CN105948747B - 共渗法制备极限电流型氧传感器致密扩散障碍层的方法 - Google Patents
共渗法制备极限电流型氧传感器致密扩散障碍层的方法 Download PDFInfo
- Publication number
- CN105948747B CN105948747B CN201610328151.9A CN201610328151A CN105948747B CN 105948747 B CN105948747 B CN 105948747B CN 201610328151 A CN201610328151 A CN 201610328151A CN 105948747 B CN105948747 B CN 105948747B
- Authority
- CN
- China
- Prior art keywords
- diffusion barrier
- current type
- oxygen sensor
- limit
- type oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5027—Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5033—Chromium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明属于传感器技术领域,具体涉及一种共渗法制备极限电流型氧传感器致密扩散障碍层的方法。本发明以La2O3,SrCO3,Ga2O3和MgO为原料,采用固相合成法制备了La0.8Sr0.2Ga0.83Mg0.17O2.815片,将La0.8Sr0.2Ga0.83Mg0.17O2.815片置于成型模具的下部,成型模具上部填充过渡金属氧化物粉末,在6~10MPa的压强下保压5~10min,然后于1400℃~1600℃下烧结5‑50h,自然冷却后得到极限电流型氧传感器致密扩散障碍层。本发明方法制备的致密扩散障碍层组织致密均匀无气孔且结合牢固,且将基体和致密扩散障碍层热膨胀差异降到最低,具有制作周期短,灵敏度高的优点。
Description
技术领域
本发明属于传感器技术领域,具体涉及一种共渗法制备极限电流型氧传感器致密扩散障碍层的方法。
背景技术
钢铁冶金企业炉窑消耗大量能源,为了节约能源,优化加热炉燃烧,需要严格控制热工制度中的空燃比,只有空燃比合理,才能达到较高的燃烧温度,提高能源利用率。利用电化学氧气传感器实时、在线检测炉气中的氧含量是一个直接有效的方法。
电化学氧气传感器分为浓差电池型和极限电流型,与浓差电池型氧传感器相比,极限电流型氧传感器具有测量范围广、响应时间短、灵敏度高、寿命长、无需参比电极的优点。极限电流型氧传感器可分为有孔扩散型和致密扩散型两种,其中有孔扩散型由于孔隙易变形,固体颗粒易堵塞孔隙,因此应用受到了限制,而致密扩散型可克服这些缺点,近年来,致密扩散障碍层极限电流型氧传感器成为新的研究热点,其结构如说明书附图图1所示。
国内外学者就致密扩散障碍层极限电流型氧传感器进行了诸多研究,采用磁控溅射、厚膜涂覆、共压共烧结、放电等离子烧结、瓷片复合和激光熔覆技术等方法制备了以Y2O3稳定的ZrO2(简写为YSZ)为固体电解质的致密扩散障碍层极限电流型氧传感器。Garzon 等人分别以La0.84Sr0.16MnO3(LSM)和La0.8Sr0.2CoO3(LSC)为致密扩散障碍层,采用磁控溅射和丝网印刷成膜技术制备了氧传感器。由于磁控溅射制备的致密扩散障碍层很薄,而氧离子又具有较高的迁移率,因此,氧传感器测氧范围较窄,此外,所采用的丝网印刷技术虽然增加了致密扩散障碍层厚度,但是,在高温烧结过程中不但浆料中的有机物会造成很多微小气孔,导致致密度降低。夏晖等人以LSM为致密扩散障碍层,采用共压共烧结法制备了氧传感器,由于LSM与YSZ的热膨胀系数和烧结收缩率不匹配,因此在共烧过程中烧结体出现裂纹,影响氧离子的扩散性能,其测氧范围仅为0~4.8%。Peng等人以Pt/YSZ混合物为致密扩散障碍层,采用共压共烧结法制备了氧传感器,其测氧范围仅为0~6%。邹杰等人分别以LSM、La0.75Sr0.25Cr0.5Mn0.5O3(LSCM)等为致密扩散障碍层,采用放电等离子烧结(SPS)技术制备了氧传感器。由于LSM在SPS烧结过程中易被C还原,LSCM与YSZ的热膨胀系数不匹配引起烧结体开裂,因此测氧性能不理想。所谓瓷片复合法是利用铂浆将烧结后的致密扩散障碍层与固体电解质粘结在一起,再通过铂浆的烧结以增强二者的结合性能,这种方法避免了材料间发生有害化学反应和因热膨胀系数不匹配产生的裂纹现象,刘涛等人曾以Sr1–x Ho x CoO3–δ 为致密扩散障层,以La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM)为固体电解质,采用瓷片复合法制备了氧传感器,获得较好的测氧特性,然而该法制备过程繁琐、周期长,而且常规烧结法制备的致密扩散障碍层含有较多气孔。采用激光熔覆技术制备的过程中加热和冷却的速度极快,最高速度可达1012℃/s,由于熔覆层和基体材料的温度梯度和热膨胀系数的差异,可能在熔覆层中产生多种缺陷,主要包括气孔、裂纹、变形和表面不平度,且激光熔覆层的开裂敏感性的控制方法方面还不成熟。
发明内容
针对现有技术存在的问题,本发明提供一种共渗法制备极限电流型氧传感器致密扩散障碍层的方法,目的是制备出扩散层与基底结合紧密、灵敏度高的极限电流型氧传感器致密扩散障碍层。
实现本发明目的的技术方案按照以下步骤进行:
(1)按照La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM)的化学计量比,称取La2O3,SrCO3,Ga2O3和MgO,充分研磨至粒度≤100μm后压片,于1000℃保温20h,自然冷却后将其破碎,再次研磨后压片,于1200℃保温20h,再次自然冷却后进行第三次破碎,第三次研磨后压片,于1450℃保温20h;
(2)将制得的La0.8Sr0.2Ga0.83Mg0.17O2.815片置于成型模具的下部,成型模具上部填充过渡金属氧化物粉末,在6~10MPa的压强下保压5~10min,然后于1400℃~1600℃下烧结5-50h,自然冷却后得到极限电流型氧传感器致密扩散障碍层。
其中,所述的过渡金属氧化物粉末是Co3O4、Fe2O3、NiO、MnO或Cr2O3。
与现有技术相比,本发明的特点和有益效果是:
本发明采用共渗法制备极限电流型氧传感器致密扩散障碍层,具体是将过渡金属氧化物粉末置于固体电解质陶瓷片一表面并压实,然后置于高温下保温,过渡金属元素在高温下扩散进入固体电解质层形成混合导体致密扩散障碍层。本发明方法制备的致密扩散障碍层组织致密均匀无气孔且结合牢固,且将基体和致密扩散障碍层热膨胀差异降到最低,具有制作周期短,灵敏度高的优点。
附图说明
图1是目前常见的致密扩散障碍层极限电流型氧传感器结构示意图;
其中:1:阴极;2:阳极;3:致密扩散阻碍层;4:密封玻璃;5:氧泵层;
图2是目前常见的致密扩散障碍层极限电流型氧传感器在不同氧浓度下的I-V特征曲线;图3是本发明实施例2中制备的致密扩散障碍层制成氧传感器测氧的I-V曲线;
图4是本发明实施例2中制备的极限电流型氧传感器致密扩散障碍层的SEM图;
其中:A:Co3O4;B:共渗透层;C:LSGM基体;
图5是本发明实施例2中制备的极限电流型氧传感器致密扩散障碍层的EDS分层图像;
图6是本发明实施例2中制备的极限电流型氧传感器致密扩散障碍层中O元素的EDS二维分布图;
图7是本发明实施例2中制备的极限电流型氧传感器致密扩散障碍层中Mg元素的EDS二维分布图;
图8是本发明实施例2中制备的极限电流型氧传感器致密扩散障碍层中Co元素的EDS二维分布图;
图9是本发明实施例2中制备的极限电流型氧传感器致密扩散障碍层中Ga元素的EDS二维分布图;
图10是本发明实施例2中制备的极限电流型氧传感器致密扩散障碍层中Sr元素的EDS二维分布图;
图11是本发明实施例2中制备的极限电流型氧传感器致密扩散障碍层中La元素的EDS二维分布图。
具体实施方式
目前常见的致密扩散障碍层极限电流型氧传感器结构如图1所示,其中的致密扩散阻碍层在不同氧浓度下的I-V特征曲线如图2所示。
实施例1
本实施例的共渗法制备极限电流型氧传感器致密扩散障碍层的方法按照以下步骤进行:
(1)按照La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM)的化学计量比,称取La2O3,SrCO3,Ga2O3和MgO,充分研磨至粒度≤100μm后压片,于1000℃保温20h,自然冷却后将其破碎,再次研磨后压片,于1200℃保温20h,再次自然冷却后进行第三次破碎,第三次研磨后压片,于1450℃保温20h;
(2)将制得的La0.8Sr0.2Ga0.83Mg0.17O2.815片置于成型模具的下部,成型模具上部填充Fe2O3粉末,在10MPa的压强下保压10min,然后于1450℃下烧结20h,高温下Fe扩散进入LSGM形成混合导体致密扩散障碍层,自然冷却后得到本实施例的极限电流型氧传感器致密扩散障碍层。
实施例2
本实施例的共渗法制备极限电流型氧传感器致密扩散障碍层的方法按照以下步骤进行:
(1)按照La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM)的化学计量比,称取La2O3,SrCO3,Ga2O3和MgO,充分研磨至粒度≤100μm后压片,于1000℃保温20h,自然冷却后将其破碎,再次研磨后压片,于1200℃保温20h,再次自然冷却后进行第三次破碎,第三次研磨后压片,于1450℃保温20h;
(2)将制得的La0.8Sr0.2Ga0.83Mg0.17O2.815片置于成型模具的下部,成型模具上部填充Co3O4粉末,在10MPa的压强下保压10min,然后于1550℃下烧结5h,高温下Co扩散进入LSGM形成混合导体致密扩散障碍层,自然冷却后得到本实施例的极限电流型氧传感器致密扩散障碍层,其SEM图如图4所示,从图4可以看出Co元素确实扩散进入LSGM,并在中间形成了一个共渗透层B;极限电流型氧传感器致密扩散障碍层的分层图像如图5所示,O、Mg、Co、Ga、Sr和La元素的EDS二维分布图如图6~图11所示,从图中可以看出O、Mg、Co、Ga、Sr和La元素在致密扩散障碍层二维层面的分布程度,这与其成分比例相符。
将本实施例制备得到的极限电流型氧传感器致密扩散障碍层制成如图1所示的致密扩散障碍层极限电流型氧传感器,在氧气体积分数为5.42%的条件下,于450℃~850℃分别测定传感器的I-V曲线,如图3所示,从图3中可以看出本实施例制备的极限电流型氧传感器致密扩散障碍层在较宽的温度范围内具有电流平台。
实施例3
本实施例的共渗法制备极限电流型氧传感器致密扩散障碍层的方法按照以下步骤进行:
(1)按照La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM)的化学计量比,称取La2O3,SrCO3,Ga2O3和MgO,充分研磨至粒度≤100μm后压片,于1000℃保温20h,自然冷却后将其破碎,再次研磨后压片,于1200℃保温20h,再次自然冷却后进行第三次破碎,第三次研磨后压片,于1450℃保温20h;
(2)将制得的La0.8Sr0.2Ga0.83Mg0.17O2.815片置于成型模具的下部,成型模具上部填充NiO粉末,在6MPa的压强下保压8min,然后于1600℃下烧结30h,高温下Ni扩散进入LSGM形成混合导体致密扩散障碍层,自然冷却后得到本实施例的极限电流型氧传感器致密扩散障碍层。
实施例4
本实施例的共渗法制备极限电流型氧传感器致密扩散障碍层的方法按照以下步骤进行:
(1)按照La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM)的化学计量比,称取La2O3,SrCO3,Ga2O3和MgO,充分研磨至粒度≤100μm后压片,于1000℃保温20h,自然冷却后将其破碎,再次研磨后压片,于1200℃保温20h,再次自然冷却后进行第三次破碎,第三次研磨后压片,于1450℃保温20h;
(2)将制得的La0.8Sr0.2Ga0.83Mg0.17O2.815片置于成型模具的下部,成型模具上部填充MnO粉末,在8MPa的压强下保压5min,然后于1400℃下烧结30h,高温下Mn扩散进入LSGM形成混合导体致密扩散障碍层,自然冷却后得到本实施例的极限电流型氧传感器致密扩散障碍层。
实施例5
本实施例的共渗法制备极限电流型氧传感器致密扩散障碍层的方法按照以下步骤进行:
(1)按照La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM)的化学计量比,称取La2O3,SrCO3,Ga2O3和MgO,充分研磨至粒度≤100μm后压片,于1000℃保温20h,自然冷却后将其破碎,再次研磨后压片,于1200℃保温20h,再次自然冷却后进行第三次破碎,第三次研磨后压片,于1450℃保温20h;
(2)将制得的La0.8Sr0.2Ga0.83Mg0.17O2.815片置于成型模具的下部,成型模具上部填充Cr2O3粉末,在10MPa的压强下保压10min,然后于1500℃下烧结40h,高温下Cr扩散进入LSGM形成混合导体致密扩散障碍层,自然冷却后得到本实施例的极限电流型氧传感器致密扩散障碍层。
实施例6
本实施例的共渗法制备极限电流型氧传感器致密扩散障碍层的方法按照以下步骤进行:
(1)按照La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM)的化学计量比,称取La2O3,SrCO3,Ga2O3和MgO,充分研磨至粒度≤100μm后压片,于1000℃保温20h,自然冷却后将其破碎,再次研磨后压片,于1200℃保温20h,再次自然冷却后进行第三次破碎,第三次研磨后压片,于1450℃保温20h;
(2)将制得的La0.8Sr0.2Ga0.83Mg0.17O2.815片置于成型模具的下部,成型模具上部填充Cr2O3粉末,在10MPa的压强下保压10min,然后于1600℃下烧结50h,高温下Cr扩散进入LSGM形成混合导体致密扩散障碍层,自然冷却后得到本实施例的极限电流型氧传感器致密扩散障碍层。
Claims (2)
1.一种共渗法制备极限电流型氧传感器致密扩散障碍层的方法,按照以下步骤进行:
(1)按照La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM)的化学计量比,称取La2O3,SrCO3,Ga2O3和MgO,充分研磨至粒度≤100μm后压片,于1000℃保温20h,自然冷却后将其破碎,再次研磨后压片,于1200℃保温20h,再次自然冷却后进行再次破碎,第三次研磨后压片,于1450℃保温20h;
其特征在于:
(2)将制得的La0.8Sr0.2Ga0.83Mg0.17O2.815片置于成型模具的下部,成型模具上部填充过渡金属氧化物粉末,在6~10MPa的压强下保压5~10min,然后于1400℃~1600℃下烧结5-50h,自然冷却后得到极限电流型氧传感器致密扩散障碍层。
2.根据权利要求1所述的一种共渗法制备极限电流型氧传感器致密扩散障碍层的方法,其特征在于所述的过渡金属氧化物粉末是Co3O4、Fe2O3、NiO、MnO或Cr2O3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610328151.9A CN105948747B (zh) | 2016-05-18 | 2016-05-18 | 共渗法制备极限电流型氧传感器致密扩散障碍层的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610328151.9A CN105948747B (zh) | 2016-05-18 | 2016-05-18 | 共渗法制备极限电流型氧传感器致密扩散障碍层的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105948747A CN105948747A (zh) | 2016-09-21 |
CN105948747B true CN105948747B (zh) | 2018-08-28 |
Family
ID=56911959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610328151.9A Active CN105948747B (zh) | 2016-05-18 | 2016-05-18 | 共渗法制备极限电流型氧传感器致密扩散障碍层的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105948747B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107219286B (zh) * | 2017-05-22 | 2019-02-26 | 东北大学 | 制备氧传感器用电解质层和致密扩散层双层结构的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1152152C (zh) * | 2002-04-12 | 2004-06-02 | 中国科学院金属研究所 | 一种对钛碳化硅材料铝-稀土共渗的方法 |
US20070009784A1 (en) * | 2005-06-29 | 2007-01-11 | Pal Uday B | Materials system for intermediate-temperature SOFC based on doped lanthanum-gallate electrolyte |
CN103529107B (zh) * | 2013-10-18 | 2015-07-15 | 东北大学 | 一种极限电流型氧传感器及其制备方法 |
CN104357836B (zh) * | 2014-11-12 | 2017-01-25 | 东北大学 | 激光熔覆制备极限电流型氧传感器致密扩散障碍层的方法 |
-
2016
- 2016-05-18 CN CN201610328151.9A patent/CN105948747B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN105948747A (zh) | 2016-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | An in situ formed, dual‐phase cathode with a highly active catalyst coating for protonic ceramic fuel cells | |
US7887976B2 (en) | Paste for solid oxide fuel cells, anode-supported solid oxide fuel cells using the same, and fabricating method thereof | |
EP1608605B1 (en) | Densification of ceria based electrolytes | |
Mücke et al. | Cofiring of thin zirconia films during SOFC manufacturing | |
CN102217125B (zh) | 固体氧化物燃料电池或固体氧化物燃料电池子部件及其制备方法 | |
CN101718743B (zh) | 一种混合导体致密扩散障型氧传感器的制备方法 | |
CN103529107B (zh) | 一种极限电流型氧传感器及其制备方法 | |
Dai et al. | A novel method of modifying electrolyte surface at mesoscale for intermediate-temperature solid oxide fuel cells | |
CN104357836B (zh) | 激光熔覆制备极限电流型氧传感器致密扩散障碍层的方法 | |
CN106770583B (zh) | 旋转涂覆制备极限电流型氧传感器致密扩散障碍层的方法 | |
CN105948747B (zh) | 共渗法制备极限电流型氧传感器致密扩散障碍层的方法 | |
DK1806805T3 (da) | Katode-elektrolyt-anode-enhed til fastoxid-brændselsceller og fremgangsmåde til dens fremstilling | |
Chang et al. | Fabrication and characterization of metal-supported solid oxide fuel cell fabricated by atmospheric plasma spraying | |
JP2848551B2 (ja) | 固体電解質型燃料電池の電解質膜製造方法 | |
Tang et al. | Plasma-sprayed bulk-like yttria-stabilized zirconia coatings for solid oxide fuel cell electrolytes based on liquid-phase sintering-induced interfacial healing | |
US7087336B2 (en) | Process for producing a solid electrolyte layer on a substrate, in a fuel cell, and in a sensor | |
Yoon et al. | Microarchitectured solid oxide fuel cells with improved energy efficiency (Part II): Fabrication and characterization | |
Oishi et al. | Fabrication of cerium oxide based SOFC having a porous stainless steel support | |
Noh et al. | Optimization of anode and electrolyte microstructure for solid oxide fuel cells | |
Wright et al. | Constrained sintering of yttria‐stabilized zirconia electrolytes: The influence of two‐step sintering profiles on microstructure and gas permeance | |
CN101445395A (zh) | 一种BaCeO3体系高温质子导体薄膜的制备方法 | |
Yang et al. | Fabrication of 100 centimeter square metal-supported solid oxide fuel cell using thermal plasma technique | |
JP7105772B2 (ja) | 燃料電池用のアノードおよび当該アノードの製造方法 | |
US10573898B2 (en) | High permeable porous substrate for a solid oxide fuel cell and the production method thereof | |
Schafbauer et al. | Influence of thermal treatment during cell manufacturing on the performance of tape cast solid oxide fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |