CN116116685A - 一种有序微米结构强化超疏水防冰涂层的制备方法 - Google Patents

一种有序微米结构强化超疏水防冰涂层的制备方法 Download PDF

Info

Publication number
CN116116685A
CN116116685A CN202310192806.4A CN202310192806A CN116116685A CN 116116685 A CN116116685 A CN 116116685A CN 202310192806 A CN202310192806 A CN 202310192806A CN 116116685 A CN116116685 A CN 116116685A
Authority
CN
China
Prior art keywords
coating
super
icing
hydrophobic
ordered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310192806.4A
Other languages
English (en)
Other versions
CN116116685B (zh
Inventor
王鹏
王文亮
张镇
赵翔
丁海民
张新春
张宇宁
赵辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202310192806.4A priority Critical patent/CN116116685B/zh
Publication of CN116116685A publication Critical patent/CN116116685A/zh
Application granted granted Critical
Publication of CN116116685B publication Critical patent/CN116116685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • B05D2202/15Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/40Metallic substrate based on other transition elements
    • B05D2202/45Metallic substrate based on other transition elements based on Cu
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了一种有序微米结构强化超疏水防冰涂层的制备方法。包括:有序微米结构的刻蚀制备,纳米颗粒的低表面能处理及RTV硅橡胶基超疏水涂料的调制,然后将该涂料在经上述刻蚀处理的基片上均匀涂覆,固化形成涂层。有序微米结构增强了涂层的防/除冰性能以及抵御摩擦和冻冰/除冰载荷破坏的能力。本发明公开的有序微米结构强化的超疏水防冰涂层及其制备方法,具有限制结冰行为和延缓结冰过程的特性,同时具有优异的耐磨性以及在冻冰/除冰循环中更低的冰粘附强度。

Description

一种有序微米结构强化超疏水防冰涂层的制备方法
技术领域
本发明属于超疏水材料技术领域,具体涉及一种有序微米结构强化超疏水防冰涂层的制备方法。
背景技术
覆冰是涉及复杂过程的综合物理现象。意外的覆冰威胁着诸多行业的安全生产和经营,并造成巨大的经济损失。传统的除冰方法总是需要大量人力和物力的投入。超疏水防冰涂层是一种不依靠能量输入的被动防冰策略,具有成本低、适用度广等优点。超疏水表面具有特殊的物理化学性质和微观几何形貌,呈现出不可浸润的界面性质(水接触角>150°,滚动角<10°),在油水分离、自清洁、微流控、防冻抗冰等领域有着广阔前景。理论分析和实验数据表明,超疏水表面具有加速水滴滚落、延迟结冰时间、降低冰粘附力等特点,在防覆冰和易除冰方面具有明显优势。
超疏水防冰涂层一般通过在材料表面覆盖超疏水防冰保护层并经固化后形成,有多种实现方法。中国专利CN114622203A公布了一种仿生自清洁超疏水防覆冰涂层的制备方法,通过简单的化学刻蚀法和热处理过程构建了微/纳米尺度梯级结构,然后用低表面能材料对其进行改性得到超疏水防冰表面。中国专利CN115160857A公布了一种被动光热除冰的超疏水防覆冰涂层及其制备方法和应用,将乙基纤维素、ZIF-8衍生的空心多孔碳纤维和氯化钠分散在乙醇溶剂中,制成底漆涂料,喷涂于基材表面作为底层,待底层自然干燥固化后,将氟化二氧化硅试剂喷涂在底层上作为表层,自然干燥固化后得到防冰、除冰涂层。然而,超疏水防冰涂层在工程应用中会不可避免地遇到磨损,特别是循环冻冰/除冰所带来的破坏,极易导致冰粘附力的上升。文献(Nature 582(2020)55-66)公开了一种表面浸润性和机械稳定性解耦制备超疏水表面的策略:纳米结构提供超疏水性必须的粗糙度和低表面能要求,而微米铠甲提供抵御机械破坏的结构支撑。激光刻蚀是一种在表面制备图案和微纳结构的加工方法,有着成型迅速和精度高的优点,文献(Appl.Surf.Sci.256(2009)61-66)提出了一种利用飞秒激光刻蚀技术和表面氟化处理制备超疏水表面的方法。
发明内容
本发明的目的在于提供一种有序微米结构强化超疏水防冰涂层的制备方法。
一种有序微米结构强化超疏水防冰涂层的制备方法,包括如下步骤:
(1)准备基片A,并做表面光整和清洗处理,按此处理的表面记作表面B,备用;
(2)采用激光刻蚀在表面B上刻蚀出有序微米结构,所述微米结构为微米级连续“框”或“框-柱”阵列结构,表面按此处理后记作表面C;
(3)将纳米颗粒D和1H,1H,2H,2H-全氟辛基三乙氧基硅烷,加入乙醇溶剂中,经2-8h磁力搅拌获得均匀的混合物,40-80℃烤箱中处理24-48h,获得超疏水纳米颗粒,记作E;
(4)将E和RTV硅橡胶分散在正己烷溶剂中,经2-6h磁力搅拌获得超疏水涂料F;
(5)将超疏水涂料F均匀地涂覆在表面C,固化后形成有序微米结构强化的超疏水防冰涂层。
所述基片A为铜合金、铝合金或钢材,所述基片A的厚度不小于5mm。
所述表面光整和清洗处理的操作步骤为:采用研磨或砂带磨削的方法对表面做光整加工直至粗糙度Ra值小于0.64μm,之后依次在无水乙醇和去离子水中超声波清洗,每次清洗20-30min,自然干燥后备用。
所述激光刻蚀为飞秒激光刻蚀或纳秒激光刻蚀。
所述纳米颗粒D为纳米氧化锌颗粒、纳米二氧化硅颗粒、纳米氧化铝颗粒、纳米二氧化钛颗粒中的一种或一种以上。
步骤(3)所述混合物D中纳米颗粒的占比为3-6wt%,1H,1H,2H,2H-全氟辛基三乙氧基硅烷的占比为1-3wt%。
步骤(4)所述超疏水涂料F的调制中E的占比为2-3wt%,RTV硅橡胶占比为2-5wt%。
步骤(5)所述涂覆采用浸涂、滚涂、喷涂或线棒涂布。
本发明的有益效果:本发明提出有序微米结构强化超疏水防冰涂层的制备方法。该方法通过激光刻蚀工艺在基片表面刻蚀出有序微米结构,然后涂覆超疏水涂料形成超疏水防冰涂层。本发明具有限制结冰行为和延缓结冰过程的特性,同时有序微米结构具体为一种微米级连续“框”或“框-柱”阵列结构,如同铠甲一样增强了超疏水防冰涂层在防/除冰应用中抵御破坏的能力;具有限制结冰行为和延缓结冰过程的特性;具有优异的耐磨性以及在冻冰/除冰循环中更低的冰粘附强度。本发明便于系列化大量生产和实施,同时便于工程应用和推广。
附图说明
图1为激光刻蚀工艺制备表面有序微米结构的示意图。
图2为有序微米结构强化超疏水防冰涂层的原理示意图。
图3为实施例1的“框”或“框-柱”有序微米结构电镜扫描图。
图4为实施例1有序微米结构强化的超疏水防冰涂层电镜扫描图。
图5为耐磨性定量化测试装置图。
图6为有序微米结构的尺寸对超疏水防冰涂层耐磨性的影响关系图。
图7为本发明在不同基片上实施后耐磨性参数图。
图8为实施例1涂层表面结冰现象对比图。
图9为实施例1表面结冰时间对比图。
图10为实施例1表面“结冰-除冰”次数和冰粘附强度的关系图。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
实施例1
有序微米结构强化的超疏水防冰涂层的制备方法,按照如下步骤进行:
(1)以45#钢片为基片,采用研磨工艺对表面做光整加工,直至粗糙度Ra值小于0.64μm,之后依次在无水乙醇和去离子水中超声波清洗,每次清洗25min,自然干燥,按此处理的表面记作表面B,备用;
(2)在表面B上,采用纳秒激光刻蚀工艺刻蚀出有序微米结构,具体为一种微米级连续“框”或“框-柱”阵列结构,表面按此处理后记作表面C;
(3)将4.6wt%的纳米氧化锌颗粒和2.2wt%的1H,1H,2H,2H-全氟辛基三乙氧基硅烷,加入乙醇溶剂中,经2h磁力搅拌获得均匀的混合物,60℃烤箱中处理24h,获得低表面能纳米颗粒,记作E;
(4)将2.8wt%的E和2.8wt%的RTV硅橡胶分散在正己烷溶剂中,2h磁力搅拌获得超疏水涂料F;
(5)使用喷枪将F均匀地喷涂在表面C,固化后形成连续微米结构强化的超疏水防冰涂层(图1-4)。
实施例2
有序微米结构强化的超疏水防冰涂层的制备方法,按照如下步骤进行:
(1)以6061铝合金片为基片,采用研磨工艺对表面做光整加工,直至粗糙度Ra值小于0.64μm,之后依次在无水乙醇和去离子水中超声波清洗,每次清洗20-30min,自然干燥,按此处理的表面记作表面B,备用;
(2)在表面B上,采用纳秒激光刻蚀工艺刻蚀出有序微米结构,具体为一种微米级连续“框”或“框-柱”阵列结构,表面按此处理后记作表面C;
(3)将4wt%的纳米二氧化硅颗粒和2.4wt%的1H,1H,2H,2H-全氟辛基三乙氧基硅烷,加入乙醇溶剂中,经3h磁力搅拌获得均匀的混合物,65℃烤箱中处理36h,获得低表面能纳米颗粒,记作E;
(4)将2.6wt%的E和2.6wt%的RTV硅橡胶分散在正己烷溶剂中,2h磁力搅拌获得超疏水涂料F;
(5)使用喷枪将F均匀地喷涂在C,固化后形成连续微米结构强化的超疏水防冰涂层。
实施例3
有序微米结构强化的超疏水防冰涂层的制备方法,按照如下步骤进行:
(1)以陶瓷钢片为基片,采用研磨工艺对表面做光整加工,直至粗糙度Ra值小于0.64μm,之后依次在无水乙醇和去离子水中超声波清洗,每次清洗20-30min,自然干燥,按此处理的表面记作表面B,备用;
(2)在表面B上,采用纳秒激光刻蚀工艺刻蚀出有序微米结构,具体为一种微米级连续“框”或“框-柱”阵列结构,表面按此处理后记作表面C;
(3)将3.8wt%的纳米二氧化钛颗粒和2.6wt%的1H,1H,2H,2H-全氟辛基三乙氧基硅烷,加入乙醇溶剂中,经2h磁力搅拌获得均匀的混合物,65℃烤箱中处理30h,获得低表面能纳米颗粒,记作E;
(4)将3.0%的E和3.0wt%的RTV硅橡胶分散在正己烷溶剂中,2h磁力搅拌获得超疏水涂料F;
(5)将F均匀地滚涂在C,固化后形成连续微米结构强化的超疏水防冰涂层。
实验例1耐磨性测试
采用图5测量装置对超疏水防冰涂层的耐磨性做定量分析:~630kPa压力通过聚丙烯块作用到样品表面,且样品以50mm/min的速度在15mm的路线上摩擦运动,行程往复一回记为一次摩擦循环。
表1记录了45#钢表面有序微米结构的尺寸对超疏水防冰涂层耐磨性的影响。当“框”的边长为0.2mm时,经700次摩擦循环,涂层仍然保持稳定的超疏水性;边长为0.3mm时,涂层经450次摩擦循环后超疏水性开始衰退,而当循环次数达到500时,失去超疏水性;边长为0.4mm时,经过400次摩擦循环后材料逐渐丧失超疏水性。实验表明,表面有序微米结构越密集涂层耐磨性越好。更具体的参数详见图6。
表1
摩擦循环数 0.2mm 0.3mm 0.4mm
接触角小于150° 700 500 400
滚动角小于10° 700 450 300
分别在45#钢、6061铝合金和陶瓷钢三种基片上实施本发明,分析超疏水特征的耐磨性差异。测试发现,陶瓷钢基片是涂层耐磨性最好,45#钢次之、6061铝合金再次之。分析认为,材料自身硬度的不同可能是造成这种差异的原因。更具体的参数详见图7。
在本环节中,分析了有序微米结构强化的超疏水防冰涂层的耐磨性,并比较了几种常见材料在实施本发明后性能的耐磨性差异。一方面为相关领域技术研究提供参考和支撑;另一方面,数据表明本发明提供的超疏水防冰涂层具有优异的耐磨性和耐久性,与之形成对比的,文献(Nature 582(2020)55-66)指出普通超疏水表面同等试验条件下耐磨性参数为150次摩擦循环。
实验例2防冰测试
将实施例1制备的有序微米结构强化的超疏水防冰涂层作为实验组,尺寸相同但未经任何处理的普通45#钢片作为对照组。对以上两组进行水滴结冰对照实验。环境湿度40%,温度-10℃,测试平台以10°倾斜布置,每隔30min分别在20cm高度处滴一个10mL水滴。如图8,水滴在对照组表面发生了“粘附-积聚-结冰”过程,而在实验组表面迅速滚落,未发生结冰现象,这是因为超疏水防冰涂层加快了水滴滚落,限制了结冰行为的发生。
将实施例1制备的有序微米结构强化的超疏水防冰涂层作为实验组,未经任何处理的45#钢表面作为对照组1,45#钢普通超疏水涂层(该涂层仍由本发明所述RTV硅橡胶基超疏水涂料制备,但是缺省步骤(2))作为对照组2。对以上三组进行水滴结冰时间的对比测试。环境湿度40%,温度-5℃,三个10mL水滴分别静置在三组材料水平表面。实验组水滴结冰耗时1232s,几乎为对照组2的四倍,及对照组1的八倍。更具体的测试数据详见图9。测试表明有序微米结构强化的超疏水涂层具有延缓水滴结冰的特性,这是由于“框-柱”有序微米结构的存在增大了固液接触面上空气垫的占比,从而降低了结冰过程中异质成核发生的几率。
将实施例1制备的有序微米结构强化的超疏水防冰涂层作为实验组。测试分析本发明在冻冰/除冰循环中,冰粘附力的变化关系。环境湿度40%,温度-10℃。当冻冰/除冰循环在5次以内时冰粘附强度小于2.5kPa,20次时冰粘附强度约为20kPa,随后冰粘附强度随循环次数增多而线性增大。具体数据详见图10。分析认为,有序微米结构,具体为微米级连续“框”或“框-柱”阵列结构,如同铠甲一般增强了涂层抵御除冰载荷破坏的能力;随着测试次数的增加,涂层结构逐渐被破坏,冰粘附强度迅速增大。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种有序微米结构强化超疏水防冰涂层的制备方法,其特征在于,包括如下步骤:
(1)准备基片A,并做表面光整和清洗处理,按此处理的表面记作表面B,备用;
(2)采用激光刻蚀在表面B上刻蚀出有序微米结构,所述微米结构为微米级连续“框”或“框-柱”阵列结构,表面按此处理后记作表面C;
(3)将纳米颗粒D和1H,1H,2H,2H-全氟辛基三乙氧基硅烷,加入乙醇溶剂中,经2-8h磁力搅拌获得均匀的混合物,40-80℃烤箱中处理24-48h,获得超疏水纳米颗粒,记作E;
(4)将E和RTV硅橡胶分散在正己烷溶剂中,经2-6h磁力搅拌获得超疏水涂料F;
(5)将超疏水涂料F均匀地涂覆在表面C,固化后形成有序微米结构强化的超疏水防冰涂层。
2.根据权利要求1所述有序微米结构强化超疏水防冰涂层的制备方法,其特征在于,所述基片A为铜合金、铝合金或钢材,所述基片A的厚度不小于5mm。
3.根据权利要求1所述有序微米结构强化超疏水防冰涂层的制备方法,其特征在于,所述表面光整和清洗处理的操作步骤为:采用研磨或砂带磨削的方法对表面做光整加工直至粗糙度Ra值小于0.64μm,之后依次在无水乙醇和去离子水中超声波清洗,每次清洗20-30min,自然干燥后备用。
4.根据权利要求1所述有序微米结构强化超疏水防冰涂层的制备方法,其特征在于,所述激光刻蚀为飞秒激光刻蚀或纳秒激光刻蚀。
5.根据权利要求1所述有序微米结构强化超疏水防冰涂层的制备方法,其特征在于,所述纳米颗粒D为纳米氧化锌颗粒、纳米二氧化硅颗粒、纳米氧化铝颗粒、纳米二氧化钛颗粒中的一种或一种以上。
6.根据权利要求1所述有序微米结构强化超疏水防冰涂层的制备方法,其特征在于,步骤(3)所述混合物D中纳米颗粒的占比为3-6wt%,1H,1H,2H,2H-全氟辛基三乙氧基硅烷的占比为1-3wt%。
7.根据权利要求1所述有序微米结构强化超疏水防冰涂层的制备方法,其特征在于,步骤(4)所述超疏水涂料F的调制中E的占比为2-3wt%,RTV硅橡胶占比为2-5wt%。
8.根据权利要求1所述有序微米结构强化超疏水防冰涂层的制备方法,其特征在于,步骤(5)所述涂覆采用浸涂、滚涂、喷涂或线棒涂布。
CN202310192806.4A 2023-03-02 2023-03-02 一种有序微米结构强化超疏水防冰涂层的制备方法 Active CN116116685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310192806.4A CN116116685B (zh) 2023-03-02 2023-03-02 一种有序微米结构强化超疏水防冰涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310192806.4A CN116116685B (zh) 2023-03-02 2023-03-02 一种有序微米结构强化超疏水防冰涂层的制备方法

Publications (2)

Publication Number Publication Date
CN116116685A true CN116116685A (zh) 2023-05-16
CN116116685B CN116116685B (zh) 2024-06-18

Family

ID=86308244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310192806.4A Active CN116116685B (zh) 2023-03-02 2023-03-02 一种有序微米结构强化超疏水防冰涂层的制备方法

Country Status (1)

Country Link
CN (1) CN116116685B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116618265A (zh) * 2023-05-24 2023-08-22 吉林大学 一种金属表面复合凝胶超疏水涂层的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109746172A (zh) * 2019-01-29 2019-05-14 南京航空航天大学 一种航空用防覆冰/防腐蚀一体化功能超疏水涂层的制备方法
CN110204902A (zh) * 2019-05-31 2019-09-06 华南理工大学 一种柔性可弯折、主动除冰的超疏水防覆冰复合材料及其制备方法与应用
CN113275223A (zh) * 2021-04-26 2021-08-20 东南大学 基于激光化学复合工艺的高粘附性超疏水表面的制备方法
CN114990548A (zh) * 2022-05-20 2022-09-02 大连海事大学 一种具有荷叶效应的防冰超疏水涂层的制备方法
CN115193666A (zh) * 2022-05-20 2022-10-18 大连海事大学 一种用于防冰的微纳米尺度梯级结构超疏水表面制备方法
CN115304965A (zh) * 2022-08-25 2022-11-08 东北林业大学 一种可长效防结冰的超疏水复合涂层的制备方法及其恢复防冰性方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109746172A (zh) * 2019-01-29 2019-05-14 南京航空航天大学 一种航空用防覆冰/防腐蚀一体化功能超疏水涂层的制备方法
CN110204902A (zh) * 2019-05-31 2019-09-06 华南理工大学 一种柔性可弯折、主动除冰的超疏水防覆冰复合材料及其制备方法与应用
CN113275223A (zh) * 2021-04-26 2021-08-20 东南大学 基于激光化学复合工艺的高粘附性超疏水表面的制备方法
CN114990548A (zh) * 2022-05-20 2022-09-02 大连海事大学 一种具有荷叶效应的防冰超疏水涂层的制备方法
CN115193666A (zh) * 2022-05-20 2022-10-18 大连海事大学 一种用于防冰的微纳米尺度梯级结构超疏水表面制备方法
CN115304965A (zh) * 2022-08-25 2022-11-08 东北林业大学 一种可长效防结冰的超疏水复合涂层的制备方法及其恢复防冰性方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王鹏等: ""超疏水可逆热致变色智能感温涂层的制备及其性能的研究"", 中国电机工程学报, pages 1 - 10 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116618265A (zh) * 2023-05-24 2023-08-22 吉林大学 一种金属表面复合凝胶超疏水涂层的制备方法

Also Published As

Publication number Publication date
CN116116685B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
CN113980576B (zh) 一种用于抗结冰的耐用超疏水涂层的制备方法
CN116116685B (zh) 一种有序微米结构强化超疏水防冰涂层的制备方法
Yang et al. Research on the icephobic properties of fluoropolymer-based materials
Sarkar et al. Superhydrophobic coatings with reduced ice adhesion
Nilsson et al. A novel and inexpensive technique for creating superhydrophobic surfaces using Teflon and sandpaper
Sun et al. A scalable, self-healing and hot liquid repelling superamphiphobic spray coating with remarkable mechanochemical robustness for real-life applications
CN111019485B (zh) 一种耐摩擦的防覆冰涂层的制备方法
CN106544618B (zh) 不锈钢表面进行防覆冰涂层的制备方法
CN106752462B (zh) 一种超疏水材料及其制备方法
Maghsoudi et al. Rigorous testing to assess the self-cleaning properties of an ultra-water-repellent silicone rubber surface
Ruan et al. Superhydrophobic and anti-icing properties of sol–gel prepared alumina coatings
Deng et al. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces
CN102677058A (zh) 含铜离子和氯离子的盐溶液刻蚀制备超疏水铝表面的方法
Zhou et al. Robust Photothermal Icephobic Surface with Mechanical Durability of Multi‐Bioinspired Structures
CN105969177A (zh) 一种涂料组合物及其制备方法与应用
Forooshani et al. Superhydrophobic copper surfaces by shot peening and chemical treatment
CN110734700A (zh) 一种用于防除冰的超疏水涂层复合材料及其制备方法
CN110863225A (zh) 一种铝基材表面的疏冰改性方法
Ghosh et al. Fabrication of mechanically durable slippery surface on HVOF sprayed WC-Co coating
Yang et al. Preparation of nano-silica with radial wrinkle structures for self-cleaning and superhydrophobic coatings
CN109706504A (zh) 一种基于表面润湿梯度的液滴弹跳方向的控制方法
CN110694875A (zh) 一种获得阶梯层状结构的超疏水表面的方法
CN114350261A (zh) 一种耐久性多功能仿生超疏水涂层及其制备方法
CN109778169B (zh) 一种具有耐磨性和耐热性的超疏水铝合金表面及其制备方法
CN115181482B (zh) 一种自修复环氧树脂基超疏水涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant