CN105924657B - 一种多孔结构静电喷雾纳米微球的制备方法 - Google Patents

一种多孔结构静电喷雾纳米微球的制备方法 Download PDF

Info

Publication number
CN105924657B
CN105924657B CN201610393087.2A CN201610393087A CN105924657B CN 105924657 B CN105924657 B CN 105924657B CN 201610393087 A CN201610393087 A CN 201610393087A CN 105924657 B CN105924657 B CN 105924657B
Authority
CN
China
Prior art keywords
electrostatic spray
porous structure
preparation
porous
nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610393087.2A
Other languages
English (en)
Other versions
CN105924657A (zh
Inventor
鲁圣国
邓永茂
陶涛
梁波
姚英邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201610393087.2A priority Critical patent/CN105924657B/zh
Publication of CN105924657A publication Critical patent/CN105924657A/zh
Application granted granted Critical
Publication of CN105924657B publication Critical patent/CN105924657B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种微纳米尺度下具有多孔结构的聚合物微球的制备方法,该方法通过分别量取适量的N,N‑二甲基甲酰胺(DMF)和丙酮,称取一定量干燥的聚偏氟乙烯(PVDF)粉末,制备得到静电喷雾前驱体溶液,将静电喷雾前驱体溶液进行静电喷雾实验,得到一种多孔结构静电喷雾纳米微球,微球的尺寸为0.5‑11.5μm,微球多孔孔径为10.11‑22.43nm,微球比表面积为3.94‑15.18m2/g,微球多孔总孔体积为0.009‑0.084cm3/g。将该聚合物多孔微球应用于物质的分离与富集、催化剂载体、医用生物材料、离子吸附、废水处理技术上。

Description

一种多孔结构静电喷雾纳米微球的制备方法
技术领域
本发明涉及一种微纳米尺度下具有多孔结构的聚合物微球的制备方法,属于纳米微球的制备技术领域。
背景技术
多孔微球具有比表面积大、孔隙率高、表面活性高、吸附性强同时孔隙连接良好等突出优点,由于其特殊的结构和尺寸,其应用范围十分广泛,在化学、生物、电、光、热、磁器件等许多领域具有巨大的发展潜力。
静电喷雾技术是电流体动力学射流技术中一个重要的分支,是通过高压静电作用使从针头喷出的聚合物液滴带电,然后通过液滴中溶剂挥发制备聚合物微纳米微球的一种简易方法。静电喷雾过程中由于液滴带电,同种电荷的库仑力排斥作用有效地阻止了液滴之间的团聚,同时使液滴穿透周围的气体介质变得更容易。液滴的运动轨迹可以通过在静电喷雾过程中改变施加电压的大小得到有效的控制,从而使得收集制备的微纳米颗粒变得更加方便。通过静电喷雾技术制备的微球单分散性好、纯度高而且直径可以达到微/纳米尺度,并且利用静电喷雾技术可以一步成型,不需要额外添加模板和后处理工艺。
发明内容
本发明的目的在于提出一种多孔结构静电喷雾纳米微球的制备方法,微球的尺寸为0.5-11.5μm,微球多孔孔径为10.11-22.43nm,微球比表面积为3.94-15.18m2/g,微球多孔总孔体积为0.009-0.084cm3/g。
为了解决上述技术问题,本发明提供一种多孔结构静电喷雾纳米微球的制备方法,依次包括以下步骤:
1)静电喷雾前驱体溶液的配制:分别量取适量的N,N-二甲基甲酰胺(DMF)和丙酮加入到100ml的螺口锥形瓶中,称取一定量干燥的聚偏氟乙烯(PVDF)粉末加入到装有DMF/丙酮混合溶剂的螺口锥形瓶中,加入一个磁转子,然后将锥形瓶置于数显恒温磁力搅拌器中水浴加热,同时以一定的转速搅拌,聚偏氟乙烯完全溶解于DMF/丙酮混合溶剂中,取出锥形瓶于室温下静置冷却,得到透明、均一、澄清的聚合物溶液,所得溶液即为静电喷雾前驱体溶液。
2)静电喷雾步骤:将步骤1中的静电喷雾前驱体溶液加入到螺口注射器中,将注射器安装到微量注射泵上,通过微量注射泵控制注射速度;通过高压直流电源装置调节喷雾电压;通过移动铁架台调节喷头至接收装置的距离;然后开始静电喷雾实验。
3)所得微球于室温下使残余溶剂完全挥发,使用场发射扫描电镜观察多孔微球形态,使用比表面积及孔径分析仪测量多孔微球的比表面积、孔径分布及总孔体积。
本发明以PVDF为静电喷雾基材,采用的溶剂自身具有较强的挥发性。所获得的多孔微球,拥有较大大的比表面积和活性位点,可以提高其负载和吸附能力,有望在物质的分离与富集、催化剂载体、医用生物材料、离子吸附、废水处理等技术上有所应用。
本发明的优点主要在于:提供了一种可用于制备具有表面通孔结构的多孔聚合物微球的制备方法,该方法仅仅通过物理过程就实现了多孔微球的制备,制备过程不包含任何化学反应,并且所得多孔微球具有表面通孔结构。该方法工艺简单,操作简便,制备条件易控,易于工业化生产。
所述PVDF的相对分子质量为300,000-900,000g·mol-1。
所述DMF/丙酮混合溶剂中DMF/丙酮体积比例为0:10-4:6。
所述静电喷雾前驱体溶液中PVDF用量为1wt%-5wt%。
所述微量注射泵注射速度为2.0-6.0mL/h。
所述静电喷雾电压为6-18kV。
所述喷头至接收装置的距离为9-21cm。
所述水浴加热温度为40-60℃。
所述搅拌速度为100-1000rpm。
所述搅拌时间为0.5-4h。
附图说明
图1为本发明中静电喷雾装置的结构示意图。
图2、图3为实施例1所得PVDF多孔微球的场发射扫描电镜(FESEM)图片。
图2为放大2000倍所得图片;图3为放大10000倍所得图片。
图4为实施例1所得的PVDF多孔微球的氮气等温吸附-脱附曲线。
图5为实施例1所得的PVDF多孔微球的孔径分布曲线。
图6为实施例1所得的PVDF多孔微球的粒径分布的直方图。
具体实施方式
实施例1
1)用量筒分别量取30ml丙酮加入到100ml的螺口锥形瓶中,即溶剂中DMF/丙酮体积比例为0:10;用电子分析天平称取0.73gPVDF粉末加入到装有丙酮的螺口锥形瓶中,加入一个磁转子,拧紧瓶盖,然后将锥形瓶置于数显恒温磁力搅拌器中在50℃水浴加热,同时以500rpm的转速搅拌2h,PVDF完全溶解于丙酮中,取出锥形瓶于室温下静置冷却,得到透明、均一、澄清的聚合物溶液,所得溶液即为3wt%的PVDF静电喷雾前驱体溶液。
2)将静电喷雾前驱体溶液加入到50ml的螺口注射器中,将注射器安装到微量注射泵上,通过微量注射泵控制注射速度为4.0ml/h;通过高压直流电源装置调节喷雾电压为12kV;通过移动铁架台调节喷头至接收装置的距离为15cm;然后开始静电喷雾实验。
3)所得微球于室温下放置一段时间使残余溶剂完全挥发;所得的PVDF多孔微球的场发射扫描电镜(FESEM)图片如图2、图3所示;所得的PVDF多孔微球的氮气等温吸附-脱附曲线如图4所示;所得的PVDF多孔微球的孔径分布曲线如图5所示;所得的PVDF多孔微球粒径分布的直方图如图6所示。

Claims (8)

1.一种多孔结构静电喷雾纳米微球的制备方法,依次包括以下步骤:
1)静电喷雾前驱体溶液的配制:量取适量的丙酮加入到100ml的螺口锥形瓶中,称取一定量干燥的聚偏氟乙烯(PVDF)粉末加入到装有丙酮的螺口锥形瓶中,加入一个磁转子,然后将锥形瓶置于数显恒温磁力搅拌器中水浴加热,同时以一定的转速搅拌,聚偏氟乙烯完全溶解于丙酮中,取出锥形瓶于室温下静置冷却,得到透明、均一、澄清的聚合物溶液,所得溶液即为静电喷雾前驱体溶液;其中,静电喷雾前驱体溶液中PVDF用量为3wt%;
2)静电喷雾步骤:将步骤1中的静电喷雾前驱体溶液加入到螺口注射器中,将注射器安装到微量注射泵上,通过微量注射泵控制注射速度;通过高压直流电源装置调节喷雾电压;通过移动铁架台调节喷头至接收装置的距离;然后开始静电喷雾实验;
3)所得微球于室温下使残余溶剂完全挥发,使用场发射扫描电镜观察多孔微球形态,使用比表面积及孔径分析仪测量多孔微球的比表面积、孔径分布及总孔体积。
2.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述PVDF的相对分子质量为300,000-900,000g·mol-1
3.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述微量注射泵注射速度为2.0-6.0mL/h。
4.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述静电喷雾电压为6-18kV,所述喷头至接收装置的距离为9-21cm。
5.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述水浴加热温度为40-60℃。
6.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述搅拌速度为100-1000rpm,所述搅拌时间为0.5-4h。
7.采用权利要求1-6任一项的制备方法得到的一种多孔结构静电喷雾纳米球,微球的尺寸为0.5-11.5μm,微球多孔孔径为10.11-22.43nm,微球比表面积为3.94-15.18m2/g,微球多孔总孔体积为0.009-0.084cm3/g。
8.一种多孔结构静电喷雾纳米微球的应用,将权利要求7的多孔结构静电喷雾纳米微球应用于物质的分离与富集、催化剂载体、医用生物材料、离子吸附、废水处理技术上。
CN201610393087.2A 2016-06-03 2016-06-03 一种多孔结构静电喷雾纳米微球的制备方法 Expired - Fee Related CN105924657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610393087.2A CN105924657B (zh) 2016-06-03 2016-06-03 一种多孔结构静电喷雾纳米微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610393087.2A CN105924657B (zh) 2016-06-03 2016-06-03 一种多孔结构静电喷雾纳米微球的制备方法

Publications (2)

Publication Number Publication Date
CN105924657A CN105924657A (zh) 2016-09-07
CN105924657B true CN105924657B (zh) 2018-09-07

Family

ID=56833289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610393087.2A Expired - Fee Related CN105924657B (zh) 2016-06-03 2016-06-03 一种多孔结构静电喷雾纳米微球的制备方法

Country Status (1)

Country Link
CN (1) CN105924657B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3546501A1 (en) * 2018-03-27 2019-10-02 Friedrich-Alexander-Universität Erlangen-Nürnberg Method for producing a population of particles of polyvinylidene difluoride or of particles of a copolymer comprising polyvinylidene difluoride
CN108726485B (zh) * 2018-06-29 2020-07-10 华中科技大学 一种多孔中空氧化物纳米微球及其制备方法与应用
CN110090605B (zh) * 2019-05-14 2024-05-10 黄琛 一种功能性纳米微球的制备设备
CN110143843B (zh) * 2019-06-04 2021-06-29 中国工程物理研究院化工材料研究所 一种纳米铝基多孔微球及其制备方法
CN110722813B (zh) * 2019-09-20 2021-07-23 上海松冒实业有限公司 一种电喷雾式复合材料制备装置与方法
CN110923954A (zh) * 2019-12-19 2020-03-27 广东工业大学 一种具有通孔结构的高分子聚合物纤维膜及其制备方法和应用
CN111041709A (zh) * 2019-12-19 2020-04-21 广东工业大学 一种具有通孔结构的pvdf纳米纤维膜及其制备方法和应用
CN113171761B (zh) * 2021-04-26 2022-11-22 福建省环境保护设计院有限公司 一种用于处理含锑废水的多孔静电喷雾微球及其制备方法
CN114773660B (zh) * 2022-04-26 2023-08-29 浙江工业大学 一种多孔超高分子量聚含氟烯烃空心微球及其制备方法
CN115093703B (zh) * 2022-06-02 2024-02-02 湖南美柏生物医药有限公司 用于细胞培养的具有纳米孔结构的聚合物载体及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947415A (zh) * 2010-08-13 2011-01-19 东华大学 静电纺丝和静电喷雾方法相结合制备纳米纤维基复合分离膜
CN103474610A (zh) * 2013-09-29 2013-12-25 天津工业大学 一种静电纺丝/静电喷雾制备复合锂离子电池隔膜的方法
CN104785164A (zh) * 2015-04-15 2015-07-22 西北大学 一种静电喷雾制备胶体颗粒装置及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947415A (zh) * 2010-08-13 2011-01-19 东华大学 静电纺丝和静电喷雾方法相结合制备纳米纤维基复合分离膜
CN103474610A (zh) * 2013-09-29 2013-12-25 天津工业大学 一种静电纺丝/静电喷雾制备复合锂离子电池隔膜的方法
CN104785164A (zh) * 2015-04-15 2015-07-22 西北大学 一种静电喷雾制备胶体颗粒装置及其控制方法

Also Published As

Publication number Publication date
CN105924657A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN105924657B (zh) 一种多孔结构静电喷雾纳米微球的制备方法
Kang et al. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process
Wang et al. Electrospun poly (methyl methacrylate) nanofibers and microparticles
Zhang et al. Spraying functional fibres by electrospinning
Xue et al. Ultralow-limit gas detection in nano-dumbbell polymer sensor via electrospinning
Ge et al. Anisotropic particles templated by Janus emulsion
Bao et al. Fabrication of monodisperse hollow silica spheres and effect on water vapor permeability of polyacrylate membrane
Tokarev et al. Magnetospinning of nano‐and microfibers
Lee et al. Readily functionalizable and stabilizable polymeric particles with controlled size and morphology by electrospray
Wang et al. Monodisperse erythrocyte-sized and acid-soluble chitosan microspheres prepared via electrospraying
CN102851877B (zh) 利用静电纺丝技术组装银一维纳米材料的方法及其应用
Gao et al. Tuning microparticle porosity during single needle electrospraying synthesis via a non-solvent-based physicochemical approach
CN103351016A (zh) 一种制备球粒状多孔碳酸钙颗粒的方法
CN103804712A (zh) 多孔及孔径可控的壳聚糖微球的制备
Xie et al. Highly stable coated polyvinylpyrrolidone nanofibers prepared using modified coaxial electrospinning
CN108914560B (zh) 一种强力负载银纳米线的薄膜的制备方法及产品
Kim et al. Applications of PLGA microcarriers prepared using geometrically passive breakup on microfluidic chip
Kucuk et al. Microfluidic preparation of polymer nanospheres
Gunduz et al. A device for the fabrication of multifunctional particles from microbubble suspensions
Yan et al. Smoothening electrospinning and obtaining high-quality cellulose acetate nanofibers using a modified coaxial process
Zhou et al. Flexible polymer ultra-fine fiber with extreme toughness
CN103789847B (zh) 一种复合纳米纤维材料的制备方法
Ullah et al. Solvent effects on the porosity and size of porous PLGA microspheres using gelatin and PBS as porogens in a microfluidic flow-focusing device
Nie et al. Fabrication and structural regulation of PLLA porous microspheres via phase inversion emulsion and thermally induced phase separation techniques
CN105088361A (zh) 一种利用反胶束体系和静电纺丝技术制备sers基底的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180907

Termination date: 20210603