CN105931776B - 一种高性能钐钴永磁体的制备方法 - Google Patents
一种高性能钐钴永磁体的制备方法 Download PDFInfo
- Publication number
- CN105931776B CN105931776B CN201610377397.5A CN201610377397A CN105931776B CN 105931776 B CN105931776 B CN 105931776B CN 201610377397 A CN201610377397 A CN 201610377397A CN 105931776 B CN105931776 B CN 105931776B
- Authority
- CN
- China
- Prior art keywords
- preparation
- permanent magnet
- melting
- samarium cobalt
- magnet body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 title claims abstract description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000001816 cooling Methods 0.000 claims abstract description 45
- 238000002844 melting Methods 0.000 claims abstract description 40
- 230000008018 melting Effects 0.000 claims abstract description 40
- 238000005266 casting Methods 0.000 claims abstract description 32
- 229910052786 argon Inorganic materials 0.000 claims abstract description 26
- 239000007789 gas Substances 0.000 claims abstract description 23
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 238000000227 grinding Methods 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 210000001161 mammalian embryo Anatomy 0.000 claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 17
- 238000003723 Smelting Methods 0.000 claims description 12
- 238000007670 refining Methods 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims description 5
- 238000005204 segregation Methods 0.000 abstract description 6
- 229910045601 alloy Inorganic materials 0.000 abstract description 5
- 239000000956 alloy Substances 0.000 abstract description 5
- 238000005275 alloying Methods 0.000 abstract description 3
- 229910000765 intermetallic Inorganic materials 0.000 abstract description 3
- 210000001787 dendrite Anatomy 0.000 abstract description 2
- 238000013461 design Methods 0.000 abstract description 2
- 238000007499 fusion processing Methods 0.000 abstract description 2
- 230000005389 magnetism Effects 0.000 abstract description 2
- 238000007710 freezing Methods 0.000 abstract 1
- 230000008014 freezing Effects 0.000 abstract 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 230000006698 induction Effects 0.000 abstract 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 208000037656 Respiratory Sounds Diseases 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- -1 samarium cobalt rare earth Chemical class 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 1
- DEGLFTVQHFLGRC-UHFFFAOYSA-N [B].[Fe].[Nd].[Fe] Chemical compound [B].[Fe].[Nd].[Fe] DEGLFTVQHFLGRC-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/055—Cooling the moulds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
本发明公开了一种高性能钐钴永磁体的制备方法,包括步骤,配制原料、熔炼、铸锭、氢破、粉磨、压胚、烧结,其中熔炼过程包括原料置于真空感应熔炼炉的坩埚中,抽真空,在氩气保护下,分别进行粗炼、精炼,得到均匀的合金熔液;为加快熔炼后的金属间化合物的冷却速度,将设计合理的铸锭模腔,在保证操作的前提下,减少其模腔厚度,同时采用冷冻水冷却,从而减少合金成分的偏析和枝蔓晶的产生。提高了烧结永磁体的断裂韧性性能,特别是剩磁Br、最大磁能积(BH)max和临界磁场Hk。
Description
技术领域
本发明涉及稀土永磁材料领域,确切地说是一种高性能钐钴永磁体。
背景技术
钐钴磁铁是第二代稀土永磁铁,主要分为1:5型(SmCo5)和2:17型(Sm2Co17)两种。其主要特点是磁性能高,温度性能好。最高工作温度可达250-350摄氏度。与钕铁硼磁铁相比,钐钴磁铁更适合工作在高温环境中。很适合用来制造各种高性能的永磁电机及工作环境十分复杂的应用产品。另外,钐钴磁铁的抗锈蚀能力极强,其表面一般不需要电镀处理。
但是稀土永磁材料力学性能普遍较差,尤其是钐钴稀土永磁材料极具脆性,缺乏延展性,不易加工成复杂的形状或特别薄的片状和薄壁的圆环,以及在产品加工或工序周转、检验、充磁过程中极易引起缺角,其断裂韧性仅为1.5~2.5MPa.m1/2,抗弯强度为80-140MPa,后续机械加工时极易碎裂,使加工成本大幅度提高,严重制约了其应用范围和深加工,不利于我国作为稀土大国向高端产业链发展战略目标的实现。随着钐钴永磁越来越多地应用于小型化和高精度仪器仪表,在精度、可靠性等方面都对其力学性能提出了更高的要求。钐钴稀土永磁作为一种重要的功能材料,国内外主要致力于其磁性能的研究,而对力学性能研究较少,如何解决在提高材料强韧性的同时又能保持其优异的磁性能这一问题越来越具有挑战性。
发明内容
本发明的目的就是针对现有钐钴永磁体力学性能不强的缺陷,提供一种高性能钐钴永磁体的制备方法。
本发明的技术方案为:一种高性能钐钴永磁体的制备方法,包括步骤,配制原料、熔炼、铸锭、氢破、粉磨、压胚、烧结,所述熔炼包括步骤:
(1)将原料放入真空中频熔炼炉中抽真空,然后充入保护气;
(2)升高温度至1200~1300℃,粗炼10~15min;
(3)然后升高温度至1500℃~1600℃,进行精炼;
(4)熔炼炉底部吹入氩气,氩气流量为15~20ml/min,持续时间为8~10min;
(5)将溶液浇入水冷铜模中冷却,所述冷却分为两段,第一段水冷水压为0.08~0.1Mpa,第二段水冷水压为0.15~0.2Mpa;
(6)控制铸造速度为35~37mm/min。
熔炼过程分粗炼和精炼两部分进行,首先粗炼,然后精炼,可以得到均匀的合金溶液,从源头提升钐钴永磁材料的性能,防止在工艺过程中出现成分偏析的现象,通过水冷铜模通水进行冷却可以加快熔炼后形成的金属间化合物的冷却速度,减少成分的偏析和枝蔓晶的形成,保证材料具有较强的力学性能。
在精炼完成后从熔炼炉底部吹入氩气,氩气吹入合金液中,随着氩气泡的上升,可以带走合金液中溶解的杂气,同时,在气泡上升的过程中,合金液中的颗粒状金属杂质夹杂着一起上浮,起到净化合金液的作用。
铸锭裂纹对水冷强度的影响极为敏感,一次水冷强度较大时,铸锭在结晶器内易形成较厚的凝固坯壳,增加了铸锭与结晶器内壁的摩擦阻力,使铸锭表面易形成冷隔或产生拉痕,造成应力集中从而导致铸锭裂纹,因此适当降低一次冷却强度有利于抑制铸锭裂纹倾向;而适当增加二次水冷强度,可以显著降低液穴深度,减小铸锭横截面上的温度梯度,从而达到降低铸锭内应力,抑制裂纹产生的目的。
由于钐钴合金属于塑性不强的合金,因此,在熔炼铸造的过程中,铸造的速度对铸锭的裂纹影响很大,提高铸造速度时铸锭形成冷裂纹的倾向性降低,而使形成热裂纹的倾向增加;因此有必要在铸造过程中选择合适的铸造速度,尽量减少裂纹的产生。
进一步地,所述熔炼步骤(1)中抽真空至真空度5×10-2Pa以下。
进一步地,熔炼步骤(1)中所述熔炼炉为真空中频熔炼炉。
进一步地,所述熔炼步骤(1)中保护气为氩气。
进一步地,所述熔炼步骤(5)中水冷铜模的冷却方式为双面通水水冷,双面冷却既可以保证冷却的速度,增大过冷度,使形成的产物晶粒更加均匀,细化,同时双面水冷还可以保证冷却的均匀性,防止因冷却不均造成成分的偏析。
所述熔炼步骤(5)中水冷铜模的模腔厚度为1.5~2mm,模腔的厚度在保证可操作性的前提下,可以提高冷却的速度和效果,保证冷却的质量。
进一步地,所述熔炼步骤(3)中精炼时间为5~10min,
本发明的有益效果是:
通过对熔炼设备及工艺创新,进一步减少合金元素的成分偏析,从源头提升钐钴永磁材料性能。在氩气保护下首先粗炼,然后进行精炼,得到均匀的合金熔液;为加快熔炼后的金属间化合物的冷却速度,将设计合理的铸锭模腔,在保证操作的前提下,减少其模腔厚度,同时采用冷冻水双面冷却,从而减少合金成分的偏析和枝蔓晶的产生。提高了最终烧结永磁体的断裂韧性性能,特别是剩磁Br、最大磁能积(BH)max和临界磁场Hk。
具体实施方式
下面通过实施例对本发明做进一步的说明。
实施例1
一种高性能钐钴永磁体的制备方法,包括步骤,配制原料、熔炼、铸锭、氢破、粉磨、压胚、烧结,所述熔炼包括步骤:
(1)将原料放入熔炼炉中抽真空4×10-2Pa,然后充入氩气;
(2)升高温度至1200℃,粗炼12min;
(3)然后升高温度至1500℃,进行精炼8min;
(4)熔炼炉底部吹入氩气,氩气流量为15ml/min,持续时间为8min;
(5)将溶液浇入双面通水水冷的水冷铜模中冷却,所述水冷铜模的模腔厚度为1.5mm,所述冷却分为两段,第一段水冷水压为0.08Mpa,第二段水冷水压为0.15Mpa;
(6)控制铸造速度为35mm/min。
实施例2
一种高性能钐钴永磁体的制备方法,包括步骤,配制原料、熔炼、铸锭、氢破、粉磨、压胚、烧结,所述熔炼包括步骤:
(1)将原料放入熔炼炉中抽真空4.5×10-2Pa,然后充入氩气;
(2)升高温度至1250℃,粗炼12min;
(3)然后升高温度至1550℃,进行精炼8min;
(4)熔炼炉底部吹入氩气,氩气流量为16ml/min,持续时间为9min;
(5)将溶液浇入双面通水水冷的水冷铜模中冷却,所述水冷铜模的模腔厚度为1.6mm,所述冷却分为两段,第一段水冷水压为0.1Mpa,第二段水冷水压为0.16Mpa;
(6)控制铸造速度为37mm/min。
实施例3
一种高性能钐钴永磁体的制备方法,包括步骤,配制原料、熔炼、铸锭、氢破、粉磨、压胚、烧结,所述熔炼包括步骤:
(1)将原料放入熔炼炉中抽真空4×10-2Pa,然后充入氩气;
(2)升高温度至1300℃,粗炼13min;
(3)然后升高温度至1580℃,进行精炼8min;
(4)熔炼炉底部吹入氩气,氩气流量为17ml/min,持续时间为10min;
(5)将溶液浇入双面通水水冷的水冷铜模中冷却,所述水冷铜模的模腔厚度为2mm,所述冷却分为两段,第一段水冷水压为0.08Mpa,第二段水冷水压为0.2Mpa;
(6)控制铸造速度为36mm/min。
实施例4
一种高性能钐钴永磁体的制备方法,包括步骤,配制原料、熔炼、铸锭、氢破、粉磨、压胚、烧结,所述熔炼包括步骤:
(1)将原料放入熔炼炉中抽真空4×10-2Pa以下,然后充入氩气;
(2)升高温度至1300℃,粗炼15min;
(3)然后升高温度至1600℃,进行精炼6min;
(4)熔炼炉底部吹入氩气,氩气流量为16ml/min,持续时间为10min;
(5)将溶液浇入双面通水水冷的水冷铜模中冷却,所述水冷铜模的模腔厚度为1.8mm,所述冷却分为两段,第一段水冷水压为0.09Mpa,第二段水冷水压为0.18Mpa;
(6)控制铸造速度为37mm/min。
实施例5
一种高性能钐钴永磁体的制备方法,包括步骤,配制原料、熔炼、铸锭、氢破、粉磨、压胚、烧结,所述熔炼包括步骤:
(1)将原料放入熔炼炉中抽真空4.6×10-2Pa以下,然后充入氩气;
(2)升高温度至1270℃,粗炼12min;
(3)然后升高温度至1570℃,进行精炼7min;
(4)熔炼炉底部吹入氩气,氩气流量为18ml/min,持续时间为9min;
(5)将溶液浇入双面通水水冷的水冷铜模中冷却,所述水冷铜模的模腔厚度为1.7mm,所述冷却分为两段,第一段水冷水压为0.09Mpa,第二段水冷水压为0.2Mpa;
(6)控制铸造速度为35mm/min。
鉴于本发明方案实施例众多,各实施例实验数据庞大众多,不适合于此处逐一列举说明,但是各实施例所需要验证的内容和得到的最终结论均接近,故而此处不对各个实施例的验证内容进行逐一说明,仅以上述部分实施例作为代表说明本发明申请优异之处。在涉及同一指标的不同测试方案时,采用本发明方案指出的任一均可以,并且均不超出本发明要求保护的范围内。
本处实施例对本发明要求保护的技术范围中点值未穷尽之处以及在实施例技术方案中对单个或者多个技术特征的同等替换所形成的新的技术方案,同样都在本发明要求保护的范围内;同时本发明方案所有列举或者未列举的实施例中,在同一实施例中的各个参数仅仅表示其技术方案的一个实例(即一种可行性方案),而各个参数之间并不存在严格的配合与限定关系,其中各参数在不违背公理以及本发明述求时可以相互替换,特别声明的除外。
Claims (7)
1.一种高性能钐钴永磁体的制备方法,包括步骤,配制原料、熔炼、铸锭、氢破、粉磨、压胚、烧结,其特征在于:所述熔炼包括步骤:
(1)将原料放入熔炼炉中抽真空,然后充入保护气;
(2)升高温度至1200~1300℃,粗炼10~15min;
(3)然后升高温度至1500℃~1600℃,进行精炼;
(4)熔炼炉底部吹入氩气,氩气流量为15~20ml/min,持续时间为8~10min;
(5)将合金液浇入水冷铜模中冷却,所述冷却分为两段,第一段水冷水压为0.08~0.1Mpa,第二段水冷水压为0.15~0.2Mpa,水流方向为由下部向上部;
(6)控制铸造速度为35~37mm/min。
2.根据权利要求1所述的一种高性能钐钴永磁体的制备方法,其特征在于:所述熔炼步骤(1)中抽真空至真空度5×10-2Pa以下。
3.根据权利要求1所述的一种高性能钐钴永磁体的制备方法,其特征在于:熔炼步骤(1)中所述熔炼炉为真空中频熔炼炉。
4.根据权利要求1所述的一种高性能钐钴永磁体的制备方法,其特征在于:所述熔炼步骤(1)中保护气为氩气。
5.根据权利要求1所述的一种高性能钐钴永磁体的制备方法,其特征在于:所述熔炼步骤(5)中水冷铜模的冷却方式为双面通水水冷。
6.根据权利要求1所述的一种高性能钐钴永磁体的制备方法,其特征在于:所述熔炼步骤(5)中水冷铜模的模腔厚度为1.5~2mm。
7.根据权利要求1所述的一种高性能钐钴永磁体的制备方法,其特征在于:所述熔炼步骤(3)中精炼时间为5~10min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610377397.5A CN105931776B (zh) | 2016-05-31 | 2016-05-31 | 一种高性能钐钴永磁体的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610377397.5A CN105931776B (zh) | 2016-05-31 | 2016-05-31 | 一种高性能钐钴永磁体的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105931776A CN105931776A (zh) | 2016-09-07 |
CN105931776B true CN105931776B (zh) | 2017-09-08 |
Family
ID=56833294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610377397.5A Active CN105931776B (zh) | 2016-05-31 | 2016-05-31 | 一种高性能钐钴永磁体的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105931776B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61106735A (ja) * | 1984-10-30 | 1986-05-24 | Hitachi Metals Ltd | 永久磁石合金の製造方法 |
US4734131A (en) * | 1986-07-23 | 1988-03-29 | Kabushiki Kaisha Toshiba | Permanent-magnetic material |
CN103065788A (zh) * | 2012-12-26 | 2013-04-24 | 宁波韵升股份有限公司 | 一种制备烧结钐钴磁体的方法 |
CN105296816A (zh) * | 2015-12-08 | 2016-02-03 | 江苏东强股份有限公司 | 高导电铝合金材料及其铝合金电缆导体的制备方法 |
-
2016
- 2016-05-31 CN CN201610377397.5A patent/CN105931776B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61106735A (ja) * | 1984-10-30 | 1986-05-24 | Hitachi Metals Ltd | 永久磁石合金の製造方法 |
US4734131A (en) * | 1986-07-23 | 1988-03-29 | Kabushiki Kaisha Toshiba | Permanent-magnetic material |
CN103065788A (zh) * | 2012-12-26 | 2013-04-24 | 宁波韵升股份有限公司 | 一种制备烧结钐钴磁体的方法 |
CN105296816A (zh) * | 2015-12-08 | 2016-02-03 | 江苏东强股份有限公司 | 高导电铝合金材料及其铝合金电缆导体的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105931776A (zh) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102763513B1 (ko) | 구리-철 합금 슬라브 잉곳의 비진공 다운 드로잉 연속 주조 생산 공정 | |
CN105489334B (zh) | 一种晶界扩散获得高磁性烧结钕铁硼的方法 | |
CN104637642B (zh) | 一种钐钴烧结永磁体材料及其制备方法 | |
CN102071339A (zh) | 钐钴永磁材料及其制备方法 | |
CN105238934B (zh) | 一种降低高温合金中氮含量的真空感应熔炼方法 | |
CN104328316A (zh) | 一种大直径6063铝合金圆铸锭坯的生产方法 | |
CN104575901A (zh) | 一种添加铽粉的钕铁硼磁体及其制备方法 | |
CN106782973A (zh) | 一种高耐蚀烧结钕铁硼磁体的制备方法 | |
CN104388756A (zh) | 一种镍基合金及其制备方法 | |
CN106356175B (zh) | 一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法 | |
CN105047342B (zh) | 一种提高钐钴磁加工质量及合格率的方法 | |
CN103394826B (zh) | 一种降低挤压棒缺陷的工艺方法 | |
CN103469022B (zh) | 一种铝-硅-钐铸造铝合金及制备方法 | |
CN110042281B (zh) | 一种铸造铝合金及其制备方法 | |
CN109727742A (zh) | 一种低重稀土钕铁硼材料及其制备方法 | |
CN113102731A (zh) | 一种压制硼砂在铜钢双金属熔铸工艺中的使用方法 | |
CN105931776B (zh) | 一种高性能钐钴永磁体的制备方法 | |
CN105931777B (zh) | 一种高韧性钐钴永磁体的制备方法 | |
CN113584333B (zh) | 一种提高铝钪合金靶材均匀性的方法 | |
CN108517458B (zh) | 铁-铪-稀土中间合金及其制备方法 | |
CN102864368A (zh) | 一种孕育铸铁及其制备方法 | |
CN102296228A (zh) | 一种添加碳的永磁合金块体及制备方法 | |
CN115491615A (zh) | 一种高温合金大规格自耗锭及其制备方法 | |
CN108118171A (zh) | 一种利用非晶合金孕育细化铝合金的搅拌分散工艺 | |
CN113684456A (zh) | La-Ti合金靶及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |