米颗粒中,粒径为10纳米~100纳米的质量分数为5%~48%。
进一步的,所述的树脂为有机硅树脂或氟碳树脂。
进一步的,
所述的有机硅树脂选自乙烯基封端的二甲基硅氧烷、聚苯基甲基硅氧烷或聚三氟丙基甲基硅氧烷中的任意一种或两种以上;所述的氟碳树脂选自聚偏氟乙烯、聚四氟乙烯、全氟甲基乙烯基醚、六氟丙烯中的任意一种或两种以上;
优选的,
所述的有机硅树脂中,乙烯基封端的二甲基硅氧烷的质量分数为30%~50%;所述的氟碳树脂中,聚偏氟乙烯的质量分数为30%~50%。
进一步的,所述的纳米颗粒选自活性炭纳米颗粒、二氧化钛纳米颗粒、二氧化铈纳米颗粒、二氧化硅纳米颗粒、氧化锌纳米颗粒、聚四氟乙烯纳米颗粒中的任意一种或两种以上。
进一步的,所述粒径为10纳米~100纳米的纳米颗粒的质量分数为30%~48%。
进一步的,所述的纳米颗粒是由以下重量份数的组分组成:
10纳米~50纳米的活性炭纳米颗粒35份、300纳米~400纳米的活性炭纳米颗粒40份和100纳米~300纳米的二氧化铈纳米颗粒25份;
或者,
10纳米~50纳米的二氧化钛纳米颗粒40份、200纳米~300纳米的二氧化钛纳米颗粒40份和100纳米~300纳米的活性炭纳米颗粒20份;
或者,
50纳米~100纳米的二氧化硅纳米颗粒35份、400纳米~500纳米的二氧化硅纳米颗粒35份和100纳米~300纳米的二氧化钛纳米颗粒30份;
或者,
10纳米~50纳米的活性炭纳米颗粒32份、300纳米~400纳米的活性炭纳米颗粒32份和100纳米~200纳米的二氧化钛纳米颗粒36份;
或者,
10纳米~50纳米的二氧化钛纳米颗粒48份和250纳米~350纳米的活性炭纳米颗粒52份。
本发明中,“a纳米~b纳米”表示粒径大于a纳米而小于等于b纳米,例如,“50纳米~100纳米”是指粒径大于50纳米而小于等于100纳米。
进一步的,所述有机溶剂选自甲苯、甘油、石油醚中的任意一种或两种以上。
本发明还提供了一种制备上述涂料组合物的方法,包括以下步骤:取组分,混匀,即得。
本发明还提供了上述涂料组合物在制备超疏水材料中的应用。
本发明的涂料组合物,通过将10纳米~50纳米的纳米颗粒在无机纳米颗粒中的质量分数控制在特定的范围内,所制备的超疏水材料,在经过多次结冰除冰循环后,仍然能够将接触角保持在150°以上,具有超高的疏水性以及保持能力;同时,还能够将水滴在表面结冰的时间延长保持在190s以上,将冰块在表面的剪切强度保持在210kPa以下,具有良好的防冰、疏冰效果;而且,本发明涂料组合物的制备方法简便,能耗低,生产效率高,成本低,经济价值明显,具有十分良好的产业化前景。
本发明通过常见的等离子体、光蚀等技术,可以方便地在基底的表面设置凹坑,以及凹坑的横截面形状,既可以方便地设置成不规整形状,也可以方便地设置成六边形、长方形、三角形、圆形、椭圆形等规整形状,同时还可以方便地调整凹坑的截面积、深度以及凹坑之间的宽度。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为本发明实施例1中蜂窝状的中空封闭疏水结构的示意图。
图2为本发明实施例1中蜂窝状的中空封闭疏水结构的扫描电镜图。
图3为本发明实施例2所制备的超疏水表面的剖面图。
图4为本发明实施例3中长方形的中空疏水结构的示意图。
图5为本发明实施例3中长方形的中空疏水结构的扫描电镜图。
图6为本发明实施例4中三角形的中空疏水结构的扫描电镜图。
图7为本发明实施例5中梯形的中空疏水结构的扫描电镜图。
具体实施方式
本发明具体实施方式中使用的原料、设备均为已知产品,通过购买市售产品获得。
有机硅树脂:乙烯基封端的二甲基硅氧烷(CAS No.68083-19-2)、聚苯基甲基硅氧烷(CAS No.9005-12-3)、聚三氟丙基甲基硅氧烷(CAS No.63148-56-1);
氟碳树脂:聚偏氟乙烯(CAS No.24937-79-9)、聚四氟乙烯(CAS No.9002-84-0)、全氟甲基乙烯基醚(CAS No.1187-93-5)、六氟丙烯(CAS No.116-15-4)。
实施例1
超疏水表面Ⅰ,以金属铝合金为基底,利用360目砂纸对其进行打磨至少5次,再将其置于超声波水浴进行清洗。其后,利用0.05mol/L的硝酸对其表面进行清洗。完成上述操作后,以氩气为等离子体,在20℃下,反应压力65Pa,射频功率280W下,对铝片表面进行处理,制备具有蜂窝状的中空封闭疏水结构(示意图见图1,扫描电镜图见图2),结果显示,该凹坑的横截面为六边形,六边形的边长V1=20.93微米,凹坑之间的宽度H1=8.374微米、H2=6.420微米。然后将该金属铝片以0.05mm/s的速度垂直将该铝片浸入含纳米颗粒的疏水疏冰涂层溶液中,直至铝片完全浸入溶液中。待铝片完全浸入溶液后,应将其全浸在溶液中至少5分钟。整个浸渍过程,反应温度应维持在70℃-90℃,同时,应利用电动搅拌机维持溶液始终处于悬浊液状态。重复上述浸渍过程至少3次,以保证含纳米颗粒的疏水疏冰涂层均匀涂覆在基底表面(注:浸渍法是化学化工中常使用的一种向固体表面进行涂层的方法),平均厚度为1微米。该疏水疏冰涂层溶液是由有机硅树脂、纳米颗粒及有机溶剂混合而成。其中,有机硅树脂是由乙烯基封端的二甲基硅氧烷、聚苯基甲基硅氧烷及聚三氟丙基甲基硅氧烷按质量比1:1:1组成的混合物,纳米颗粒是由质量分数为35%的颗粒大小为10-50纳米的活性炭颗粒、质量分数为40%的颗粒大小为300-400纳米的活性炭颗粒、质量分数为25%的颗粒大小为100-300纳米的二氧化铈颗粒组成,有机溶剂为甲苯。其中,有机硅树脂为18重量份,纳米颗粒为14重量份,有机溶剂为68重量份。完成上述操作后,将涂覆有疏水疏冰涂层的超疏水表面置于烘箱中,在120℃烘箱中烘干2.5小时。
为进行比较,制备了超疏水表面Ⅱ:该表面同样以金属铝合金为基底,同样利用上述等离子技术在其表面制备具有蜂窝状的中空封闭疏水结构。然后利用上述浸渍法将含纳米颗粒的疏水疏冰涂层溶液涂覆在基底表面。该疏水疏冰涂层溶液是由有机硅树脂、纳米颗粒及有机溶剂混合而成。其中,有机硅树脂是由乙烯基封端的二甲基硅氧烷、聚苯基甲基硅氧烷及聚三氟丙基甲基硅氧烷按质量比1:1:1组成的混合物,纳米颗粒为颗粒大小为10-50纳米的二氧化铈颗粒,有机溶剂为甲苯。其中,有机硅树脂为16重量份,纳米颗粒为12重量份,有机溶剂为72重量份。完成上述操作后,将涂覆有疏水疏冰涂层的超疏水表面置于烘箱中,在120℃烘箱中烘干2.5小时。
为进行比较,制备了超疏水表面Ⅲ:该表面以金属铝合金为基底,根据中国专利CN101704410A“一种用于飞机防冰除冰的纳米超疏水表面的制备方法”所述在其表面制备柱状疏水结构。然后利用上述浸渍法将含纳米颗粒的疏水疏冰涂层溶液涂覆在基底表面,该疏水疏冰涂层溶液是由有机硅树脂、纳米颗粒及有机溶剂混合而成。其中,有机硅树脂是由乙烯基封端的二甲基硅氧烷、聚苯基甲基硅氧烷及聚三氟丙基甲基硅氧烷按质量比1:1:1组成的混合物,纳米颗粒为颗粒大小为10-50纳米的二氧化钛颗粒,有机溶剂为甲苯。其中,有机硅树脂为16重量份,纳米颗粒为16重量份,有机溶剂为68重量份。完成上述操作后,将涂覆有疏水疏冰涂层的超疏水表面置于烘箱中,在120℃烘箱中烘干2.5小时。
上述三种超疏水表面的性能测试结果,见表1。
表1、实施例1中三种不同涂料所制备的超疏水表面的性能测试结果
其中,
固体表面接触角及接触角滞后可利用接触角测量仪进行测量。
水滴在表面结冰时间的测定按如下方法进行:将0.05mL液滴置于超疏水表面,然后将其移置-10℃环境箱中,开始计时并进行实时观测,水滴完全结冰所需的时间即为水滴在-10℃环境中,在表面结冰的延长时间。
冰块在表面的剪切强度测试依据论文“Ice adhesion on super-hydrophobicsurface”S.A.Kulinich,M.Farzaneh,Appl.Surf.Sci.2009,255:8153–8157或"Highlyresistant icephobic coatings on aluminum alloys"R.Menini,Z.Ghalmi,M.Farzaneh,Cold Regions Science and Technology,,2011,65(1):65-69所描述的方法进行。
一次结冰除冰循环是指0.05mL液滴在超疏水表面完全结冰后,利用离心机在高速转动的条件下,将其从表面移除,再将铝片置于30℃恒温箱中,除去表面残留的水分。
说明:
(1)水滴在表面的接触角越大,说明表面的疏水性能越好:当接触角大于150°时,为超疏水表面,液滴不易在表面粘附,轻轻对其扰动就可使其从表面脱离;
(2)水滴在表面结冰时间延长的数值越大,表明防冰效果越好;
(3)冰块在表面的剪切强度数值越小,表明结冰越容易除去,即疏冰效果好;
(4)多次结冰除冰循环后,水滴在表面的接触角减小越小越好,在表面结冰时间延长的数值损失越小越好,冰块在表面的剪切强度数值增加的越小越好,表明其抗磨性能好。
上述结果表明,本发明的涂料组合物,通过将10纳米~50纳米的纳米颗粒在无机纳米颗粒中的质量分数控制在35%,所制备的超疏水材料,在经过20次、50次结冰除冰循环后,仍然能够将接触角保持在150°以上,具有超高的疏水性以及保持能力;同时,还能够将水滴在表面结冰的时间延长保持在190s以上,将冰块在表面的剪切强度保持在210kPa以下,具有良好的防冰、疏冰效果。
实施例2
以金属铝合金为基底,利用360目砂纸对其进行打磨至少5次,再将其置于超声波水浴进行清洗。其后,利用0.05mol/L的硝酸对其表面进行清洗。完成上述操作后,以75%的氩气及25%的CF4为工作气体,在30℃下,反应压力55Pa,射频功率600W下,对铝片表面进行处理,制备具有蜂窝状的中空封闭疏水结构。然后将该金属铝片以0.05mm/s的速度垂直将该铝片浸入含纳米颗粒的疏水疏冰涂层溶液中,直至铝片完全浸入溶液中。待铝片完全浸入溶液后,应将其全浸在溶液中至少5分钟。整个浸渍过程,反应温度应维持在70℃-90℃,同时,应利用电动搅拌机维持溶液始终处于悬浊液状态。重复上述浸渍过程至少3次,以保证含纳米颗粒的疏水疏冰涂层溶液均匀涂覆在基底表面,平均厚度1微米。
该疏水疏冰涂层溶液是由有机硅树脂、纳米颗粒及有机溶剂混合而成。其中,有机硅树脂是由乙烯基封端的二甲基硅氧烷与聚三氟丙基甲基硅氧烷按质量比1:1组成的混合物,纳米颗粒为质量分数为40%的颗粒大小为10-50纳米的二氧化钛纳米颗粒、质量分数为40%的颗粒大小为200-300纳米的二氧化钛纳米颗粒及质量分数为20%的颗粒大小为100-300纳米的活性炭颗粒组成,有机溶剂为甲苯。其中,有机硅树脂为15重量份,纳米颗粒含量为10重量份,有机溶剂为75重量份。完成上述操作后,将涂覆有疏水疏冰涂层的超疏水表面置于烘箱中,在120℃烘箱中烘干3小时。完成制备后,该表面的剖面图如图3所示;性能测试结果,见表2。
实施例3
以金属铝合金为基底,以氩气为工作气体,在20℃下,反应压力65Pa,射频功率300W下,对铝片表面进行处理,制备呈长方形的中空疏水结构(示意图见图4,扫描电镜图见图5),该凹坑的横截面为长方形,长方形的长V3=31.82微米、宽H1=16.47微米,凹坑之间的宽度V1=8.932微米、V2=5.862微米。然后将该金属铝片以0.05mm/s的速度垂直将该铝片浸入含纳米颗粒的疏水疏冰涂层溶液中,直至铝片完全浸入溶液中。待铝片完全浸入溶液后,应将其全浸在溶液中至少5分钟。整个浸渍过程,反应温度应维持在65℃-95℃,同时,应利用电动搅拌机维持溶液始终处于悬浊液状态。重复上述浸渍过程至少3次,以保证含纳米颗粒的疏水疏冰涂层溶液均匀涂覆在铝片表面,平均厚度1微米。
该疏水疏冰涂层溶液是由氟碳树脂、纳米颗粒及有机溶剂混合而成。其中,氟碳树脂是由聚偏氟乙烯与六氟丙烯按质量比1:1组成的混合物,纳米颗粒为质量分数为35%的颗粒大小为50-100纳米的二氧化硅纳米颗粒、质量分数为35%的颗粒大小为400-500纳米的二氧化硅纳米颗粒及质量分数为30%的颗粒大小为100-300纳米的二氧化钛颗粒组成,有机溶剂为石油醚。其中,有机硅树脂为12重量份,纳米颗粒含量为10重量份,有机溶剂为78重量份。完成上述操作后,将涂覆有疏水疏冰涂层的超疏水表面置于烘箱中,在90℃烘箱中烘干3.5小时;其超疏水表面的性能测试结果,见表2。
实施例4
以金属铝合金为基底,以60%的氩气及40%的CF4为工作气体,在25℃下,反应压力60Pa,射频功率600W下,对铝片表面进行处理,制备呈三角形的中空疏水结构(扫描电镜图见图6),该凹坑的横截面为三角形,三角形的边长V1=49.76微米,凹坑之间的宽度H1=8.613微米、H2=5.742微米。然后将该金属铝片以0.05mm/s的速度垂直将该铝片浸入含纳米颗粒的疏水疏冰涂层溶液中,直至铝片完全浸入溶液中。待铝片完全浸入溶液后,应将其全浸在溶液中至少5分钟。整个浸渍过程,反应温度应维持在70℃-90℃,同时,应利用电动搅拌机维持溶液始终处于悬浊液状态。重复上述浸渍过程至少3次,以保证含纳米颗粒的疏水疏冰涂层溶液均匀涂覆在基底表面,平均厚度1微米。
该疏水疏冰涂层溶液是由氟碳树脂、纳米颗粒及有机溶剂混合而成。其中,氟碳树脂是由聚偏氟乙烯、全氟甲基乙烯基醚、六氟丙烯按质量比1:1:1组成的混合物,纳米颗粒为质量分数为32%的颗粒大小为10-50纳米的活性炭纳米颗粒、质量分数为32%的颗粒大小为300-400纳米的活性炭纳米颗粒及质量分数为36%的颗粒大小为100-200纳米的二氧化钛颗粒组成,有机溶剂为石油醚。其中,该涂层有机硅树脂为12重量份,纳米颗粒含量为8重量份,有机溶剂为80重量份。完成上述操作后,将涂覆有疏水疏冰涂层的超疏水表面置于烘箱中,在85℃烘箱中烘干4小时;其超疏水表面的性能测试结果,见表2。
实施例5
以金属铝合金为基底,利用360目砂纸对其进行打磨至少5次,再将其置于超声波水浴进行清洗。其后,利用0.05mol/L的硝酸对其表面进行清洗。完成上述操作后,以氩气为等离子体,在20℃下,反应压力65Pa,射频功率280W下,对铝片表面进行处理,制备呈梯形的中空疏水结构(扫描电镜图见图7),该凹坑的横截面为梯形,梯形的底长V1=24.22微米、V2=15.14微米,高H1=25.88微米,凹坑之间的宽度H2=6.331微米、H3=8.534微米。然后将该金属铝片以0.05mm/s的速度垂直将该铝片浸入含纳米颗粒的疏水疏冰涂层溶液中,直至铝片完全浸入溶液中。待铝片完全浸入溶液后,应将其全浸在溶液中至少5分钟。整个浸渍过程,反应温度应维持在70℃-90℃,同时,应利用电动搅拌机维持溶液始终处于悬浊液状态。重复上述浸渍过程至少3次,以保证含纳米颗粒的疏水疏冰涂层溶液均匀涂覆在基底表面,平均厚度1微米。
该疏水疏冰涂层溶液是由有机硅树脂、纳米颗粒及有机溶剂混合而成。其中,有机硅树脂是由乙烯基封端的二甲基硅氧烷与聚苯基甲基硅氧烷按质量比1:1组成的混合物,纳米颗粒为质量分数为48%的颗粒大小为10-50纳米的二氧化钛纳米颗粒及质量分数为52%的颗粒大小为250-350纳米的活性炭颗粒组成,有机溶剂为石油醚。其中,有机硅树脂为13重量份,纳米颗粒含量为11重量份,有机溶剂为76重量份。完成上述操作后,将涂覆有疏水疏冰涂层的超疏水表面置于烘箱中,在100℃烘箱中烘干2.5小时;其超疏水表面的性能测试结果,见表2。
表2、本发明实施例2~5涂料所制备的超疏水表面的性能测试结果
综上所述,本发明的涂料组合物,通过将10纳米~50纳米的纳米颗粒在无机纳米颗粒中的质量分数控制在特定的范围内,所制备的超疏水材料,在经过多次结冰除冰循环后,仍然能够将接触角保持在150°以上,具有超高的疏水性以及保持能力;同时,还能够将水滴在表面结冰的时间延长保持在190s以上,将冰块在表面的剪切强度保持在210kPa以下,具有良好的防冰、疏冰效果;而且,本发明涂料组合物的制备方法简便,能耗低,生产效率高,成本低,经济价值明显,具有十分良好的产业化前景。

Claims (2)

1.涂料组合物在制备超疏水材料中的应用;所述涂料组合物包括以下重量份数的组分:树脂18份、纳米颗粒14份、有机溶剂68份;所述的纳米颗粒中,粒径为10纳米~100纳米的质量分数为30%~48%;所述的树脂为有机硅树脂;所述疏水材料包括基底和涂层,所述基底表面为蜂窝状的中空封闭疏水结构;所述涂层由前述涂料组合物制备而成;所述有机硅树脂是由乙烯基封端的二甲基硅氧烷、聚苯基甲基硅氧烷及聚三氟丙基甲基硅氧烷按质量比1:1:1组成的混合物,纳米颗粒是由质量分数为35%的颗粒大小为10-50纳米的活性炭颗粒、质量分数为40%的颗粒大小为300-400纳米的活性炭颗粒、质量分数为25%的颗粒大小为100-300纳米的二氧化铈颗粒组成,有机溶剂为甲苯。
2.根据权利要求1所述的应用,其特征在于:所述涂料组合物由以下步骤制备:取组分,混匀,即得。
CN201610580922.3A 2016-07-21 2016-07-21 一种涂料组合物及其制备方法与应用 Active CN105969177B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610580922.3A CN105969177B (zh) 2016-07-21 2016-07-21 一种涂料组合物及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610580922.3A CN105969177B (zh) 2016-07-21 2016-07-21 一种涂料组合物及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN105969177A CN105969177A (zh) 2016-09-28
CN105969177B true CN105969177B (zh) 2019-08-27

Family

ID=56952912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610580922.3A Active CN105969177B (zh) 2016-07-21 2016-07-21 一种涂料组合物及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105969177B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106752462B (zh) * 2017-01-11 2020-01-03 中国民用航空总局第二研究所 一种超疏水材料及其制备方法
CN106752166A (zh) * 2017-01-11 2017-05-31 中国民用航空总局第二研究所 一种抗紫外的涂料组合物及制备方法和应用
US20200385609A1 (en) * 2017-07-31 2020-12-10 Dow Global Technologies Llc Ice-phobic coatings
WO2019047093A1 (en) 2017-09-07 2019-03-14 Dow Global Technologies Llc THERMALLY CONDUCTIVE GLACIOPHOBIC COATINGS
CN109749538A (zh) * 2017-11-02 2019-05-14 天津市恒基钢业有限公司 一种超疏水涂层的制备方法及其在耐腐蚀金属管材领域的应用
CN112774960B (zh) * 2020-12-18 2023-09-26 大唐浑源密马鬃梁新能源有限公司 一种适应于高寒地区防覆冰风机叶片涂层工艺
CN116640503A (zh) * 2023-07-21 2023-08-25 湖南益涂纳米材料科技有限公司 一种防结冰纳米涂料、制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824278A (zh) * 2010-04-06 2010-09-08 南京工业大学 一种超疏水无机有机纳米复合高分子涂层材料及其制备方法
CN104745038A (zh) * 2013-12-31 2015-07-01 浙江省海洋开发研究院 一种复合型超疏水海洋防污涂料、制备方法及其使用
CN104987520A (zh) * 2015-07-09 2015-10-21 北京航空航天大学 一种超疏水纳米透明涂层及其制备方法
CN105254997A (zh) * 2015-09-01 2016-01-20 上海大学 一种超疏水塑料的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261817B2 (ja) * 2008-08-30 2013-08-14 国立大学法人長岡技術科学大学 表面に微細凹凸パターンを有したセラミックス焼成体及びその製造方法
US9637658B2 (en) * 2013-06-24 2017-05-02 The Boeing Company Coatings, coating compositions, and methods of delaying ice formation
CN103469215B (zh) * 2013-09-06 2015-10-28 许昌学院 一种具有低摩擦系数的铜基超疏水表面及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824278A (zh) * 2010-04-06 2010-09-08 南京工业大学 一种超疏水无机有机纳米复合高分子涂层材料及其制备方法
CN104745038A (zh) * 2013-12-31 2015-07-01 浙江省海洋开发研究院 一种复合型超疏水海洋防污涂料、制备方法及其使用
CN104987520A (zh) * 2015-07-09 2015-10-21 北京航空航天大学 一种超疏水纳米透明涂层及其制备方法
CN105254997A (zh) * 2015-09-01 2016-01-20 上海大学 一种超疏水塑料的制造方法

Also Published As

Publication number Publication date
CN105969177A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105969177B (zh) 一种涂料组合物及其制备方法与应用
CN105969174A (zh) 一种超疏水材料及其制备方法
Ruan et al. Preparation of PTFE/PDMS superhydrophobic coating and its anti-icing performance
Liu et al. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model
Kulinich et al. On ice-releasing properties of rough hydrophobic coatings
Yang et al. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating
Li et al. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives
Lei et al. Icing behavior of water droplets impinging on cold superhydrophobic surface
Balordi et al. Role of micrometric roughness on anti-ice properties and durability of hierarchical super-hydrophobic aluminum surfaces
Bharathidasan et al. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces
Liu et al. Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating
CN106752462B (zh) 一种超疏水材料及其制备方法
Cui et al. Icephobic performance of one-step silicone-oil-infused slippery coatings: Effects of surface energy, oil and nanoparticle contents
Farhadi et al. Anti-icing performance of superhydrophobic surfaces
Jin et al. A combination structure of microblock and nanohair fabricated by chemical etching for excellent water repellency and icephobicity
Liao et al. Ice accretion on superhydrophobic insulators under freezing condition
Yang et al. How micro-/nanostructure evolution influences dynamic wetting and natural deicing abilities of bionic lotus surfaces
He et al. Preparation methods and research progress of super-hydrophobic anti-icing surface
Zhang et al. An experimental study on the detrimental effects of deicing fluids on the performance of icephobic coatings for aircraft icing mitigation
Liu et al. Robust and self-healing superhydrophobic aluminum surface with excellent anti-icing performance
Gao et al. Review on condensation frosting and defrosting experiments for superhydrophobic surfaces
Peng et al. In situ fabrication of flower-like ZnO on aluminum alloy surface with superhydrophobicity
Peng et al. Facile fabrication of superhydrophobic aluminum surfaces by chemical etching and its anti-icing/self-cleaning performances
Yue et al. Effects of black silicon surface structures on wetting behaviors, single water droplet icing and frosting under natural convection conditions
CN116116685A (zh) 一种有序微米结构强化超疏水防冰涂层的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant