CN105950133B - 一种活细胞超分辨光学成像探针及其制备方法 - Google Patents

一种活细胞超分辨光学成像探针及其制备方法 Download PDF

Info

Publication number
CN105950133B
CN105950133B CN201610304618.6A CN201610304618A CN105950133B CN 105950133 B CN105950133 B CN 105950133B CN 201610304618 A CN201610304618 A CN 201610304618A CN 105950133 B CN105950133 B CN 105950133B
Authority
CN
China
Prior art keywords
carboxyl
quantum dot
living cells
aptamer
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610304618.6A
Other languages
English (en)
Other versions
CN105950133A (zh
Inventor
宗慎飞
蒋晓月
王著元
崔平
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610304618.6A priority Critical patent/CN105950133B/zh
Publication of CN105950133A publication Critical patent/CN105950133A/zh
Application granted granted Critical
Publication of CN105950133B publication Critical patent/CN105950133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种活细胞超分辨光学成像探针及其制备方法,所述以量子点作为荧光团,在量子点表面同时偶联细胞膜穿透肽和核酸适配体,所述细胞膜穿透肽用以使探针穿透活细胞膜,所述核酸适配体用以与活细胞核膜受体蛋白特异性结合,实现探针的细胞核定位。本发明利用具有闪烁效应的量子点作为荧光团,其高的发光强度和荧光闪烁特性,使其适用于基于单分子定位法的超分辨光学成像;同时,本发明使用具有闪烁效应的量子点作为荧光团,不需要特殊的成像缓冲液,因此适用于活细胞超分辨成像;另外,本发明操作简单方便,造价低廉,有效地节约了时间成本和经济成本。

Description

一种活细胞超分辨光学成像探针及其制备方法
技术领域
本发明涉及一种活细胞超分辨光学成像探针及其制备方法,属于纳米材料技术。
背景技术
光学显微镜的分辨率受到衍射极限的限制,通常只能达到200-300nm。近年来,科学家们针对光学显微镜的分辨率极限,开发出了几类能突破衍射极限的超分辨光学显微镜,例如受激发射损耗显微镜(STED)、结构光照明显微镜(SIM)、随机光学重建显微镜(STORM)以及光活化定位显微镜(PALM)等。其中,以STORM/PALM技术能达到的分辨率最为突出,它们的成像原理相似,都基于单分子定位技术。2014年诺贝尔化学奖即是授予了三位在超分辨荧光显微成像领域取得开创性成果的科学家。
PALM/STORM技术中,荧光标记探针至关重要,它能直接决定成像效果(如分辨率、成像速度等)。PALM/STORM技术要求标记探针具有以下特点:量子产率高、亮态占空比小、可开关次数多、光稳定性好、标记密度高以及生物毒性低等。目前已有不少可用于PALM/STORM成像的有机染料分子(如Alexa fluo 647、Cy3、Cy5)以及荧光蛋白等。但就上述PALM/STORM技术所需探针的特点来说,这些已有的光学标记探针或多或少存在着一些不足,例如量子产率不够高、光稳定性不好、靶向特异性差等。因此,开发满足PALM/STORM技术应用需求的,可用于活细胞光学超分辨成像的探针依旧是目前超分辨成像领域亟待解决的问题。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种活细胞超分辨光学成像探针及其制备方法,是一种适用于活细胞的核膜受体超分辨光学成像的探针及其制备方法。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种活细胞超分辨光学成像探针,以量子点作为荧光团,在量子点表面同时偶联细胞膜穿透肽和核酸适配体,所述细胞膜穿透肽用以使探针穿透活细胞膜,所述核酸适配体用以与活细胞核膜受体蛋白特异性结合,实现探针的细胞核定位。该探针能穿透活细胞膜进入活细胞,并最终定位至活细胞核膜受体上,以实现活细胞核膜受体的超分辨率光学成像。
优选的,所述细胞膜穿透肽和核酸适配体均通过羧基配体连接在量子点上,羧基配体为小分子配体;羧基配体的一端为巯基,羧基配体通过巯基共价连接至量子点表面;羧基配体的另一端为羧基,羧基配体通过羧基偶联细胞膜穿透肽和核酸适配体。
优选的,所述核酸适配体5‘端修饰氨基,细胞膜穿透肽和核酸适配体均通过氨基羧基偶联反应连接至量子点表面。
一种活细胞超分辨光学成像探针的制备方法,包括如下步骤:
(1)为具有荧光闪烁(blink)效应的量子点修饰羧基配体;羧基配体的一端为巯基,羧基配体的另一端为羧基,羧基配体通过巯基共价连接至量子点表面;
(2)在修饰了羧基配体的量子点表面同时偶联细胞膜穿透肽和核酸适配体;核酸适配体5‘端修饰氨基,细胞膜穿透肽和核酸适配体均通过氨基羧基偶联反应连接至量子点表面;
(3)超滤提纯获得基于量子点的活细胞超分辨光学成像探针。
所述量子点具有荧光闪烁(blink)效应,能够适用于基于单分子定位法的超分辨率光学成像应用
有益效果:本发明提供的活细胞超分辨光学成像探针及其制备方法,相对于现有技术,具有如下优点:1、本发明利用具有闪烁效应的量子点作为荧光团,其高的发光强度和荧光闪烁特性,使其适用于基于单分子定位法的超分辨光学成像;2、本发明使用具有闪烁效应的量子点作为荧光团,不需要特殊的成像缓冲液,因此适用于活细胞超分辨成像;3、本发明操作简单方便,造价低廉,有效地节约了时间成本和经济成本。
附图说明
图1为本发明探针的制备过程;
图2为本发明探针穿透活细胞膜并定位至活细胞核膜受体蛋白的示意图。
具体实施方式
下面结合实施例对本发明作更进一步的说明。
本实施例中涉及的量子点为CdSe/ZnS油相量子点,其荧光发射波长为640nm;涉及的羧基小分子配体为巯基乙酸;涉及的细胞膜穿透肽为YGRKKRRQRRR,涉及的核酸适配体序列为5'-NH2-TTGGTGGTGGTGGTTGTGGTGGTGGTGG-3';涉及的细胞为HeLa细胞。
在制备探针时,首先取500μL CdSe/ZnS量子点,加入1mL甲醇并以3000rpm离心10min,弃除上清后将沉淀分散至2mL氯仿中。加入100μL四甲基氢氧化铵和100μL巯基乙酸后,剧烈搅拌2h。加入2mL去离子水,静止分层后收集上层的修饰了羧基配体的量子点。
然后在离心管中加入4mg的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和6mg的N-羟基琥珀酰亚胺(NHS)粉末后,加入200μL的修饰了羧基配体的量子点溶液,再加入400μL的去离子水,室温振荡反应30min。之后加入100μL 10mg/mL的细胞膜穿透肽和100μL10μM的核酸适配体,室温过夜振荡反应。最后将混合溶液移至超滤管中以8000rpm,12min超滤提纯四次,将沉淀分散至200μL PBS(10mM pH 7.4)缓冲液中即得到了基于量子点的活细胞超分辨光学成像探针。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种活细胞超分辨光学成像探针,其特征在于:以量子点作为荧光团,在量子点表面同时偶联细胞膜穿透肽和核酸适配体,所述细胞膜穿透肽用以使探针穿透活细胞膜,所述核酸适配体用以与活细胞核膜受体蛋白特异性结合,实现探针的细胞核定位;所述细胞膜穿透肽和核酸适配体均通过羧基配体连接在量子点上,羧基配体为小分子配体;羧基配体的一端为巯基,羧基配体通过巯基共价连接至量子点表面;羧基配体的另一端为羧基,羧基配体通过羧基偶联细胞膜穿透肽和核酸适配体。
2.根据权利要求1所述的活细胞超分辨光学成像探针,其特征在于:所述核酸适配体5‘端修饰氨基,细胞膜穿透肽和核酸适配体均通过氨基羧基偶联反应连接至量子点表面。
3.一种活细胞超分辨光学成像探针的制备方法,其特征在于:包括如下步骤:
(1)为具有荧光闪烁效应的量子点修饰羧基配体;羧基配体的一端为巯基,羧基配体的另一端为羧基,羧基配体通过巯基共价连接至量子点表面;
(2)在修饰了羧基配体的量子点表面同时偶联细胞膜穿透肽和核酸适配体;核酸适配体5‘端修饰氨基,细胞膜穿透肽和核酸适配体均通过氨基羧基偶联反应连接至量子点表面;
(3)超滤提纯获得基于量子点的活细胞超分辨光学成像探针。
CN201610304618.6A 2016-05-10 2016-05-10 一种活细胞超分辨光学成像探针及其制备方法 Active CN105950133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610304618.6A CN105950133B (zh) 2016-05-10 2016-05-10 一种活细胞超分辨光学成像探针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610304618.6A CN105950133B (zh) 2016-05-10 2016-05-10 一种活细胞超分辨光学成像探针及其制备方法

Publications (2)

Publication Number Publication Date
CN105950133A CN105950133A (zh) 2016-09-21
CN105950133B true CN105950133B (zh) 2018-02-06

Family

ID=56915200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610304618.6A Active CN105950133B (zh) 2016-05-10 2016-05-10 一种活细胞超分辨光学成像探针及其制备方法

Country Status (1)

Country Link
CN (1) CN105950133B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107723342B (zh) * 2017-10-19 2021-05-11 东南大学 一种端粒探针及其制备方法和应用
CN108872172B (zh) * 2018-06-21 2021-05-25 东南大学 一种基于bsa的超分辨成像探针及其制备方法和应用
CN108896482A (zh) * 2018-06-25 2018-11-27 河南工业大学 一种基于石墨烯智能水凝胶的光纤光栅pH传感器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2647993B1 (en) * 2007-08-17 2015-09-30 Korea Advanced Institute Of Science And Technology Methods for detecting molecular interactions
CA2830531C (en) * 2011-03-23 2019-10-15 Dow Agrosciences Llc Quantum dot carrier peptide conjugates suitable for imaging and delivery applications in plants
CN103048298B (zh) * 2012-12-21 2015-04-08 中国人民解放军第三军医大学第一附属医院 一种甘氨酸修饰的量子点探针标记活细胞的方法
CN104707150B (zh) * 2013-12-11 2017-10-31 中国科学院上海药物研究所 肿瘤酶激活的量子点探针及其制备方法与用途

Also Published As

Publication number Publication date
CN105950133A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
Yang et al. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis
Díaz‑González et al. Quantum dot bioconjugates for diagnostic applications
Li et al. Fluorescent gels: a review of synthesis, properties, applications and challenges
Resch-Genger et al. Quantum dots versus organic dyes as fluorescent labels
Gorris et al. Perspectives and challenges of photon-upconversion nanoparticles-Part II: bioanalytical applications
CN105950133B (zh) 一种活细胞超分辨光学成像探针及其制备方法
Lin et al. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications
Wang et al. Watching silica nanoparticles glow in the biological world
Medintz et al. Quantum dot bioconjugates for imaging, labelling and sensing
Ma et al. Recent advances and applications in QDs-based sensors
CN102791827B (zh) 官能化发色聚合物点及其生物共轭体
Park et al. Membrane insertion of—and membrane potential sensing by—semiconductor voltage nanosensors: Feasibility demonstration
CN107383371B (zh) 一种基于量子点的蛋白质印迹聚合物微球及其制备和应用
Yang et al. One stone, two birds: pH-and temperature-sensitive nitrogen-doped carbon dots for multiple anticounterfeiting and multiple cell imaging
Yao et al. Lanthanide ion-based luminescent nanomaterials for bioimaging
Wu et al. Photoactivated ratiometric copper (II) ion sensing with semiconducting polymer dots
CN101982774B (zh) 一种生物功能化的金纳米棒分子探针及其制备方法和应用
Liu et al. Semiconductor quantum dots in tumor research
CN101046452A (zh) 基于化学发光共振能量转移原理构建生物纳米器件的方法
Yang et al. Carbon quantum dots: Comprehensively understanding of the internal quenching mechanism and application for catechol detection
Xu et al. FITC and Ru (phen) 3 2+ co-doped silica particles as visualized ratiometric pH indicator
JP2007512522A (ja) 強発光を有する新規のハイブリッド・プローブ
Li et al. Specific recognition of breast cancer cells in vitro using near infrared-emitting long-persistence luminescent Zn 3 Ga 2 Ge 2 O 10: Cr 3+ nanoprobes
CN109724949B (zh) 一种用于肿瘤标志物可视化检测的柔性杂化膜的制备方法
US20110177585A1 (en) Rapid detection nanosensors for biological pathogens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant