CN105929385B - 基于双水听器lofar谱图分析的目标深度分辨方法 - Google Patents

基于双水听器lofar谱图分析的目标深度分辨方法 Download PDF

Info

Publication number
CN105929385B
CN105929385B CN201610223586.7A CN201610223586A CN105929385B CN 105929385 B CN105929385 B CN 105929385B CN 201610223586 A CN201610223586 A CN 201610223586A CN 105929385 B CN105929385 B CN 105929385B
Authority
CN
China
Prior art keywords
lofar
depth
difference
hydrophone
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610223586.7A
Other languages
English (en)
Other versions
CN105929385A (zh
Inventor
杜金燕
李晔
崔浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Original Assignee
Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceanographic Instrumentation Research Institute Shandong Academy of Sciences filed Critical Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority to CN201610223586.7A priority Critical patent/CN105929385B/zh
Publication of CN105929385A publication Critical patent/CN105929385A/zh
Application granted granted Critical
Publication of CN105929385B publication Critical patent/CN105929385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明提供一种基于双水听器LOFAR谱图分析的目标深度分辨方法,包括以下步骤:1)利用深度分别处于跃层上下的两个水听器接收到的声场数据,计算得到两个深度处接收声强的LOFAR谱图;2)在得到的两个LOFAR图中分别选择一个矩形区域,两个矩形区域的坐标范围相同,对该矩形区域进行二维傅里叶变换,然后在变换域内按角度遍历的方式计算声强的积分值,得到干涉条纹角度的概率密度函数;3)计算两个概率密度函数的期望值,进而计算两个期望值之差;设置深度分辨判决门限角度值;4)根据角度期望值之差与判决门限的比较结果判断目标的深度。本发明不需要海洋环境先验信息,计算量小,能分辨具有跃层的浅海环境中的目标深度。

Description

基于双水听器LOFAR谱图分析的目标深度分辨方法
技术领域
本发明涉及一种目标深度分辨方法。
背景技术
船只等水面声源会给水下目标监测设备带来虚警,实现对水面声源和水下目标的有效区分是声纳设备的关键能力之一。
现有的目标深度分辨方法主要基于匹配场处理方法以及更稳健的一些扩展方法,例如模态闪烁和模态滤波等[Baggeroer(1988),Premus(1999,2004)]。匹配场处理方法基于确定的传播模型,将实际测量的声场数据与由传播模型计算出的拷贝场作互相关,求得一个性能表面,估计出目标的距离和深度。基于匹配场处理的定位方法多数采用垂直阵或水平阵,以获得足够多的声场空间信息。匹配场方法需要已知准确的海洋环境传播参数等先验信息,以及海底底质的声学特性(例如沉积层声速、密度和衰减系数)等。模态闪烁和模态滤波类方法则要求在海洋环境中布放多个水听器垂直阵列或水平阵列。在实际应用中,这两类方法主要存在两个方面的缺点,一是采用的水听器阵列系统比较复杂,成本较高且海上布放较为困难,例如由于海流的影响垂直阵会发生倾斜,并且该倾斜量一般很难精确得到。一是匹配场处理方法对模型误差敏感,由于实际水声环境信息的难以获取及其不确定性使得基于匹配场处理方法的目标距离和深度估计容易出现失配问题。
发明内容
为了克服现有技术的不足,本发明提供一种基于双水听器LOFAR(Low FrequencyAnalysis Record)谱图分析的目标深度分辨方法。该方法利用了具有跃层的浅海环境中,波导不变量的值会随着声源和接收点深度的变化而变化这一物理特性,又因为波导不变量的值对应了接收声场LOFAR谱图中干涉条纹的斜率,因此对分别处于跃层上下两个深度处的LOFAR谱图中的干涉条纹进行斜率分析,根据对斜率角度差值大小的判断实现对目标深度的分辨。
本发明解决其技术问题所采用的技术方案包括以下步骤:
1)利用深度分别处于跃层上下的两个水听器接收到的声场数据,计算得到两个深度处接收声强的频率-时间平面,即其LOFAR图;
2)在步骤1得到的两个LOFAR图中分别选择一个矩形区域,两个矩形区域的时间范围和频率范围分别相同,对该矩形区域进行二维傅里叶变换,然后在变换域内按角度遍历的方式分别计算声强的积分值,积分值的大小反映了概率的高低,得到干涉条纹角度的概率密度函数;
3)计算两个概率密度函数的期望值,进一步计算两个期望值之差;设置深度分辨判决门限角度值;
4)根据角度期望值之差与判决门限的比较结果判断目标的深度:若期望值之差大于判决门限,则认为目标深度较深,处于跃层之下;若期望值之差小于判决门限,则认为目标深度较浅,处于跃层之上。
所述步骤1),具体实现如下:
分别将两个水听器接收到的原始信号的采样序列分成连续的若干帧,每帧N个采样点,根据具体情况,帧间可有部分重叠。对每帧信号采样样本L(n)作归一化和中心化处理,归一化处理的目的是使接收信号的幅度在时间上均匀,中心化处理是为了使样本的均值为零。
归一化处理
中心化处理
对处理后的信号x(n)作短时傅里叶变换,得到LOFAR谱图,记为Ik(ω,t),k=1,2,其中I表示声强,ω表示频率,t表示时间,下标k代表水听器编号。
所述步骤2),具体实现如下:
在步骤1得到的两个LOFAR图Ik(ω,t),k=1,2中分别选择一个矩形区域数据窗,该数据窗的频率范围为ωmin<ω<ωmax,时间范围为tmin<t<tmax,并且满足ωmid=(ωmaxmin)/2>>(ωmaxmin)和tmid=(tmax+tmin)/2>>(tmax-tmin);对该矩形区域进行二维离散傅里叶变换,得到频率域的LOFAR图为其中u=0,1,…,M-1,v=0,1,…,N-1;将Fk(u,v)从直角坐标系转换到极坐标系中表示为Fk(θ,ρ),有θ=arctan(v/u),然后在变换域内按角度遍历的方式分别计算声强的积分值积分值的大小反映了概率的高低,分别得到两个LOFAR图中干涉条纹角度的概率密度函数
所述步骤3),具体实现如下:
计算两个概率密度函数的期望值K为离散角度值的个数。进一步计算两个期望值之差Dca=|E1-E2|;设置深度分辨判决门限角度值Dth
所述步骤4),具体实现如下
根据角度期望值之差Dca与判决门限Dth的比较结果判断目标的深度:若期望值之差大于判决门限Dca>Dth,则认为目标深度较深,处于跃层之下;若期望值之差小于判决门限Dca<Dth,则认为目标深度较浅,处于跃层之上。
本发明的有益效果是:本发明的基本原理和具体实现得到了简正波模型的验证,结果表明:
1)当海洋环境中存在负声速梯度或者跃层时,波导不变量的值将会随着声源和接收点的变化而变化,进而导致接收声场LOFAR谱图中干涉条纹的斜率发生变化。
2)当声源位于跃层以上的较浅深度时,跃层上下两水听器的LOFAR谱图干涉条纹斜率比较一致;当声源位于跃层以下的较深深度时,跃层上下两水听器的LOFAR谱图干涉条纹的斜率相差较大。
3)基于二维傅里叶变换方法的LOFAR谱图干涉条纹角度计算方法效率高,且能有效分辨声源深度。
附图说明
图1是声源处于不同深度时,声线分布情况示意图。其中,(a)是声源位于跃层以上的情况,(b)是声源位于跃层以下的情况;
图2是声源深度为10米时,两水听器接收声场LOFAR图。其中,(a)是水听器1,(b)是水听器2;
图3是声源深度为50米时,两水听器接收声场LOFAR图。其中,(a)是水听器1,(b)是水听器2;
图4是声源位于不同深度时,两水听器LOFAR图中干涉条纹角度的概率密度分布情况。其中,(a)是声源深度为10米的情况,(b)是声源深度为50米的情况。
具体实施方式
下面结合附图和实施例对本发明进一步说明,本发明包括但不仅限于下述实施例。
本发明的主要内容有:
1、本发明首次提出了采用二维傅里叶变换进行声场干涉条纹角度分析来实现目标深度分辨的方法。
2、给出了声场干涉条纹角度概率密度函数的计算方法。
3、利用计算机仿真分析对比了不同深度声场干涉条纹的角度,并进行了目标深度分辨。
本发明的技术方案可以分成如下步骤:
1)利用深度分别处于跃层上下的两个水听器接收到的声场数据,计算得到两个深度处接收声强的频率-时间平面,即其LOFAR图;
2)在步骤1得到的两个LOFAR图中分别选择一个矩形区域,两个矩形区域的时间范围和频率范围分别相同,对该矩形区域进行二维傅里叶变换,然后在变换域内按角度遍历的方式分别计算声强的积分值,积分值的大小反映了概率的高低,得到干涉条纹角度的概率密度函数;
3)计算两个概率密度函数的期望值,进一步计算两个期望值之差;设置深度分辨判决门限角度值;
4)根据角度期望值之差与判决门限的比较结果判断目标的深度:若期望值之差大于判决门限,则认为目标深度较深,处于跃层之下;若期望值之差小于判决门限,则认为目标深度较浅,处于跃层之上。
5)性能分析。利用计算机仿真验证了本发明方法的深度分辨性能。
以下对本发明的每个步骤作进一步的详细说明:
所述步骤1),具体实现如下:
分别将两个水听器接收到的原始信号的采样序列分成连续的若干帧,每帧N个采样点,根据具体情况,帧间可有部分重叠。对每帧信号采样样本L(n)作归一化和中心化处理,归一化处理的目的是使接收信号的幅度在时间上均匀,中心化处理是为了使样本的均值为零。
归一化处理
中心化处理
对处理后的信号x(n)作短时傅里叶变换,得到LOFAR谱图,记为Ik(ω,t),k=1,2,其中I表示声强,ω表示频率,t表示时间,下标k代表水听器编号。
所述步骤2),具体实现如下:
在步骤1得到的两个LOFAR图Ik(ω,t),k=1,2中分别选择一个矩形区域数据窗,该数据窗的频率范围为ωmin<ω<ωmax,时间范围为tmin<t<tmax,并且满足
ωmid=(ωmaxmin)/2>>(ωmaxmin) (3)
tmid=(tmax+tmin)/2>>(tmax-tmin) (4)
对该矩形区域进行二维离散傅里叶变换,得到频率域的LOFAR图为
其中u=0,1,…,M-1,v=0,1,…,N-1;将Fk(u,v)从直角坐标系转换到极坐标系中表示为Fk(θ,ρ),有θ=arctan(v/u),然后在变换域内按角度遍历的方式分别计算声强的积分值积分值的大小反映了概率的高低,分别得到两个LOFAR图中干涉条纹角度的概率密度函数
所述步骤3),具体实现如下:
计算两个概率密度函数的期望值K为离散角度值的个数。进一步计算两个期望值之差Dca=|E1-E2|;设置深度分辨判决门限角度值Dth
所述步骤4),具体实现如下
根据角度期望值之差Dca与判决门限Dth的比较结果判断目标的深度:若期望值之差大于判决门限Dca>Dth,则认为目标深度较深,处于跃层之下;若期望值之差小于判决门限Dca<Dth,则认为目标深度较浅,处于跃层之上。实际应用中,判决门限可以根据感兴趣目标的速度、频带等特性灵活设置,以达到最优的深度分辨目的。
所述步骤5),具体实现如下:
以存在负声速梯度的典型浅海环境为例,给出了本发明的实施实例。
实例参数设置如下:假设海水中声速剖面以及目标和水听器的布放情况如图1中所示。其中,海水混合层深度为15m,声速为1540m/s;温跃层厚度为10m;声速经过温跃层后,变为1510m/s,并随着深度的增加不再变化。水听器1和水听器2的布放深度分别为10m和50m。假设目标辐射150-500Hz的宽带随机信号,速度为5m/s,距离水听器最近点距离为1km,水听器开始记录的时间为目标经过最近点后200秒。
本实例分为两种情况:情况1,目标深度为10m,如图1(a)所示;情况2,目标深度为50m,如图1(b)所示。
本实例的具体实现过程如下:
1)获取两个水听器布放位置处的LOFAR图
根据图1中的海洋环境模型,利用KRAKEN程序计算水听器1和水听器2接收的声场LOFAR谱图。情况1的声场LOFAR谱图如图2所示,情况2的声场LOFAR谱图如图3所示。
2)计算LOFAR图中干涉条纹角度的概率密度函数
对LOFAR图中时间大于500秒,频率大于200Hz的矩形区域进行二维傅里叶变换(矩形区域的选择,只影响角度的分散程度,不影响最终判定结果),在变换后的极坐标系中按角度遍历的方式分别计算声强的积分值,得到LOFAR图中干涉条纹角度的概率密度函数。情况1的概率密度函数如图4(a)所示,情况2的概率密度函数如图4(b)所示。
3)计算两水听器概率密度函数期望值之差,并设置判决门限
情况1中,计算得到水听器1对应的干涉条纹角度期望值为70.1°,水听器2对应的干涉条纹角度期望值为67.9°,可得其角度差为Dca1=2.2°。
情况2中,计算得到水听器1对应的干涉条纹角度期望值为67.9°,水听器2对应的干涉条纹角度期望值为57.5°,可得其角度差为Dca2=10.4°。
将判决门限设置为Dth=5°。
4)分辨目标的深度
情况1中,Dca1<Dth,判断目标深度较浅,处于跃层之上。
情况2中,Dca2>Dth,判断目标深度较深,处于跃层之下。
5)性能分析。
在负跃层的声速剖面下,声场简正波可以划分为水面反射-海底反射简正波(SRBR,即反射简正波)和水体反转-海底反射简正波(RBR,即反转简正波)两大类,不同类型的简正波对应的波导不变量典型值见表1。当反射简正波占主导地位时,波导不变量的值为+1(略小于1),当反转简正波占主导地位时,波导不变量的值为负值或者大于1的正值。
表1负跃层波导中简正波的分类及其对应的波导不变量典型值
简正波类型 波导不变量典型值
SRBR 1
一类RBR 负值
二类RBR >1
如图1(a)所示,当声源深度较浅位于跃层以上时,激发的简正波类型为水面反射-海底反射SRBR型。水听器1和水听器2接收到的均为SRBR型简正波,对应的波导不变量值均为略小于1的正值,因而形成的干涉条纹角度也较为一致。
如图1(b)所示,当声源深度较深位于跃层以下时,激发的低阶简正波多为RBR型(图中虚线示意),高阶简正波多为SRBR型(图中实线示意)。水听器1接收到的为SRBR型简正波,对应的波导不变量值为略小于1的正数。水听器2接收到的主要为RBR型简正波,对应的波导不变量值大于1或者为负数。此时,水听器1和2接收到声场干涉条纹角度将会有较大的不同。
因此,通过判断两个不同深度处水听器的LOFAR图中干涉条纹的斜率可以实现对目标深度的分辨。实际应用中,判决门限可以根据感兴趣目标的速度、频带等特性灵活设置,以达到最优的深度分辨目的。

Claims (5)

1.基于双水听器LOFAR谱图分析的目标深度分辨方法,其特征在于包括下述步骤:
1)利用深度分别处于跃层上下的两个水听器接收到的声场数据,计算得到两个深度处接收声强的频率-时间平面,即其LOFAR图;
2)在步骤1得到的两个LOFAR图中分别选择一个矩形区域,两个矩形区域的时间范围和频率范围分别相同,对该矩形区域进行二维傅里叶变换,然后在变换域内按角度遍历的方式分别计算声强的积分值,积分值的大小反映了概率的高低,得到干涉条纹角度的概率密度函数;
3)计算两个概率密度函数的期望值,进一步计算两个期望值之差;设置深度分辨判决门限角度值;
4)根据角度期望值之差与判决门限的比较结果判断目标的深度:若期望值之差大于判决门限,则认为目标深度较深,处于跃层之下;若期望值之差小于判决门限,则认为目标深度较浅,处于跃层之上。
2.根据权利要求1所述的基于双水听器LOFAR谱图分析的目标深度分辨方法,其特征在于所述的步骤1)具体实现如下:
分别将两个水听器接收到的原始信号的采样序列分成连续的若干帧,每帧N个采样点,根据具体情况,帧间可有部分重叠;对每帧信号采样样本L(n)作归一化和中心化处理,归一化处理的目的是使接收信号的幅度在时间上均匀,中心化处理是为了使样本的均值为零;
归一化处理
中心化处理
对处理后的信号x(n)作短时傅里叶变换,得到LOFAR谱图,记为Ik(ω,t),k=1,2,其中I表示声强,ω表示频率,t表示时间,下标k代表水听器编号。
3.根据权利要求1所述的基于双水听器LOFAR谱图分析的目标深度分辨方法,其特征在于所述的步骤2)具体实现如下:
在得到的两个LOFAR图Ik(ω,t),k=1,2中分别选择一个矩形区域数据窗,该数据窗的频率范围为ωmin<ω<ωmax,时间范围为tmin<t<tmax,并且满足ωmid=(ωmaxmin)/2>>(ωmaxmin)和tmid=(tmax+tmin)/2>>(tmax-tmin);对该矩形区域进行二维离散傅里叶变换,得到频率域的LOFAR图为其中u=0,1,…,M-1,v=0,1,…,N-1;将Fk(u,v)从直角坐标系转换到极坐标系中表示为Fk(θ,ρ),有θ=arctan(v/u),然后在变换域内按角度遍历的方式分别计算声强的积分值积分值的大小反映了概率的高低,分别得到两个LOFAR图中干涉条纹角度的概率密度函数
4.根据权利要求1所述的基于双水听器LOFAR谱图分析的目标深度分辨方法,其特征在于所述的步骤3)具体实现如下:
计算两个概率密度函数的期望值K为离散角度值的个数;进一步计算两个期望值之差Dca=|E1-E2|;设置深度分辨判决门限角度值Dth
5.根据权利要求1所述的基于双水听器LOFAR谱图分析的目标深度分辨方法,其特征在于:所述的步骤4)根据角度期望值之差Dca与判决门限Dth的比较结果判断目标的深度:若期望值之差大于判决门限Dca>Dth,则认为目标深度较深,处于跃层之下;若期望值之差小于判决门限Dca<Dth,则认为目标深度较浅,处于跃层之上。
CN201610223586.7A 2016-04-06 2016-04-06 基于双水听器lofar谱图分析的目标深度分辨方法 Active CN105929385B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610223586.7A CN105929385B (zh) 2016-04-06 2016-04-06 基于双水听器lofar谱图分析的目标深度分辨方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610223586.7A CN105929385B (zh) 2016-04-06 2016-04-06 基于双水听器lofar谱图分析的目标深度分辨方法

Publications (2)

Publication Number Publication Date
CN105929385A CN105929385A (zh) 2016-09-07
CN105929385B true CN105929385B (zh) 2019-02-26

Family

ID=56838085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610223586.7A Active CN105929385B (zh) 2016-04-06 2016-04-06 基于双水听器lofar谱图分析的目标深度分辨方法

Country Status (1)

Country Link
CN (1) CN105929385B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443516B (zh) * 2018-12-25 2020-07-14 西北工业大学 一种基于噪声场垂直振速信号的海底声速被动获取方法
CN109489799B (zh) * 2018-12-25 2020-07-14 西北工业大学 一种基于双矢量水听器的海底声速分步反演方法
CN109815942B (zh) * 2019-03-18 2022-03-15 西北工业大学 基于海洋环境噪声信号的简正波特征提取方法
CN110006434B (zh) * 2019-04-23 2023-05-23 河海大学常州校区 温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法
CN111257943B (zh) * 2020-03-18 2020-10-02 东南大学 一种浅海低频声场时频干涉条纹提取方法
CN111580079B (zh) * 2020-05-11 2022-11-29 山东省科学院海洋仪器仪表研究所 一种基于单矢量水听器的水下运动目标最近接近距离估计方法
CN112987004B (zh) * 2021-02-05 2023-07-21 中国人民解放军国防科技大学 一种浅海环境下基于水平阵列的水面水下目标分类方法
CN113705516B (zh) * 2021-09-03 2024-02-20 东南大学 一种基于辐射噪声干涉条纹特征的声源深度判别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076594A (zh) * 2012-12-31 2013-05-01 东南大学 一种基于互相关的水声脉冲信号双阵元定位的方法
CN203178489U (zh) * 2013-03-08 2013-09-04 山东省科学院海洋仪器仪表研究所 用于识别水下和水面目标的实时监测系统
CN104714235A (zh) * 2013-12-16 2015-06-17 中国科学院声学研究所 一种低频双矢量水听器阵列的测距方法及系统
CN104749568A (zh) * 2013-12-26 2015-07-01 中国科学院声学研究所 一种基于水听器阵列的浅海目标深度的分类方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076594A (zh) * 2012-12-31 2013-05-01 东南大学 一种基于互相关的水声脉冲信号双阵元定位的方法
CN203178489U (zh) * 2013-03-08 2013-09-04 山东省科学院海洋仪器仪表研究所 用于识别水下和水面目标的实时监测系统
CN104714235A (zh) * 2013-12-16 2015-06-17 中国科学院声学研究所 一种低频双矢量水听器阵列的测距方法及系统
CN104749568A (zh) * 2013-12-26 2015-07-01 中国科学院声学研究所 一种基于水听器阵列的浅海目标深度的分类方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Prediction of Water Depth From Multispectral Satellite Imagery—The Regression Kriging Alternative;Haibin Su et al.;《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》;20151231;第12卷(第12期);全文 *
吴晓潭 等.基于双水听器的目标深度辨识.《应用声学》.2016,第35卷(第2期), *

Also Published As

Publication number Publication date
CN105929385A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN105929385B (zh) 基于双水听器lofar谱图分析的目标深度分辨方法
CN105629220B (zh) 一种基于单水听器的深海水声被动测距方法
Siderius et al. Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array
CN104749568B (zh) 一种基于水听器阵列的浅海目标深度的分类方法
CN111580048B (zh) 一种利用单矢量水听器的宽带声源深度估计方法
CN104820218B (zh) 一种基于频域自相关的浅海海底单参数反演方法
CN113109817B (zh) 一种矢量水听器布放深度估计方法
Baer Propagation through a three‐dimensional eddy including effects on an array
De Coster et al. Full-wave removal of internal antenna effects and antenna–medium interactions for improved ground-penetrating radar imaging
CN111159937B (zh) 一种近岸非线性正弦型波浪微波散射特性分析方法
Yang et al. Analysis on the characteristic of cross-correlated field and its potential application on source localization in deep water
CN106019290B (zh) 加权宽带时反算子分解多目标声成像方法
Lv et al. Analysis of wave fluctuation on underwater acoustic communication based USV
CN108983158B (zh) 一种基于Hankel矩阵奇异值分解的探地雷达噪声抑制方法
CN111951204B (zh) 一种基于深度学习的天宫二号探测数据海面风速反演方法
CN106443674B (zh) 一种基于衍射和成像与最小熵技术的探地雷达波速估计方法
Knobles et al. Maximum entropy approach to statistical inference for an ocean acoustic waveguide
CN106897687A (zh) 一种基于声纳技术的含油沉积物自动识别方法及系统
CN111679248A (zh) 一种基于海底水平l型阵列的目标方位和距离联合稀疏重构定位方法
Lisimenka et al. Estimation of dimensions and orientation of multiple riverine dune generations using spectral moments
Li et al. Source depth discrimination using wavenumber domain feature with a horizontal array
CN113671507A (zh) 一种基于深海垂直阵的波导不变量估计方法
Du et al. Passive acoustic source depth discrimination with two hydrophones in shallow water
Guo et al. Tracking-positioning of sound speed profiles and moving acoustic source in shallow water
Wagstaff The Wagstaff’s integration silencing processor filter: A method for exploiting fluctuations to achieve improved sonar signal processor performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant