CN105917242B - 利用具有混合振动和摆动操作的移动敏感元件的传感器以及控制这样的传感器的方法 - Google Patents

利用具有混合振动和摆动操作的移动敏感元件的传感器以及控制这样的传感器的方法 Download PDF

Info

Publication number
CN105917242B
CN105917242B CN201480073565.0A CN201480073565A CN105917242B CN 105917242 B CN105917242 B CN 105917242B CN 201480073565 A CN201480073565 A CN 201480073565A CN 105917242 B CN105917242 B CN 105917242B
Authority
CN
China
Prior art keywords
main body
sensor
stand
resonator
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480073565.0A
Other languages
English (en)
Other versions
CN105917242A (zh
Inventor
A·金洛伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Sagem Defense Securite SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Defense Securite SA filed Critical Sagem Defense Securite SA
Publication of CN105917242A publication Critical patent/CN105917242A/zh
Application granted granted Critical
Publication of CN105917242B publication Critical patent/CN105917242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5656Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0888Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values for indicating angular acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • G01P15/0975Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements by acoustic surface wave resonators or delay lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/14Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of gyroscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/082Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for two degrees of freedom of movement of a single mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0848Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration using a plurality of mechanically coupled spring-mass systems, the sensitive direction of each system being different
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0857Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration using a particular shape of the suspension spring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Gyroscopes (AREA)

Abstract

本发明涉及传感器,包括:台架;沿传感轴可移动的第一主体;相对于所述第一主体沿传感轴对称安置的两对第二主体;用于检测第一主体相对于台架的位置、沿振动轴振动所述第二主体并检测所述第二主体的振动频率的换能器;以及用于将每个第二主体表面静电耦合连接到第一主体的装置,以便第一主体沿传感轴相对于台架的移动分别导致所述第二主体对的一个第二主体对和另一个第二主体对的静电力矩的增加和减少。本发明还涉及用于控制这样的传感器的方法。

Description

利用具有混合振动和摆动操作的移动敏感元件的传感器以及 控制这样的传感器的方法
本发明涉及可用于检测加速度、压力或更具体而言振动可以引起可移动主体相对于台架移动的任何物理量的传感器。本发明特别适用于用在惯性加速度传感器的应用中,并且特别是微机电系统(MEMS)型的传感器。
具有振动谐振器的加速度传感器通常包括通过振动元件被连接到支架的激振体(或测试质量块),所述振动元件通常是沿传感器的传感轴延伸的梁的形式。所述传感器具有用于将所述梁设定到以梁的谐振频率振动并用于检测在所述梁的振动频率中的振动的换能器。在施加给所述支架的加速度的影响下,激振体在所述梁上施加轴向力来收缩或牵引:这导致梁的刚性的变化并且因而导致在其谐振频率中的变化。
这样,从梁的谐振频率中的小的变化推导出加速度测量,因而导致相对大的测量偏差。在加速度的影响下,力被施加给谐振器,谐振器改变了其谐振频率:所导致的变形是相对小的,并且类似于由温度的变化或由在装配中的应力松弛产生的干扰变形。
为了消除这种偏差和其他不期望的共模影响(非线性、温度敏感性、……),通过用以音叉配置的两个梁来取代单个梁来差别化执行所述测量,这些梁经受了要么由这两个梁所共有的激振体要么由两个激振体(每个连接到这些梁的相应一个梁)所施加的相反符号的应力。
为了限制这种测量偏差,已经提议实现平行于梁的机械刚性的静电刚性,这样,在加速度的影响下激振体修改了静电刚性。
在使用这种原理的传感器中,以这样的方式借助于附连到音叉的每个振动梁的梳状电极获得静电刚性:在加速度的影响下测试主体改变梳状电极之间的气隙并因而改变了所述电极所生成的静电刚性。刚性中的变化导致梁的振动频率中的变化。所述梁具有不同的振动频率,并且这两个频率之间的差是加速度的量度。
这样,变化幅度的增加使得减小测量偏差成为可能。
本发明的目的是提供允许传感器的性能被更好改进的手段。
为此,本发明提供一种传感器,包括:台架;通过第一悬挂装置被连接到台架以沿传感轴可移动的第一主体,所述第一悬挂装置限定了悬挂平面;围绕所述第一主体沿传感轴对称安置的两个谐振器并且每个谐振器包括一对第二主体,每个所述第二主体通过第二悬挂装置被连接到台架以便沿基本上垂直于传感轴的振动轴是可移动的,并且所述第二主体通过第三悬挂装置彼此相连;被连接到控制单元的换能器构件,用于检测第一主体相对于台架的位置,用于将第二主体设定为沿振动轴振动,并用于检测第二主体的相应的振动频率;以及以这样的方式将每个第二主体连接到第一主体的表面静电耦合装置:第一主体沿传感轴相对于台架的移动导致第二主体对的一个第二主体对的静电耦合的增加以及另一第二主体对的静电耦合的减少。
这样,这些谐振器具有相对大的等效质量以及Q-因子和相对低的谐振频率。当第一主体在外部动作的影响下移动时,它导致谐振器中的一个谐振器的静电刚性增加而另一谐振器的静电刚性减少,因此,增加了谐振器的一个谐振器的谐振频率同时减少了另一个谐振器的谐振频率。作为移动的结果所引起的静电刚性变化还使得传感器对温度或对装配中的应力松弛的敏感度与如果所述变化是施加力的结果而将有的敏感度相比是更不敏感的。具有通过移动改变谐振器的振动频率的单个第一主体的传感器的安排使得具有单个输入同时在给定大小的情况下对于这两个谐振器中的每个还具有相对大的测试质量块成为可能。该安排也使得可能具有表面静电耦合装置,即通过所述装置第一主体的移动导致表面面积中的变化,表面面积中的变化导致静电耦合中的变化,其变化(在第一阶)比气隙的变化更加线性并因此更易使用。这导致传感器的性能中的改进。第一主体的移动的测量也代表了外部动作。这样,本发明的传感器将摆动操作模式和振动操作模式合并,这可以特别用于实现测量冗余。因此,本发明的传感器提供了通过第一主体结合换能器可用的附加功能,所述换能器使得开环摆动操作模式可用,它能提供允许传感器的性能被更进一步改进的测量。
本发明还提供了一种控制这样的传感器的第一方法。该方法包括检测第一主体的移动以便确定第一测量值的步骤,以及检测谐振器的频率中的变化以便确定第二测量值的步骤。
这样,获得了两个值,第一个值是通过摆动操作模式获得而第二个值是通过振动操作模式获得。这两种操作模式对于同一干扰并不敏感,并且因此它有利于依据外部条件优先考虑这些操作模式中的一个或另一个操作模式。
在使用这些可测量值的基本方法中,所述方法包括将第一测量值和第二测量值的平均保留为最终测量值的步骤。
本发明还提供了一种控制传感器的第二方法。该方法包括使得第一主体执行预定移动的步骤,以及处理来自谐振器的换能器构件的信号以便确定测量值的步骤。
这样,可能校准和/或测试传感器。
在阅读了下面的对本发明的特定的非限制性实施例之后,本发明的其他特征以及优点将变得显而易见。
对附图作出参考,在附图中:
图1是本发明的传感器的示意平面图;以及
图2是图1中区域II的放大详细视图。
以其在测量加速度的应用在此描述本发明。无疑,然而本发明并不局限于此应用。
在该示例中的本发明的传感器是MEMS类型的,并且它是通过蚀刻晶片来制造的,所述晶片包括由电绝缘层分隔开的至少半导体层和导电层,被称为绝缘体上硅(SOI)晶片。该制造方法本身是已知的。
本发明的传感器包括给予整体标记1的台架。台架1具有安置在底部3之上的矩形框架形式的侧壁2。
在本示例中被称为激振“体”的第一主体4通过将主体4连接到台架1的侧壁2的第一悬挂装置5被安装在台架上。悬挂装置5定义了悬挂平面P,并且它们被安置以使得主体4沿悬挂平面P中包含的传感轴X是可移动的。
主体4是矩形板形式的,所述矩形板具有在其内形成的矩形形状的两个腔6.1和6.2,这些腔在传感轴X上是彼此对齐的并且由部分7彼此间隔开。
给予整体标记10.1和10.2的两个谐振器中的每个被容纳在腔6.1和6.2的相应一个腔中,并且这样它们沿传感轴X相对于激振体4对称安置。
每个谐振器10.1、10.2包括一对第二主体11.1、12.1、11.2、12.2,每个通过第二悬挂装置13.1、13.2被连接到台架1的底部3。第二悬挂装置13.1、13.2被安置,使得主体11.1、12.1、11.2、12.2中的每个主体可以沿振动轴Y.1、Y.2振动,该振动轴基本上垂直于传感轴X。主体11.1、12.1通过第三悬挂装置14.1被连接在一起。主体11.2、12.2通过第三悬挂装置14.2被连接在一起。主体和悬挂装置以这样的方式被安置:主体4和悬挂装置5具有约1千赫兹(kHz)到约3kHz的谐振频率,并且谐振器10.1和10.2具有高的谐振频率,在本示例中,位于约10kHz到约20kHz的范围中。
悬挂装置是由叶片形成,所述叶片可平行于悬挂平面P弹性变形,但在沿与悬挂平面P垂直的轴上呈现出高度刚性,以便消除主体的移动出悬挂平面P的自由度。第三悬挂装置14.1、14.2包括以菱形安置的可弹性变形条带15,具有平行于振动轴Y并由连接到主体11.1、12.1的第一顶点限定的第一对角线以及平行于传感轴并由通过(以第二顶点沿传感轴X可单独移动的方式)形成链接的叶片16连接到台架1的底部3的第二顶点限定的第二对角线。
传感器包括链接到控制单元8的换能器构件。
第一换能器单元9被连接在台架1的侧壁2和第一主体4之间,并且它们以传统方式安置以检测第一主体4相对于台架1的位置并相对于台架1移动第一主体4。相同的换能器构件可以被控制以便交替发挥这两个功能,或者一个换能器构件可以被专用于移动功能,而一个换能器构件可以被专用于检测功能。
第二换能器构件17.1、17.2被连接在第二主体11.1、12.1、11.2、12.2中的每个和台架1的底部3之间,并且它们以传统方式被安置以允许第二主体11.1、12.1、11.2、12.2沿振动轴Y.1、Y.2振动并检测第二主体11.1、12.1、11.2、12.2的相应的振动频率。相同的换能器构件可以被控制以便交替发挥这两个功能,或者一个换能器构件可以被专用于建立振动的功能,而一个换能器构件可以被专用于检测功能。
换能器构件以梳状电极形式被制成。
传感器还具有以这样的方式将每个第二主体11.1、12.1、11.2、12.2连接到第一主体4的表面静电耦合装置:第一主体4沿传感轴X相对于台架1的移动导致第二主体对11.1、12.1、11.2、12.2中的一第二主体对的静电耦合增加,而另一第二主体对11.1、12.1、11.2、12.2的静电耦合减少。
表面静电耦合装置18.1、18.2被连接在所述部分7和第二主体11.1、12.1、11.2、12.2之间,并且它们是梳状电极的形式,所述梳状电极使得它们的梳齿平行于传感轴X延伸。这样,第二主体11.1、12.1、11.2、12.2的每个被提供有梳状电极之一,并且部分7还具有面对第二主体11.1,12.1,11.2,12.2的每个梳状电极的梳状电极,以便所述面对的电极的梳齿是在彼此之间安置的这样,彼此面对的这两个梳状电极的梳齿呈现出面对表面,所述表面平行于传感轴并定义了当所述电极经受电压时由它们提供的静电耦合的值。如果部分7相对于台架1移动,梳齿的面对表面面积就增加或减少,这取决于考虑中的谐振器,因而导致讨论中的谐振器的静电耦合中的增加或减少,并且这导致讨论中的谐振器的在其刚性中的增加或减少。
换能器的电极和静电耦合装置的电极通过由控制单元8控制的连接装置被连接到至少一个电压源,以便将电压有选择性地施加到所述电极。这些连接装置和电压源本身是已知的,并且不在此更详细描述。
可以理解,在施加到台架1的加速度的影响下,第一主体4移动,因而导致在静电耦合中的变化(并因而导致在谐振器10.1、10.2的静电刚性中的变化),这导致在谐振器10.1、10.2的谐振频率中的变化。
通过已知方式,控制单元8包括包含计算机程序的存储器和安置为执行所述程序的处理器。所述程序允许传感器控制方法被执行。
这样,所述发明还涉及当和其他传感器一起被安装在(作为示例)车辆中以便为车辆的导航单元或驾驶单元提供测量时,控制这种传感器的方法。
这些方法的第一方法包括下述步骤:
借助于第一换能器构件9检测第一主体4的移动,以便确定第一加速度值;以及
借助于第二换能器17.1、17.2检测谐振器10.1、10.2的频率中的变化,以便确定第二加速度值。
这样,通过使用传感器作为摆动加速度计获得第一值,而通过使用传感器作为振动加速度计获得第二值。
在简化版本中,所述方法随后包括将第一加速度值和第二加速度值的平均保留为加速度值的步骤。应该观察到,该平均可以通过第一和第二加速度值的先验加权来计算。加权系数可以例如在工厂的校准步骤期间一劳永逸地设定,以便考虑摆动模式传感器和振动模式传感器的相对性能,或它们可以根据环境参数,诸如温度,变化。随后,连接到控制单元8的温度传感器被安置在传感器附近,并且控制单元8包括包含了以温度为函数的系数值的存储器。
本发明还涉及控制传感器以允许传感器被测试或校准的第二方法。
该方法包括以下步骤:
使得第一主体4通过使用第一换能器构件9来执行预定的移动,该移动类似于由加速度引起的移动;以及
处理来自第二换能器构件17.1、17.2的信号以便确定加速度值。
知晓预定移动的特性(应该观察到第一换能器构件9可以被用来确定该移动的真实特性),就可能确定第二换能器构件17.1、17.2应该提供的理论信号且因此确定理论加速度值。控制单元8被编程为计算此理论加速度值并将其与从由第二换能器构件17.1、17.2实际提供的信号中所确定的加速度值相比较。这使得对传感器的完整性且具体而言为换能器的效率和主体4的移动性进行验证成为可能。
控制单元8优选地被安排为根据这两个值之间的差行动以便确定要被施加到从由第二换能器构件17.1、17.2提供的信号中所确定的加速度值的校正因子。控制单元8还被安排为使用所述比较的结果来更新传感器的误差模型。在一个变体中,比较的结果被用于调整要施加给传感器的各种电极的电压以便最小化所测得的差。
控制单元8有利地被编程为周期性地执行这种校准或测试方法。
控制单元8还被安排为控制第一换能器构件9以便过滤掉干扰(例如由传感器的载体所产生的振动),并且例如以实现执行第一主体4的第一谐振模式的受控衰减的主动悬挂。
当然,本发明不限于所描述的实施例,而是覆盖落在由所附权利要求限定的本发明的范围内的任何变型。
具体而言,第一主体可以是除所述形状之外的形状,并且例如它可以是具有在其中形成有单个腔以便容纳这两个谐振器的板型形状。
本发明的传感器可以被用于检测任何可以被转换成第一主体相对于台架的移动的量,例如加速度、压力等等。

Claims (8)

1.一种传感器,包括:台架(1);通过第一悬挂装置(5)被连接到所述台架以沿传感轴(X)可移动的第一主体(4),所述第一悬挂装置(5)限定了悬挂平面(P);围绕所述第一主体沿所述传感轴对称安置的两个谐振器(10.1,10.2)并且每个谐振器包括一对第二主体(11.1,12.1,11.2,12.2),每个所述第二主体通过第二悬挂装置(13.1,13.2)被连接到所述台架以便能够沿基本上垂直于所述传感轴的振动轴(Y.1,Y.2)振动,并且所述第二主体通过第三悬挂装置(14.1,14.2)彼此相连;被连接到控制单元(8)的换能器构件(9,17.1,17.2),用于检测所述第一主体相对于所述台架的位置,用于将所述第二主体设定为沿所述振动轴振动,并用于检测所述第二主体的相应的振动频率;以及以这样的方式将每个第二主体连接到所述第一主体的表面静电耦合装置(18.1,18.2):所述第一主体沿所述传感轴相对于所述台架的移动导致所述两个谐振器中的一个谐振器中包括的那对第二主体的静电耦合增加,且所述两个谐振器中的另一谐振器中包括的那对第二主体的静电耦合减少。
2.如权利要求1所述的传感器,其特征在于,所述两个谐振器(10.1,10.2)被安置在所述第一主体的部分(7)沿所述传感轴的任一侧上,所述表面静电耦合装置(18.1,18.2)被安装在所述部分和所述第二主体(11.1,12.1,11.2,12.2)之间。
3.如权利要求2所述的传感器,其特征在于,所述第一主体(4)具有在所述传感轴(X)上彼此对齐的两个腔(6.1,6.2),并且每个腔容纳所述第二主体对(11.1,12.1,11.2,12.2)中的一对。
4.如权利要求1所述的传感器,其特征在于,所述第三悬挂装置(14.1、14.2)包括具有菱形形状的至少一个可弹性变形条带(15),所述菱形具有平行于所述振动轴(Y)并由连接到所述第二主体(11.1,12.1,11.2,12.2)的第一顶点限定的第一对角线以及平行于所述传感轴并由以第二顶点沿所述传感轴可单独移动的方式的通过链接(16)连接到所述台架(1)的所述第二顶点限定的第二对角线。
5.如权利要求1所述的传感器,其特征在于,所述换能器构件(9)也被安排为移动所述第一主体(4)。
6.一种控制根据任意前述权利要求所述的传感器的方法,所述方法包括检测所述第一主体(4)的移动以便确定第一测量值的步骤,以及检测所述谐振器的频率中的变化以便确定第二测量值的步骤。
7.如权利要求6所述的方法,其特征在于,包括将所述第一测量值和所述第二测量值的平均保留作为最终测量值的步骤。
8.一种控制如权利要求5所述的传感器的方法,其特征在于,包括使得所述第一主体(4)执行预定移动的步骤,以及处理来自所述谐振器(10.1,10.2)的换能器构件(17.1,17.2)的信号以便确定测量值的步骤。
CN201480073565.0A 2013-11-20 2014-10-21 利用具有混合振动和摆动操作的移动敏感元件的传感器以及控制这样的传感器的方法 Active CN105917242B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1361433A FR3013445B1 (fr) 2013-11-20 2013-11-20 Capteur a element sensible mobile ayant un fonctionnement mixte vibrant et pendulaire, et procedes de commande d'un tel capteur
FR1361433 2013-11-20
PCT/EP2014/072580 WO2015074817A1 (fr) 2013-11-20 2014-10-21 Capteur a element sensible mobile ayant un fonctionnement mixte vibrant et pendulaire, et procedes de commande d'un tel capteur

Publications (2)

Publication Number Publication Date
CN105917242A CN105917242A (zh) 2016-08-31
CN105917242B true CN105917242B (zh) 2018-03-02

Family

ID=50976681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480073565.0A Active CN105917242B (zh) 2013-11-20 2014-10-21 利用具有混合振动和摆动操作的移动敏感元件的传感器以及控制这样的传感器的方法

Country Status (6)

Country Link
US (1) US9519004B2 (zh)
EP (1) EP3071976B1 (zh)
CN (1) CN105917242B (zh)
FR (1) FR3013445B1 (zh)
RU (1) RU2632264C1 (zh)
WO (1) WO2015074817A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485260B2 (ja) * 2015-07-10 2019-03-20 セイコーエプソン株式会社 物理量センサー、物理量センサー装置、電子機器および移動体
JP6583547B2 (ja) * 2015-09-25 2019-10-02 株式会社村田製作所 改良型微小電気機械加速度測定装置
US10466053B2 (en) * 2017-04-04 2019-11-05 Invensense, Inc. Out-of-plane sensing gyroscope robust to external acceleration and rotation
FR3065800B1 (fr) * 2017-04-27 2019-08-02 Safran Resonateur configure pour etre integre a un capteur angulaire inertiel
US10866258B2 (en) * 2018-07-20 2020-12-15 Honeywell International Inc. In-plane translational vibrating beam accelerometer with mechanical isolation and 4-fold symmetry
FR3102855B1 (fr) * 2019-11-06 2021-12-03 Commissariat Energie Atomique Accelerometre performant presentant un encombrement reduit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183246A (zh) * 2009-12-24 2011-09-14 意法半导体股份有限公司 具有改进的驱动结构的集成微机电陀螺仪
CN103827673A (zh) * 2011-08-31 2014-05-28 意法半导体股份有限公司 用于z轴谐振加速度计的改进检测结构
CN103998894A (zh) * 2011-12-06 2014-08-20 萨甘安全防护公司 平衡式mems类型惯性角传感器及用于使此类传感器平衡的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122961A (en) * 1997-09-02 2000-09-26 Analog Devices, Inc. Micromachined gyros
US6230563B1 (en) * 1998-06-09 2001-05-15 Integrated Micro Instruments, Inc. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability
JP2003511684A (ja) * 1999-10-13 2003-03-25 アナログ デバイシーズ インコーポレイテッド レートジャイロスコープ用フィードバック機構
JP3870895B2 (ja) * 2002-01-10 2007-01-24 株式会社村田製作所 角速度センサ
KR100476562B1 (ko) * 2002-12-24 2005-03-17 삼성전기주식회사 수평형 및 튜닝 포크형 진동식 마이크로 자이로스코프
JP4433747B2 (ja) * 2003-09-29 2010-03-17 株式会社村田製作所 角速度検出装置
US7377167B2 (en) * 2004-02-27 2008-05-27 The Regents Of The University Of California Nonresonant micromachined gyroscopes with structural mode-decoupling
KR100616641B1 (ko) * 2004-12-03 2006-08-28 삼성전기주식회사 튜닝포크형 진동식 mems 자이로스코프
US7421897B2 (en) * 2005-04-14 2008-09-09 Analog Devices, Inc. Cross-quad and vertically coupled inertial sensors
US8113050B2 (en) * 2006-01-25 2012-02-14 The Regents Of The University Of California Robust six degree-of-freedom micromachined gyroscope with anti-phase drive scheme and method of operation of the same
DE102007030119A1 (de) * 2007-06-29 2009-01-02 Litef Gmbh Corioliskreisel
FI20095201A0 (fi) * 2009-03-02 2009-03-02 Vti Technologies Oy Värähtelevä mikromekaaninen kulmanopeusanturi
US8322213B2 (en) * 2009-06-12 2012-12-04 The Regents Of The University Of California Micromachined tuning fork gyroscopes with ultra-high sensitivity and shock rejection
DE102009045420B4 (de) * 2009-10-07 2024-01-18 Robert Bosch Gmbh Drehratensensor, Drehratensensoranordnung und Verfahren zum Betrieb eines Drehratensensors
RU2436106C2 (ru) * 2010-02-24 2011-12-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Частотный датчик линейных ускорений
FR3000194B1 (fr) * 2012-12-24 2015-03-13 Commissariat Energie Atomique Gyroscope a calibration simplifiee et procede de calibration simplifie d'un gyroscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183246A (zh) * 2009-12-24 2011-09-14 意法半导体股份有限公司 具有改进的驱动结构的集成微机电陀螺仪
CN103827673A (zh) * 2011-08-31 2014-05-28 意法半导体股份有限公司 用于z轴谐振加速度计的改进检测结构
CN103998894A (zh) * 2011-12-06 2014-08-20 萨甘安全防护公司 平衡式mems类型惯性角传感器及用于使此类传感器平衡的方法

Also Published As

Publication number Publication date
RU2632264C1 (ru) 2017-10-03
FR3013445B1 (fr) 2015-11-20
WO2015074817A1 (fr) 2015-05-28
FR3013445A1 (fr) 2015-05-22
CN105917242A (zh) 2016-08-31
US9519004B2 (en) 2016-12-13
EP3071976B1 (fr) 2017-09-13
US20160282382A1 (en) 2016-09-29
EP3071976A1 (fr) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105917242B (zh) 利用具有混合振动和摆动操作的移动敏感元件的传感器以及控制这样的传感器的方法
CN103998894B (zh) 平衡式mems类型惯性角传感器及用于使此类传感器平衡的方法
US9261525B2 (en) MEMS inertial sensor and method of inertial sensing
CN104781677B (zh) 双轴和三轴惯性传感器及惯性感测方法
CN102066874B (zh) 振动型微机械角速度传感器
TWI481872B (zh) 微機械振動式角速度感測器
US8833164B2 (en) Microelectromechanical structure with enhanced rejection of acceleration noise
KR100616641B1 (ko) 튜닝포크형 진동식 mems 자이로스코프
JP5713737B2 (ja) ノイズを低減した力センサ
US9689678B2 (en) MEMS balanced inertial angular sensor and method for balancing such a sensor
EP2202484A1 (en) Microelectromechanical gyroscope with enhanced rejection of acceleration noise
CN106629571A (zh) 一种基于模态局部化效应的弱耦合mems谐振式加速度计
EP2783222B1 (en) Mems inertial sensor and method of inertial sensing
WO2014169540A1 (zh) 非等截面悬臂梁压电式加速度传感器
US20150308828A1 (en) Gyro sensor and composite sensor comprising gyro sensor
US9726562B2 (en) Pressure sensor made from nanogauges coupled to a resonator
KR101915954B1 (ko) 멤스 기반의 3축 가속도 센서
US5461918A (en) Vibrating beam accelerometer
JP2002062311A (ja) センサ
CN105954541A (zh) 一种三轴声表面波加速度传感器
Xiao et al. A temperature self-calibrating torsional accelerometer with fully differential configuration and integrated reference capacitor
Thakur et al. Analysis of acceleration sensitivity in MEMS tuning fork gyroscope
CN105917193A (zh) 具有嵌套激振体质量块的惯性传感器和用于制造这样的传感器的方法
KR101306877B1 (ko) 내부감지전극을 갖는 튜닝포크형 자이로스코프
JP3873266B2 (ja) 三次元角速度センサ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant